linux/fs/xfs/xfs_super.c
Christian Brauner b40508ca5d
Merge patch series "timekeeping/fs: multigrain timestamp redux"
Jeff Layton <jlayton@kernel.org> says:

The VFS has always used coarse-grained timestamps when updating the
ctime and mtime after a change. This has the benefit of allowing
filesystems to optimize away a lot metadata updates, down to around 1
per jiffy, even when a file is under heavy writes.

Unfortunately, this has always been an issue when we're exporting via
NFSv3, which relies on timestamps to validate caches. A lot of changes
can happen in a jiffy, so timestamps aren't sufficient to help the
client decide when to invalidate the cache. Even with NFSv4, a lot of
exported filesystems don't properly support a change attribute and are
subject to the same problems with timestamp granularity. Other
applications have similar issues with timestamps (e.g backup
applications).

If we were to always use fine-grained timestamps, that would improve the
situation, but that becomes rather expensive, as the underlying
filesystem would have to log a lot more metadata updates.

What we need is a way to only use fine-grained timestamps when they are
being actively queried. Use the (unused) top bit in inode->i_ctime_nsec
as a flag that indicates whether the current timestamps have been
queried via stat() or the like. When it's set, we allow the kernel to
use a fine-grained timestamp iff it's necessary to make the ctime show
a different value.

This solves the problem of being able to distinguish the timestamp
between updates, but introduces a new problem: it's now possible for a
file being changed to get a fine-grained timestamp. A file that is
altered just a bit later can then get a coarse-grained one that appears
older than the earlier fine-grained time. This violates timestamp
ordering guarantees.

To remedy this, keep a global monotonic atomic64_t value that acts as a
timestamp floor.  When we go to stamp a file, we first get the latter of
the current floor value and the current coarse-grained time. If the
inode ctime hasn't been queried then we just attempt to stamp it with
that value.

If it has been queried, then first see whether the current coarse time
is later than the existing ctime. If it is, then we accept that value.
If it isn't, then we get a fine-grained time and try to swap that into
the global floor. Whether that succeeds or fails, we take the resulting
floor time, convert it to realtime and try to swap that into the ctime.

We take the result of the ctime swap whether it succeeds or fails, since
either is just as valid.

Filesystems can opt into this by setting the FS_MGTIME fstype flag.
Others should be unaffected (other than being subject to the same floor
value as multigrain filesystems).

* patches from https://lore.kernel.org/r/20241002-mgtime-v10-0-d1c4717f5284@kernel.org:
  tmpfs: add support for multigrain timestamps
  btrfs: convert to multigrain timestamps
  ext4: switch to multigrain timestamps
  xfs: switch to multigrain timestamps
  Documentation: add a new file documenting multigrain timestamps
  fs: add percpu counters for significant multigrain timestamp events
  fs: tracepoints around multigrain timestamp events
  fs: handle delegated timestamps in setattr_copy_mgtime
  fs: have setattr_copy handle multigrain timestamps appropriately
  fs: add infrastructure for multigrain timestamps

Link: https://lore.kernel.org/r/20241002-mgtime-v10-0-d1c4717f5284@kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-10-10 10:20:57 +02:00

2493 lines
64 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_btree.h"
#include "xfs_bmap.h"
#include "xfs_alloc.h"
#include "xfs_fsops.h"
#include "xfs_trans.h"
#include "xfs_buf_item.h"
#include "xfs_log.h"
#include "xfs_log_priv.h"
#include "xfs_dir2.h"
#include "xfs_extfree_item.h"
#include "xfs_mru_cache.h"
#include "xfs_inode_item.h"
#include "xfs_icache.h"
#include "xfs_trace.h"
#include "xfs_icreate_item.h"
#include "xfs_filestream.h"
#include "xfs_quota.h"
#include "xfs_sysfs.h"
#include "xfs_ondisk.h"
#include "xfs_rmap_item.h"
#include "xfs_refcount_item.h"
#include "xfs_bmap_item.h"
#include "xfs_reflink.h"
#include "xfs_pwork.h"
#include "xfs_ag.h"
#include "xfs_defer.h"
#include "xfs_attr_item.h"
#include "xfs_xattr.h"
#include "xfs_iunlink_item.h"
#include "xfs_dahash_test.h"
#include "xfs_rtbitmap.h"
#include "xfs_exchmaps_item.h"
#include "xfs_parent.h"
#include "scrub/stats.h"
#include "scrub/rcbag_btree.h"
#include <linux/magic.h>
#include <linux/fs_context.h>
#include <linux/fs_parser.h>
static const struct super_operations xfs_super_operations;
static struct dentry *xfs_debugfs; /* top-level xfs debugfs dir */
static struct kset *xfs_kset; /* top-level xfs sysfs dir */
#ifdef DEBUG
static struct xfs_kobj xfs_dbg_kobj; /* global debug sysfs attrs */
#endif
enum xfs_dax_mode {
XFS_DAX_INODE = 0,
XFS_DAX_ALWAYS = 1,
XFS_DAX_NEVER = 2,
};
static void
xfs_mount_set_dax_mode(
struct xfs_mount *mp,
enum xfs_dax_mode mode)
{
switch (mode) {
case XFS_DAX_INODE:
mp->m_features &= ~(XFS_FEAT_DAX_ALWAYS | XFS_FEAT_DAX_NEVER);
break;
case XFS_DAX_ALWAYS:
mp->m_features |= XFS_FEAT_DAX_ALWAYS;
mp->m_features &= ~XFS_FEAT_DAX_NEVER;
break;
case XFS_DAX_NEVER:
mp->m_features |= XFS_FEAT_DAX_NEVER;
mp->m_features &= ~XFS_FEAT_DAX_ALWAYS;
break;
}
}
static const struct constant_table dax_param_enums[] = {
{"inode", XFS_DAX_INODE },
{"always", XFS_DAX_ALWAYS },
{"never", XFS_DAX_NEVER },
{}
};
/*
* Table driven mount option parser.
*/
enum {
Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev,
Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid,
Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups,
Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32, Opt_ikeep,
Opt_noikeep, Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2,
Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota,
Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota,
Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce,
Opt_discard, Opt_nodiscard, Opt_dax, Opt_dax_enum,
};
static const struct fs_parameter_spec xfs_fs_parameters[] = {
fsparam_u32("logbufs", Opt_logbufs),
fsparam_string("logbsize", Opt_logbsize),
fsparam_string("logdev", Opt_logdev),
fsparam_string("rtdev", Opt_rtdev),
fsparam_flag("wsync", Opt_wsync),
fsparam_flag("noalign", Opt_noalign),
fsparam_flag("swalloc", Opt_swalloc),
fsparam_u32("sunit", Opt_sunit),
fsparam_u32("swidth", Opt_swidth),
fsparam_flag("nouuid", Opt_nouuid),
fsparam_flag("grpid", Opt_grpid),
fsparam_flag("nogrpid", Opt_nogrpid),
fsparam_flag("bsdgroups", Opt_bsdgroups),
fsparam_flag("sysvgroups", Opt_sysvgroups),
fsparam_string("allocsize", Opt_allocsize),
fsparam_flag("norecovery", Opt_norecovery),
fsparam_flag("inode64", Opt_inode64),
fsparam_flag("inode32", Opt_inode32),
fsparam_flag("ikeep", Opt_ikeep),
fsparam_flag("noikeep", Opt_noikeep),
fsparam_flag("largeio", Opt_largeio),
fsparam_flag("nolargeio", Opt_nolargeio),
fsparam_flag("attr2", Opt_attr2),
fsparam_flag("noattr2", Opt_noattr2),
fsparam_flag("filestreams", Opt_filestreams),
fsparam_flag("quota", Opt_quota),
fsparam_flag("noquota", Opt_noquota),
fsparam_flag("usrquota", Opt_usrquota),
fsparam_flag("grpquota", Opt_grpquota),
fsparam_flag("prjquota", Opt_prjquota),
fsparam_flag("uquota", Opt_uquota),
fsparam_flag("gquota", Opt_gquota),
fsparam_flag("pquota", Opt_pquota),
fsparam_flag("uqnoenforce", Opt_uqnoenforce),
fsparam_flag("gqnoenforce", Opt_gqnoenforce),
fsparam_flag("pqnoenforce", Opt_pqnoenforce),
fsparam_flag("qnoenforce", Opt_qnoenforce),
fsparam_flag("discard", Opt_discard),
fsparam_flag("nodiscard", Opt_nodiscard),
fsparam_flag("dax", Opt_dax),
fsparam_enum("dax", Opt_dax_enum, dax_param_enums),
{}
};
struct proc_xfs_info {
uint64_t flag;
char *str;
};
static int
xfs_fs_show_options(
struct seq_file *m,
struct dentry *root)
{
static struct proc_xfs_info xfs_info_set[] = {
/* the few simple ones we can get from the mount struct */
{ XFS_FEAT_IKEEP, ",ikeep" },
{ XFS_FEAT_WSYNC, ",wsync" },
{ XFS_FEAT_NOALIGN, ",noalign" },
{ XFS_FEAT_SWALLOC, ",swalloc" },
{ XFS_FEAT_NOUUID, ",nouuid" },
{ XFS_FEAT_NORECOVERY, ",norecovery" },
{ XFS_FEAT_ATTR2, ",attr2" },
{ XFS_FEAT_FILESTREAMS, ",filestreams" },
{ XFS_FEAT_GRPID, ",grpid" },
{ XFS_FEAT_DISCARD, ",discard" },
{ XFS_FEAT_LARGE_IOSIZE, ",largeio" },
{ XFS_FEAT_DAX_ALWAYS, ",dax=always" },
{ XFS_FEAT_DAX_NEVER, ",dax=never" },
{ 0, NULL }
};
struct xfs_mount *mp = XFS_M(root->d_sb);
struct proc_xfs_info *xfs_infop;
for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
if (mp->m_features & xfs_infop->flag)
seq_puts(m, xfs_infop->str);
}
seq_printf(m, ",inode%d", xfs_has_small_inums(mp) ? 32 : 64);
if (xfs_has_allocsize(mp))
seq_printf(m, ",allocsize=%dk",
(1 << mp->m_allocsize_log) >> 10);
if (mp->m_logbufs > 0)
seq_printf(m, ",logbufs=%d", mp->m_logbufs);
if (mp->m_logbsize > 0)
seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10);
if (mp->m_logname)
seq_show_option(m, "logdev", mp->m_logname);
if (mp->m_rtname)
seq_show_option(m, "rtdev", mp->m_rtname);
if (mp->m_dalign > 0)
seq_printf(m, ",sunit=%d",
(int)XFS_FSB_TO_BB(mp, mp->m_dalign));
if (mp->m_swidth > 0)
seq_printf(m, ",swidth=%d",
(int)XFS_FSB_TO_BB(mp, mp->m_swidth));
if (mp->m_qflags & XFS_UQUOTA_ENFD)
seq_puts(m, ",usrquota");
else if (mp->m_qflags & XFS_UQUOTA_ACCT)
seq_puts(m, ",uqnoenforce");
if (mp->m_qflags & XFS_PQUOTA_ENFD)
seq_puts(m, ",prjquota");
else if (mp->m_qflags & XFS_PQUOTA_ACCT)
seq_puts(m, ",pqnoenforce");
if (mp->m_qflags & XFS_GQUOTA_ENFD)
seq_puts(m, ",grpquota");
else if (mp->m_qflags & XFS_GQUOTA_ACCT)
seq_puts(m, ",gqnoenforce");
if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
seq_puts(m, ",noquota");
return 0;
}
static bool
xfs_set_inode_alloc_perag(
struct xfs_perag *pag,
xfs_ino_t ino,
xfs_agnumber_t max_metadata)
{
if (!xfs_is_inode32(pag->pag_mount)) {
set_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate);
clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate);
return false;
}
if (ino > XFS_MAXINUMBER_32) {
clear_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate);
clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate);
return false;
}
set_bit(XFS_AGSTATE_ALLOWS_INODES, &pag->pag_opstate);
if (pag->pag_agno < max_metadata)
set_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate);
else
clear_bit(XFS_AGSTATE_PREFERS_METADATA, &pag->pag_opstate);
return true;
}
/*
* Set parameters for inode allocation heuristics, taking into account
* filesystem size and inode32/inode64 mount options; i.e. specifically
* whether or not XFS_FEAT_SMALL_INUMS is set.
*
* Inode allocation patterns are altered only if inode32 is requested
* (XFS_FEAT_SMALL_INUMS), and the filesystem is sufficiently large.
* If altered, XFS_OPSTATE_INODE32 is set as well.
*
* An agcount independent of that in the mount structure is provided
* because in the growfs case, mp->m_sb.sb_agcount is not yet updated
* to the potentially higher ag count.
*
* Returns the maximum AG index which may contain inodes.
*/
xfs_agnumber_t
xfs_set_inode_alloc(
struct xfs_mount *mp,
xfs_agnumber_t agcount)
{
xfs_agnumber_t index;
xfs_agnumber_t maxagi = 0;
xfs_sb_t *sbp = &mp->m_sb;
xfs_agnumber_t max_metadata;
xfs_agino_t agino;
xfs_ino_t ino;
/*
* Calculate how much should be reserved for inodes to meet
* the max inode percentage. Used only for inode32.
*/
if (M_IGEO(mp)->maxicount) {
uint64_t icount;
icount = sbp->sb_dblocks * sbp->sb_imax_pct;
do_div(icount, 100);
icount += sbp->sb_agblocks - 1;
do_div(icount, sbp->sb_agblocks);
max_metadata = icount;
} else {
max_metadata = agcount;
}
/* Get the last possible inode in the filesystem */
agino = XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1);
ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
/*
* If user asked for no more than 32-bit inodes, and the fs is
* sufficiently large, set XFS_OPSTATE_INODE32 if we must alter
* the allocator to accommodate the request.
*/
if (xfs_has_small_inums(mp) && ino > XFS_MAXINUMBER_32)
xfs_set_inode32(mp);
else
xfs_clear_inode32(mp);
for (index = 0; index < agcount; index++) {
struct xfs_perag *pag;
ino = XFS_AGINO_TO_INO(mp, index, agino);
pag = xfs_perag_get(mp, index);
if (xfs_set_inode_alloc_perag(pag, ino, max_metadata))
maxagi++;
xfs_perag_put(pag);
}
return xfs_is_inode32(mp) ? maxagi : agcount;
}
static int
xfs_setup_dax_always(
struct xfs_mount *mp)
{
if (!mp->m_ddev_targp->bt_daxdev &&
(!mp->m_rtdev_targp || !mp->m_rtdev_targp->bt_daxdev)) {
xfs_alert(mp,
"DAX unsupported by block device. Turning off DAX.");
goto disable_dax;
}
if (mp->m_super->s_blocksize != PAGE_SIZE) {
xfs_alert(mp,
"DAX not supported for blocksize. Turning off DAX.");
goto disable_dax;
}
if (xfs_has_reflink(mp) &&
bdev_is_partition(mp->m_ddev_targp->bt_bdev)) {
xfs_alert(mp,
"DAX and reflink cannot work with multi-partitions!");
return -EINVAL;
}
return 0;
disable_dax:
xfs_mount_set_dax_mode(mp, XFS_DAX_NEVER);
return 0;
}
STATIC int
xfs_blkdev_get(
xfs_mount_t *mp,
const char *name,
struct file **bdev_filep)
{
int error = 0;
*bdev_filep = bdev_file_open_by_path(name,
BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
mp->m_super, &fs_holder_ops);
if (IS_ERR(*bdev_filep)) {
error = PTR_ERR(*bdev_filep);
*bdev_filep = NULL;
xfs_warn(mp, "Invalid device [%s], error=%d", name, error);
}
return error;
}
STATIC void
xfs_shutdown_devices(
struct xfs_mount *mp)
{
/*
* Udev is triggered whenever anyone closes a block device or unmounts
* a file systemm on a block device.
* The default udev rules invoke blkid to read the fs super and create
* symlinks to the bdev under /dev/disk. For this, it uses buffered
* reads through the page cache.
*
* xfs_db also uses buffered reads to examine metadata. There is no
* coordination between xfs_db and udev, which means that they can run
* concurrently. Note there is no coordination between the kernel and
* blkid either.
*
* On a system with 64k pages, the page cache can cache the superblock
* and the root inode (and hence the root directory) with the same 64k
* page. If udev spawns blkid after the mkfs and the system is busy
* enough that it is still running when xfs_db starts up, they'll both
* read from the same page in the pagecache.
*
* The unmount writes updated inode metadata to disk directly. The XFS
* buffer cache does not use the bdev pagecache, so it needs to
* invalidate that pagecache on unmount. If the above scenario occurs,
* the pagecache no longer reflects what's on disk, xfs_db reads the
* stale metadata, and fails to find /a. Most of the time this succeeds
* because closing a bdev invalidates the page cache, but when processes
* race, everyone loses.
*/
if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
blkdev_issue_flush(mp->m_logdev_targp->bt_bdev);
invalidate_bdev(mp->m_logdev_targp->bt_bdev);
}
if (mp->m_rtdev_targp) {
blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
invalidate_bdev(mp->m_rtdev_targp->bt_bdev);
}
blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
invalidate_bdev(mp->m_ddev_targp->bt_bdev);
}
/*
* The file system configurations are:
* (1) device (partition) with data and internal log
* (2) logical volume with data and log subvolumes.
* (3) logical volume with data, log, and realtime subvolumes.
*
* We only have to handle opening the log and realtime volumes here if
* they are present. The data subvolume has already been opened by
* get_sb_bdev() and is stored in sb->s_bdev.
*/
STATIC int
xfs_open_devices(
struct xfs_mount *mp)
{
struct super_block *sb = mp->m_super;
struct block_device *ddev = sb->s_bdev;
struct file *logdev_file = NULL, *rtdev_file = NULL;
int error;
/*
* Open real time and log devices - order is important.
*/
if (mp->m_logname) {
error = xfs_blkdev_get(mp, mp->m_logname, &logdev_file);
if (error)
return error;
}
if (mp->m_rtname) {
error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev_file);
if (error)
goto out_close_logdev;
if (file_bdev(rtdev_file) == ddev ||
(logdev_file &&
file_bdev(rtdev_file) == file_bdev(logdev_file))) {
xfs_warn(mp,
"Cannot mount filesystem with identical rtdev and ddev/logdev.");
error = -EINVAL;
goto out_close_rtdev;
}
}
/*
* Setup xfs_mount buffer target pointers
*/
error = -ENOMEM;
mp->m_ddev_targp = xfs_alloc_buftarg(mp, sb->s_bdev_file);
if (!mp->m_ddev_targp)
goto out_close_rtdev;
if (rtdev_file) {
mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev_file);
if (!mp->m_rtdev_targp)
goto out_free_ddev_targ;
}
if (logdev_file && file_bdev(logdev_file) != ddev) {
mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev_file);
if (!mp->m_logdev_targp)
goto out_free_rtdev_targ;
} else {
mp->m_logdev_targp = mp->m_ddev_targp;
/* Handle won't be used, drop it */
if (logdev_file)
bdev_fput(logdev_file);
}
return 0;
out_free_rtdev_targ:
if (mp->m_rtdev_targp)
xfs_free_buftarg(mp->m_rtdev_targp);
out_free_ddev_targ:
xfs_free_buftarg(mp->m_ddev_targp);
out_close_rtdev:
if (rtdev_file)
bdev_fput(rtdev_file);
out_close_logdev:
if (logdev_file)
bdev_fput(logdev_file);
return error;
}
/*
* Setup xfs_mount buffer target pointers based on superblock
*/
STATIC int
xfs_setup_devices(
struct xfs_mount *mp)
{
int error;
error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize);
if (error)
return error;
if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
unsigned int log_sector_size = BBSIZE;
if (xfs_has_sector(mp))
log_sector_size = mp->m_sb.sb_logsectsize;
error = xfs_setsize_buftarg(mp->m_logdev_targp,
log_sector_size);
if (error)
return error;
}
if (mp->m_rtdev_targp) {
error = xfs_setsize_buftarg(mp->m_rtdev_targp,
mp->m_sb.sb_sectsize);
if (error)
return error;
}
return 0;
}
STATIC int
xfs_init_mount_workqueues(
struct xfs_mount *mp)
{
mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s",
XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM),
1, mp->m_super->s_id);
if (!mp->m_buf_workqueue)
goto out;
mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s",
XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM),
0, mp->m_super->s_id);
if (!mp->m_unwritten_workqueue)
goto out_destroy_buf;
mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s",
XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM),
0, mp->m_super->s_id);
if (!mp->m_reclaim_workqueue)
goto out_destroy_unwritten;
mp->m_blockgc_wq = alloc_workqueue("xfs-blockgc/%s",
XFS_WQFLAGS(WQ_UNBOUND | WQ_FREEZABLE | WQ_MEM_RECLAIM),
0, mp->m_super->s_id);
if (!mp->m_blockgc_wq)
goto out_destroy_reclaim;
mp->m_inodegc_wq = alloc_workqueue("xfs-inodegc/%s",
XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM),
1, mp->m_super->s_id);
if (!mp->m_inodegc_wq)
goto out_destroy_blockgc;
mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s",
XFS_WQFLAGS(WQ_FREEZABLE), 0, mp->m_super->s_id);
if (!mp->m_sync_workqueue)
goto out_destroy_inodegc;
return 0;
out_destroy_inodegc:
destroy_workqueue(mp->m_inodegc_wq);
out_destroy_blockgc:
destroy_workqueue(mp->m_blockgc_wq);
out_destroy_reclaim:
destroy_workqueue(mp->m_reclaim_workqueue);
out_destroy_unwritten:
destroy_workqueue(mp->m_unwritten_workqueue);
out_destroy_buf:
destroy_workqueue(mp->m_buf_workqueue);
out:
return -ENOMEM;
}
STATIC void
xfs_destroy_mount_workqueues(
struct xfs_mount *mp)
{
destroy_workqueue(mp->m_sync_workqueue);
destroy_workqueue(mp->m_blockgc_wq);
destroy_workqueue(mp->m_inodegc_wq);
destroy_workqueue(mp->m_reclaim_workqueue);
destroy_workqueue(mp->m_unwritten_workqueue);
destroy_workqueue(mp->m_buf_workqueue);
}
static void
xfs_flush_inodes_worker(
struct work_struct *work)
{
struct xfs_mount *mp = container_of(work, struct xfs_mount,
m_flush_inodes_work);
struct super_block *sb = mp->m_super;
if (down_read_trylock(&sb->s_umount)) {
sync_inodes_sb(sb);
up_read(&sb->s_umount);
}
}
/*
* Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK
* or a page lock. We use sync_inodes_sb() here to ensure we block while waiting
* for IO to complete so that we effectively throttle multiple callers to the
* rate at which IO is completing.
*/
void
xfs_flush_inodes(
struct xfs_mount *mp)
{
/*
* If flush_work() returns true then that means we waited for a flush
* which was already in progress. Don't bother running another scan.
*/
if (flush_work(&mp->m_flush_inodes_work))
return;
queue_work(mp->m_sync_workqueue, &mp->m_flush_inodes_work);
flush_work(&mp->m_flush_inodes_work);
}
/* Catch misguided souls that try to use this interface on XFS */
STATIC struct inode *
xfs_fs_alloc_inode(
struct super_block *sb)
{
BUG();
return NULL;
}
/*
* Now that the generic code is guaranteed not to be accessing
* the linux inode, we can inactivate and reclaim the inode.
*/
STATIC void
xfs_fs_destroy_inode(
struct inode *inode)
{
struct xfs_inode *ip = XFS_I(inode);
trace_xfs_destroy_inode(ip);
ASSERT(!rwsem_is_locked(&inode->i_rwsem));
XFS_STATS_INC(ip->i_mount, vn_rele);
XFS_STATS_INC(ip->i_mount, vn_remove);
xfs_inode_mark_reclaimable(ip);
}
static void
xfs_fs_dirty_inode(
struct inode *inode,
int flags)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
struct xfs_trans *tp;
if (!(inode->i_sb->s_flags & SB_LAZYTIME))
return;
/*
* Only do the timestamp update if the inode is dirty (I_DIRTY_SYNC)
* and has dirty timestamp (I_DIRTY_TIME). I_DIRTY_TIME can be passed
* in flags possibly together with I_DIRTY_SYNC.
*/
if ((flags & ~I_DIRTY_TIME) != I_DIRTY_SYNC || !(flags & I_DIRTY_TIME))
return;
if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp))
return;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP);
xfs_trans_commit(tp);
}
/*
* Slab object creation initialisation for the XFS inode.
* This covers only the idempotent fields in the XFS inode;
* all other fields need to be initialised on allocation
* from the slab. This avoids the need to repeatedly initialise
* fields in the xfs inode that left in the initialise state
* when freeing the inode.
*/
STATIC void
xfs_fs_inode_init_once(
void *inode)
{
struct xfs_inode *ip = inode;
memset(ip, 0, sizeof(struct xfs_inode));
/* vfs inode */
inode_init_once(VFS_I(ip));
/* xfs inode */
atomic_set(&ip->i_pincount, 0);
spin_lock_init(&ip->i_flags_lock);
init_rwsem(&ip->i_lock);
}
/*
* We do an unlocked check for XFS_IDONTCACHE here because we are already
* serialised against cache hits here via the inode->i_lock and igrab() in
* xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be
* racing with us, and it avoids needing to grab a spinlock here for every inode
* we drop the final reference on.
*/
STATIC int
xfs_fs_drop_inode(
struct inode *inode)
{
struct xfs_inode *ip = XFS_I(inode);
/*
* If this unlinked inode is in the middle of recovery, don't
* drop the inode just yet; log recovery will take care of
* that. See the comment for this inode flag.
*/
if (ip->i_flags & XFS_IRECOVERY) {
ASSERT(xlog_recovery_needed(ip->i_mount->m_log));
return 0;
}
return generic_drop_inode(inode);
}
static void
xfs_mount_free(
struct xfs_mount *mp)
{
if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
xfs_free_buftarg(mp->m_logdev_targp);
if (mp->m_rtdev_targp)
xfs_free_buftarg(mp->m_rtdev_targp);
if (mp->m_ddev_targp)
xfs_free_buftarg(mp->m_ddev_targp);
debugfs_remove(mp->m_debugfs);
kfree(mp->m_rtname);
kfree(mp->m_logname);
kfree(mp);
}
STATIC int
xfs_fs_sync_fs(
struct super_block *sb,
int wait)
{
struct xfs_mount *mp = XFS_M(sb);
int error;
trace_xfs_fs_sync_fs(mp, __return_address);
/*
* Doing anything during the async pass would be counterproductive.
*/
if (!wait)
return 0;
error = xfs_log_force(mp, XFS_LOG_SYNC);
if (error)
return error;
if (laptop_mode) {
/*
* The disk must be active because we're syncing.
* We schedule log work now (now that the disk is
* active) instead of later (when it might not be).
*/
flush_delayed_work(&mp->m_log->l_work);
}
/*
* If we are called with page faults frozen out, it means we are about
* to freeze the transaction subsystem. Take the opportunity to shut
* down inodegc because once SB_FREEZE_FS is set it's too late to
* prevent inactivation races with freeze. The fs doesn't get called
* again by the freezing process until after SB_FREEZE_FS has been set,
* so it's now or never. Same logic applies to speculative allocation
* garbage collection.
*
* We don't care if this is a normal syncfs call that does this or
* freeze that does this - we can run this multiple times without issue
* and we won't race with a restart because a restart can only occur
* when the state is either SB_FREEZE_FS or SB_FREEZE_COMPLETE.
*/
if (sb->s_writers.frozen == SB_FREEZE_PAGEFAULT) {
xfs_inodegc_stop(mp);
xfs_blockgc_stop(mp);
}
return 0;
}
STATIC int
xfs_fs_statfs(
struct dentry *dentry,
struct kstatfs *statp)
{
struct xfs_mount *mp = XFS_M(dentry->d_sb);
xfs_sb_t *sbp = &mp->m_sb;
struct xfs_inode *ip = XFS_I(d_inode(dentry));
uint64_t fakeinos, id;
uint64_t icount;
uint64_t ifree;
uint64_t fdblocks;
xfs_extlen_t lsize;
int64_t ffree;
/*
* Expedite background inodegc but don't wait. We do not want to block
* here waiting hours for a billion extent file to be truncated.
*/
xfs_inodegc_push(mp);
statp->f_type = XFS_SUPER_MAGIC;
statp->f_namelen = MAXNAMELEN - 1;
id = huge_encode_dev(mp->m_ddev_targp->bt_dev);
statp->f_fsid = u64_to_fsid(id);
icount = percpu_counter_sum(&mp->m_icount);
ifree = percpu_counter_sum(&mp->m_ifree);
fdblocks = percpu_counter_sum(&mp->m_fdblocks);
spin_lock(&mp->m_sb_lock);
statp->f_bsize = sbp->sb_blocksize;
lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
statp->f_blocks = sbp->sb_dblocks - lsize;
spin_unlock(&mp->m_sb_lock);
/* make sure statp->f_bfree does not underflow */
statp->f_bfree = max_t(int64_t, 0,
fdblocks - xfs_fdblocks_unavailable(mp));
statp->f_bavail = statp->f_bfree;
fakeinos = XFS_FSB_TO_INO(mp, statp->f_bfree);
statp->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER);
if (M_IGEO(mp)->maxicount)
statp->f_files = min_t(typeof(statp->f_files),
statp->f_files,
M_IGEO(mp)->maxicount);
/* If sb_icount overshot maxicount, report actual allocation */
statp->f_files = max_t(typeof(statp->f_files),
statp->f_files,
sbp->sb_icount);
/* make sure statp->f_ffree does not underflow */
ffree = statp->f_files - (icount - ifree);
statp->f_ffree = max_t(int64_t, ffree, 0);
if ((ip->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) ==
(XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))
xfs_qm_statvfs(ip, statp);
if (XFS_IS_REALTIME_MOUNT(mp) &&
(ip->i_diflags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) {
s64 freertx;
statp->f_blocks = sbp->sb_rblocks;
freertx = percpu_counter_sum_positive(&mp->m_frextents);
statp->f_bavail = statp->f_bfree = xfs_rtx_to_rtb(mp, freertx);
}
return 0;
}
STATIC void
xfs_save_resvblks(struct xfs_mount *mp)
{
mp->m_resblks_save = mp->m_resblks;
xfs_reserve_blocks(mp, 0);
}
STATIC void
xfs_restore_resvblks(struct xfs_mount *mp)
{
uint64_t resblks;
if (mp->m_resblks_save) {
resblks = mp->m_resblks_save;
mp->m_resblks_save = 0;
} else
resblks = xfs_default_resblks(mp);
xfs_reserve_blocks(mp, resblks);
}
/*
* Second stage of a freeze. The data is already frozen so we only
* need to take care of the metadata. Once that's done sync the superblock
* to the log to dirty it in case of a crash while frozen. This ensures that we
* will recover the unlinked inode lists on the next mount.
*/
STATIC int
xfs_fs_freeze(
struct super_block *sb)
{
struct xfs_mount *mp = XFS_M(sb);
unsigned int flags;
int ret;
/*
* The filesystem is now frozen far enough that memory reclaim
* cannot safely operate on the filesystem. Hence we need to
* set a GFP_NOFS context here to avoid recursion deadlocks.
*/
flags = memalloc_nofs_save();
xfs_save_resvblks(mp);
ret = xfs_log_quiesce(mp);
memalloc_nofs_restore(flags);
/*
* For read-write filesystems, we need to restart the inodegc on error
* because we stopped it at SB_FREEZE_PAGEFAULT level and a thaw is not
* going to be run to restart it now. We are at SB_FREEZE_FS level
* here, so we can restart safely without racing with a stop in
* xfs_fs_sync_fs().
*/
if (ret && !xfs_is_readonly(mp)) {
xfs_blockgc_start(mp);
xfs_inodegc_start(mp);
}
return ret;
}
STATIC int
xfs_fs_unfreeze(
struct super_block *sb)
{
struct xfs_mount *mp = XFS_M(sb);
xfs_restore_resvblks(mp);
xfs_log_work_queue(mp);
/*
* Don't reactivate the inodegc worker on a readonly filesystem because
* inodes are sent directly to reclaim. Don't reactivate the blockgc
* worker because there are no speculative preallocations on a readonly
* filesystem.
*/
if (!xfs_is_readonly(mp)) {
xfs_blockgc_start(mp);
xfs_inodegc_start(mp);
}
return 0;
}
/*
* This function fills in xfs_mount_t fields based on mount args.
* Note: the superblock _has_ now been read in.
*/
STATIC int
xfs_finish_flags(
struct xfs_mount *mp)
{
/* Fail a mount where the logbuf is smaller than the log stripe */
if (xfs_has_logv2(mp)) {
if (mp->m_logbsize <= 0 &&
mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) {
mp->m_logbsize = mp->m_sb.sb_logsunit;
} else if (mp->m_logbsize > 0 &&
mp->m_logbsize < mp->m_sb.sb_logsunit) {
xfs_warn(mp,
"logbuf size must be greater than or equal to log stripe size");
return -EINVAL;
}
} else {
/* Fail a mount if the logbuf is larger than 32K */
if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) {
xfs_warn(mp,
"logbuf size for version 1 logs must be 16K or 32K");
return -EINVAL;
}
}
/*
* V5 filesystems always use attr2 format for attributes.
*/
if (xfs_has_crc(mp) && xfs_has_noattr2(mp)) {
xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. "
"attr2 is always enabled for V5 filesystems.");
return -EINVAL;
}
/*
* prohibit r/w mounts of read-only filesystems
*/
if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !xfs_is_readonly(mp)) {
xfs_warn(mp,
"cannot mount a read-only filesystem as read-write");
return -EROFS;
}
if ((mp->m_qflags & XFS_GQUOTA_ACCT) &&
(mp->m_qflags & XFS_PQUOTA_ACCT) &&
!xfs_has_pquotino(mp)) {
xfs_warn(mp,
"Super block does not support project and group quota together");
return -EINVAL;
}
return 0;
}
static int
xfs_init_percpu_counters(
struct xfs_mount *mp)
{
int error;
error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL);
if (error)
return -ENOMEM;
error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL);
if (error)
goto free_icount;
error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL);
if (error)
goto free_ifree;
error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL);
if (error)
goto free_fdblocks;
error = percpu_counter_init(&mp->m_delalloc_rtextents, 0, GFP_KERNEL);
if (error)
goto free_delalloc;
error = percpu_counter_init(&mp->m_frextents, 0, GFP_KERNEL);
if (error)
goto free_delalloc_rt;
return 0;
free_delalloc_rt:
percpu_counter_destroy(&mp->m_delalloc_rtextents);
free_delalloc:
percpu_counter_destroy(&mp->m_delalloc_blks);
free_fdblocks:
percpu_counter_destroy(&mp->m_fdblocks);
free_ifree:
percpu_counter_destroy(&mp->m_ifree);
free_icount:
percpu_counter_destroy(&mp->m_icount);
return -ENOMEM;
}
void
xfs_reinit_percpu_counters(
struct xfs_mount *mp)
{
percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount);
percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree);
percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks);
percpu_counter_set(&mp->m_frextents, mp->m_sb.sb_frextents);
}
static void
xfs_destroy_percpu_counters(
struct xfs_mount *mp)
{
percpu_counter_destroy(&mp->m_icount);
percpu_counter_destroy(&mp->m_ifree);
percpu_counter_destroy(&mp->m_fdblocks);
ASSERT(xfs_is_shutdown(mp) ||
percpu_counter_sum(&mp->m_delalloc_rtextents) == 0);
percpu_counter_destroy(&mp->m_delalloc_rtextents);
ASSERT(xfs_is_shutdown(mp) ||
percpu_counter_sum(&mp->m_delalloc_blks) == 0);
percpu_counter_destroy(&mp->m_delalloc_blks);
percpu_counter_destroy(&mp->m_frextents);
}
static int
xfs_inodegc_init_percpu(
struct xfs_mount *mp)
{
struct xfs_inodegc *gc;
int cpu;
mp->m_inodegc = alloc_percpu(struct xfs_inodegc);
if (!mp->m_inodegc)
return -ENOMEM;
for_each_possible_cpu(cpu) {
gc = per_cpu_ptr(mp->m_inodegc, cpu);
gc->cpu = cpu;
gc->mp = mp;
init_llist_head(&gc->list);
gc->items = 0;
gc->error = 0;
INIT_DELAYED_WORK(&gc->work, xfs_inodegc_worker);
}
return 0;
}
static void
xfs_inodegc_free_percpu(
struct xfs_mount *mp)
{
if (!mp->m_inodegc)
return;
free_percpu(mp->m_inodegc);
}
static void
xfs_fs_put_super(
struct super_block *sb)
{
struct xfs_mount *mp = XFS_M(sb);
xfs_notice(mp, "Unmounting Filesystem %pU", &mp->m_sb.sb_uuid);
xfs_filestream_unmount(mp);
xfs_unmountfs(mp);
xfs_freesb(mp);
xchk_mount_stats_free(mp);
free_percpu(mp->m_stats.xs_stats);
xfs_inodegc_free_percpu(mp);
xfs_destroy_percpu_counters(mp);
xfs_destroy_mount_workqueues(mp);
xfs_shutdown_devices(mp);
}
static long
xfs_fs_nr_cached_objects(
struct super_block *sb,
struct shrink_control *sc)
{
/* Paranoia: catch incorrect calls during mount setup or teardown */
if (WARN_ON_ONCE(!sb->s_fs_info))
return 0;
return xfs_reclaim_inodes_count(XFS_M(sb));
}
static long
xfs_fs_free_cached_objects(
struct super_block *sb,
struct shrink_control *sc)
{
return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan);
}
static void
xfs_fs_shutdown(
struct super_block *sb)
{
xfs_force_shutdown(XFS_M(sb), SHUTDOWN_DEVICE_REMOVED);
}
static const struct super_operations xfs_super_operations = {
.alloc_inode = xfs_fs_alloc_inode,
.destroy_inode = xfs_fs_destroy_inode,
.dirty_inode = xfs_fs_dirty_inode,
.drop_inode = xfs_fs_drop_inode,
.put_super = xfs_fs_put_super,
.sync_fs = xfs_fs_sync_fs,
.freeze_fs = xfs_fs_freeze,
.unfreeze_fs = xfs_fs_unfreeze,
.statfs = xfs_fs_statfs,
.show_options = xfs_fs_show_options,
.nr_cached_objects = xfs_fs_nr_cached_objects,
.free_cached_objects = xfs_fs_free_cached_objects,
.shutdown = xfs_fs_shutdown,
};
static int
suffix_kstrtoint(
const char *s,
unsigned int base,
int *res)
{
int last, shift_left_factor = 0, _res;
char *value;
int ret = 0;
value = kstrdup(s, GFP_KERNEL);
if (!value)
return -ENOMEM;
last = strlen(value) - 1;
if (value[last] == 'K' || value[last] == 'k') {
shift_left_factor = 10;
value[last] = '\0';
}
if (value[last] == 'M' || value[last] == 'm') {
shift_left_factor = 20;
value[last] = '\0';
}
if (value[last] == 'G' || value[last] == 'g') {
shift_left_factor = 30;
value[last] = '\0';
}
if (kstrtoint(value, base, &_res))
ret = -EINVAL;
kfree(value);
*res = _res << shift_left_factor;
return ret;
}
static inline void
xfs_fs_warn_deprecated(
struct fs_context *fc,
struct fs_parameter *param,
uint64_t flag,
bool value)
{
/* Don't print the warning if reconfiguring and current mount point
* already had the flag set
*/
if ((fc->purpose & FS_CONTEXT_FOR_RECONFIGURE) &&
!!(XFS_M(fc->root->d_sb)->m_features & flag) == value)
return;
xfs_warn(fc->s_fs_info, "%s mount option is deprecated.", param->key);
}
/*
* Set mount state from a mount option.
*
* NOTE: mp->m_super is NULL here!
*/
static int
xfs_fs_parse_param(
struct fs_context *fc,
struct fs_parameter *param)
{
struct xfs_mount *parsing_mp = fc->s_fs_info;
struct fs_parse_result result;
int size = 0;
int opt;
opt = fs_parse(fc, xfs_fs_parameters, param, &result);
if (opt < 0)
return opt;
switch (opt) {
case Opt_logbufs:
parsing_mp->m_logbufs = result.uint_32;
return 0;
case Opt_logbsize:
if (suffix_kstrtoint(param->string, 10, &parsing_mp->m_logbsize))
return -EINVAL;
return 0;
case Opt_logdev:
kfree(parsing_mp->m_logname);
parsing_mp->m_logname = kstrdup(param->string, GFP_KERNEL);
if (!parsing_mp->m_logname)
return -ENOMEM;
return 0;
case Opt_rtdev:
kfree(parsing_mp->m_rtname);
parsing_mp->m_rtname = kstrdup(param->string, GFP_KERNEL);
if (!parsing_mp->m_rtname)
return -ENOMEM;
return 0;
case Opt_allocsize:
if (suffix_kstrtoint(param->string, 10, &size))
return -EINVAL;
parsing_mp->m_allocsize_log = ffs(size) - 1;
parsing_mp->m_features |= XFS_FEAT_ALLOCSIZE;
return 0;
case Opt_grpid:
case Opt_bsdgroups:
parsing_mp->m_features |= XFS_FEAT_GRPID;
return 0;
case Opt_nogrpid:
case Opt_sysvgroups:
parsing_mp->m_features &= ~XFS_FEAT_GRPID;
return 0;
case Opt_wsync:
parsing_mp->m_features |= XFS_FEAT_WSYNC;
return 0;
case Opt_norecovery:
parsing_mp->m_features |= XFS_FEAT_NORECOVERY;
return 0;
case Opt_noalign:
parsing_mp->m_features |= XFS_FEAT_NOALIGN;
return 0;
case Opt_swalloc:
parsing_mp->m_features |= XFS_FEAT_SWALLOC;
return 0;
case Opt_sunit:
parsing_mp->m_dalign = result.uint_32;
return 0;
case Opt_swidth:
parsing_mp->m_swidth = result.uint_32;
return 0;
case Opt_inode32:
parsing_mp->m_features |= XFS_FEAT_SMALL_INUMS;
return 0;
case Opt_inode64:
parsing_mp->m_features &= ~XFS_FEAT_SMALL_INUMS;
return 0;
case Opt_nouuid:
parsing_mp->m_features |= XFS_FEAT_NOUUID;
return 0;
case Opt_largeio:
parsing_mp->m_features |= XFS_FEAT_LARGE_IOSIZE;
return 0;
case Opt_nolargeio:
parsing_mp->m_features &= ~XFS_FEAT_LARGE_IOSIZE;
return 0;
case Opt_filestreams:
parsing_mp->m_features |= XFS_FEAT_FILESTREAMS;
return 0;
case Opt_noquota:
parsing_mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT;
parsing_mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD;
return 0;
case Opt_quota:
case Opt_uquota:
case Opt_usrquota:
parsing_mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ENFD);
return 0;
case Opt_qnoenforce:
case Opt_uqnoenforce:
parsing_mp->m_qflags |= XFS_UQUOTA_ACCT;
parsing_mp->m_qflags &= ~XFS_UQUOTA_ENFD;
return 0;
case Opt_pquota:
case Opt_prjquota:
parsing_mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ENFD);
return 0;
case Opt_pqnoenforce:
parsing_mp->m_qflags |= XFS_PQUOTA_ACCT;
parsing_mp->m_qflags &= ~XFS_PQUOTA_ENFD;
return 0;
case Opt_gquota:
case Opt_grpquota:
parsing_mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ENFD);
return 0;
case Opt_gqnoenforce:
parsing_mp->m_qflags |= XFS_GQUOTA_ACCT;
parsing_mp->m_qflags &= ~XFS_GQUOTA_ENFD;
return 0;
case Opt_discard:
parsing_mp->m_features |= XFS_FEAT_DISCARD;
return 0;
case Opt_nodiscard:
parsing_mp->m_features &= ~XFS_FEAT_DISCARD;
return 0;
#ifdef CONFIG_FS_DAX
case Opt_dax:
xfs_mount_set_dax_mode(parsing_mp, XFS_DAX_ALWAYS);
return 0;
case Opt_dax_enum:
xfs_mount_set_dax_mode(parsing_mp, result.uint_32);
return 0;
#endif
/* Following mount options will be removed in September 2025 */
case Opt_ikeep:
xfs_fs_warn_deprecated(fc, param, XFS_FEAT_IKEEP, true);
parsing_mp->m_features |= XFS_FEAT_IKEEP;
return 0;
case Opt_noikeep:
xfs_fs_warn_deprecated(fc, param, XFS_FEAT_IKEEP, false);
parsing_mp->m_features &= ~XFS_FEAT_IKEEP;
return 0;
case Opt_attr2:
xfs_fs_warn_deprecated(fc, param, XFS_FEAT_ATTR2, true);
parsing_mp->m_features |= XFS_FEAT_ATTR2;
return 0;
case Opt_noattr2:
xfs_fs_warn_deprecated(fc, param, XFS_FEAT_NOATTR2, true);
parsing_mp->m_features |= XFS_FEAT_NOATTR2;
return 0;
default:
xfs_warn(parsing_mp, "unknown mount option [%s].", param->key);
return -EINVAL;
}
return 0;
}
static int
xfs_fs_validate_params(
struct xfs_mount *mp)
{
/* No recovery flag requires a read-only mount */
if (xfs_has_norecovery(mp) && !xfs_is_readonly(mp)) {
xfs_warn(mp, "no-recovery mounts must be read-only.");
return -EINVAL;
}
/*
* We have not read the superblock at this point, so only the attr2
* mount option can set the attr2 feature by this stage.
*/
if (xfs_has_attr2(mp) && xfs_has_noattr2(mp)) {
xfs_warn(mp, "attr2 and noattr2 cannot both be specified.");
return -EINVAL;
}
if (xfs_has_noalign(mp) && (mp->m_dalign || mp->m_swidth)) {
xfs_warn(mp,
"sunit and swidth options incompatible with the noalign option");
return -EINVAL;
}
if (!IS_ENABLED(CONFIG_XFS_QUOTA) && mp->m_qflags != 0) {
xfs_warn(mp, "quota support not available in this kernel.");
return -EINVAL;
}
if ((mp->m_dalign && !mp->m_swidth) ||
(!mp->m_dalign && mp->m_swidth)) {
xfs_warn(mp, "sunit and swidth must be specified together");
return -EINVAL;
}
if (mp->m_dalign && (mp->m_swidth % mp->m_dalign != 0)) {
xfs_warn(mp,
"stripe width (%d) must be a multiple of the stripe unit (%d)",
mp->m_swidth, mp->m_dalign);
return -EINVAL;
}
if (mp->m_logbufs != -1 &&
mp->m_logbufs != 0 &&
(mp->m_logbufs < XLOG_MIN_ICLOGS ||
mp->m_logbufs > XLOG_MAX_ICLOGS)) {
xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]",
mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
return -EINVAL;
}
if (mp->m_logbsize != -1 &&
mp->m_logbsize != 0 &&
(mp->m_logbsize < XLOG_MIN_RECORD_BSIZE ||
mp->m_logbsize > XLOG_MAX_RECORD_BSIZE ||
!is_power_of_2(mp->m_logbsize))) {
xfs_warn(mp,
"invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
mp->m_logbsize);
return -EINVAL;
}
if (xfs_has_allocsize(mp) &&
(mp->m_allocsize_log > XFS_MAX_IO_LOG ||
mp->m_allocsize_log < XFS_MIN_IO_LOG)) {
xfs_warn(mp, "invalid log iosize: %d [not %d-%d]",
mp->m_allocsize_log, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG);
return -EINVAL;
}
return 0;
}
struct dentry *
xfs_debugfs_mkdir(
const char *name,
struct dentry *parent)
{
struct dentry *child;
/* Apparently we're expected to ignore error returns?? */
child = debugfs_create_dir(name, parent);
if (IS_ERR(child))
return NULL;
return child;
}
static int
xfs_fs_fill_super(
struct super_block *sb,
struct fs_context *fc)
{
struct xfs_mount *mp = sb->s_fs_info;
struct inode *root;
int flags = 0, error;
mp->m_super = sb;
/*
* Copy VFS mount flags from the context now that all parameter parsing
* is guaranteed to have been completed by either the old mount API or
* the newer fsopen/fsconfig API.
*/
if (fc->sb_flags & SB_RDONLY)
xfs_set_readonly(mp);
if (fc->sb_flags & SB_DIRSYNC)
mp->m_features |= XFS_FEAT_DIRSYNC;
if (fc->sb_flags & SB_SYNCHRONOUS)
mp->m_features |= XFS_FEAT_WSYNC;
error = xfs_fs_validate_params(mp);
if (error)
return error;
sb_min_blocksize(sb, BBSIZE);
sb->s_xattr = xfs_xattr_handlers;
sb->s_export_op = &xfs_export_operations;
#ifdef CONFIG_XFS_QUOTA
sb->s_qcop = &xfs_quotactl_operations;
sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
#endif
sb->s_op = &xfs_super_operations;
/*
* Delay mount work if the debug hook is set. This is debug
* instrumention to coordinate simulation of xfs mount failures with
* VFS superblock operations
*/
if (xfs_globals.mount_delay) {
xfs_notice(mp, "Delaying mount for %d seconds.",
xfs_globals.mount_delay);
msleep(xfs_globals.mount_delay * 1000);
}
if (fc->sb_flags & SB_SILENT)
flags |= XFS_MFSI_QUIET;
error = xfs_open_devices(mp);
if (error)
return error;
if (xfs_debugfs) {
mp->m_debugfs = xfs_debugfs_mkdir(mp->m_super->s_id,
xfs_debugfs);
} else {
mp->m_debugfs = NULL;
}
error = xfs_init_mount_workqueues(mp);
if (error)
goto out_shutdown_devices;
error = xfs_init_percpu_counters(mp);
if (error)
goto out_destroy_workqueues;
error = xfs_inodegc_init_percpu(mp);
if (error)
goto out_destroy_counters;
/* Allocate stats memory before we do operations that might use it */
mp->m_stats.xs_stats = alloc_percpu(struct xfsstats);
if (!mp->m_stats.xs_stats) {
error = -ENOMEM;
goto out_destroy_inodegc;
}
error = xchk_mount_stats_alloc(mp);
if (error)
goto out_free_stats;
error = xfs_readsb(mp, flags);
if (error)
goto out_free_scrub_stats;
error = xfs_finish_flags(mp);
if (error)
goto out_free_sb;
error = xfs_setup_devices(mp);
if (error)
goto out_free_sb;
/*
* V4 support is undergoing deprecation.
*
* Note: this has to use an open coded m_features check as xfs_has_crc
* always returns false for !CONFIG_XFS_SUPPORT_V4.
*/
if (!(mp->m_features & XFS_FEAT_CRC)) {
if (!IS_ENABLED(CONFIG_XFS_SUPPORT_V4)) {
xfs_warn(mp,
"Deprecated V4 format (crc=0) not supported by kernel.");
error = -EINVAL;
goto out_free_sb;
}
xfs_warn_once(mp,
"Deprecated V4 format (crc=0) will not be supported after September 2030.");
}
/* ASCII case insensitivity is undergoing deprecation. */
if (xfs_has_asciici(mp)) {
#ifdef CONFIG_XFS_SUPPORT_ASCII_CI
xfs_warn_once(mp,
"Deprecated ASCII case-insensitivity feature (ascii-ci=1) will not be supported after September 2030.");
#else
xfs_warn(mp,
"Deprecated ASCII case-insensitivity feature (ascii-ci=1) not supported by kernel.");
error = -EINVAL;
goto out_free_sb;
#endif
}
/* Filesystem claims it needs repair, so refuse the mount. */
if (xfs_has_needsrepair(mp)) {
xfs_warn(mp, "Filesystem needs repair. Please run xfs_repair.");
error = -EFSCORRUPTED;
goto out_free_sb;
}
/*
* Don't touch the filesystem if a user tool thinks it owns the primary
* superblock. mkfs doesn't clear the flag from secondary supers, so
* we don't check them at all.
*/
if (mp->m_sb.sb_inprogress) {
xfs_warn(mp, "Offline file system operation in progress!");
error = -EFSCORRUPTED;
goto out_free_sb;
}
if (mp->m_sb.sb_blocksize > PAGE_SIZE) {
size_t max_folio_size = mapping_max_folio_size_supported();
if (!xfs_has_crc(mp)) {
xfs_warn(mp,
"V4 Filesystem with blocksize %d bytes. Only pagesize (%ld) or less is supported.",
mp->m_sb.sb_blocksize, PAGE_SIZE);
error = -ENOSYS;
goto out_free_sb;
}
if (mp->m_sb.sb_blocksize > max_folio_size) {
xfs_warn(mp,
"block size (%u bytes) not supported; Only block size (%zu) or less is supported",
mp->m_sb.sb_blocksize, max_folio_size);
error = -ENOSYS;
goto out_free_sb;
}
xfs_warn(mp,
"EXPERIMENTAL: V5 Filesystem with Large Block Size (%d bytes) enabled.",
mp->m_sb.sb_blocksize);
}
/* Ensure this filesystem fits in the page cache limits */
if (xfs_sb_validate_fsb_count(&mp->m_sb, mp->m_sb.sb_dblocks) ||
xfs_sb_validate_fsb_count(&mp->m_sb, mp->m_sb.sb_rblocks)) {
xfs_warn(mp,
"file system too large to be mounted on this system.");
error = -EFBIG;
goto out_free_sb;
}
/*
* XFS block mappings use 54 bits to store the logical block offset.
* This should suffice to handle the maximum file size that the VFS
* supports (currently 2^63 bytes on 64-bit and ULONG_MAX << PAGE_SHIFT
* bytes on 32-bit), but as XFS and VFS have gotten the s_maxbytes
* calculation wrong on 32-bit kernels in the past, we'll add a WARN_ON
* to check this assertion.
*
* Avoid integer overflow by comparing the maximum bmbt offset to the
* maximum pagecache offset in units of fs blocks.
*/
if (!xfs_verify_fileoff(mp, XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE))) {
xfs_warn(mp,
"MAX_LFS_FILESIZE block offset (%llu) exceeds extent map maximum (%llu)!",
XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE),
XFS_MAX_FILEOFF);
error = -EINVAL;
goto out_free_sb;
}
error = xfs_filestream_mount(mp);
if (error)
goto out_free_sb;
/*
* we must configure the block size in the superblock before we run the
* full mount process as the mount process can lookup and cache inodes.
*/
sb->s_magic = XFS_SUPER_MAGIC;
sb->s_blocksize = mp->m_sb.sb_blocksize;
sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_max_links = XFS_MAXLINK;
sb->s_time_gran = 1;
if (xfs_has_bigtime(mp)) {
sb->s_time_min = xfs_bigtime_to_unix(XFS_BIGTIME_TIME_MIN);
sb->s_time_max = xfs_bigtime_to_unix(XFS_BIGTIME_TIME_MAX);
} else {
sb->s_time_min = XFS_LEGACY_TIME_MIN;
sb->s_time_max = XFS_LEGACY_TIME_MAX;
}
trace_xfs_inode_timestamp_range(mp, sb->s_time_min, sb->s_time_max);
sb->s_iflags |= SB_I_CGROUPWB;
set_posix_acl_flag(sb);
/* version 5 superblocks support inode version counters. */
if (xfs_has_crc(mp))
sb->s_flags |= SB_I_VERSION;
if (xfs_has_dax_always(mp)) {
error = xfs_setup_dax_always(mp);
if (error)
goto out_filestream_unmount;
}
if (xfs_has_discard(mp) && !bdev_max_discard_sectors(sb->s_bdev)) {
xfs_warn(mp,
"mounting with \"discard\" option, but the device does not support discard");
mp->m_features &= ~XFS_FEAT_DISCARD;
}
if (xfs_has_reflink(mp)) {
if (mp->m_sb.sb_rblocks) {
xfs_alert(mp,
"reflink not compatible with realtime device!");
error = -EINVAL;
goto out_filestream_unmount;
}
if (xfs_globals.always_cow) {
xfs_info(mp, "using DEBUG-only always_cow mode.");
mp->m_always_cow = true;
}
}
if (xfs_has_rmapbt(mp) && mp->m_sb.sb_rblocks) {
xfs_alert(mp,
"reverse mapping btree not compatible with realtime device!");
error = -EINVAL;
goto out_filestream_unmount;
}
if (xfs_has_exchange_range(mp))
xfs_warn(mp,
"EXPERIMENTAL exchange-range feature enabled. Use at your own risk!");
if (xfs_has_parent(mp))
xfs_warn(mp,
"EXPERIMENTAL parent pointer feature enabled. Use at your own risk!");
error = xfs_mountfs(mp);
if (error)
goto out_filestream_unmount;
root = igrab(VFS_I(mp->m_rootip));
if (!root) {
error = -ENOENT;
goto out_unmount;
}
sb->s_root = d_make_root(root);
if (!sb->s_root) {
error = -ENOMEM;
goto out_unmount;
}
return 0;
out_filestream_unmount:
xfs_filestream_unmount(mp);
out_free_sb:
xfs_freesb(mp);
out_free_scrub_stats:
xchk_mount_stats_free(mp);
out_free_stats:
free_percpu(mp->m_stats.xs_stats);
out_destroy_inodegc:
xfs_inodegc_free_percpu(mp);
out_destroy_counters:
xfs_destroy_percpu_counters(mp);
out_destroy_workqueues:
xfs_destroy_mount_workqueues(mp);
out_shutdown_devices:
xfs_shutdown_devices(mp);
return error;
out_unmount:
xfs_filestream_unmount(mp);
xfs_unmountfs(mp);
goto out_free_sb;
}
static int
xfs_fs_get_tree(
struct fs_context *fc)
{
return get_tree_bdev(fc, xfs_fs_fill_super);
}
static int
xfs_remount_rw(
struct xfs_mount *mp)
{
struct xfs_sb *sbp = &mp->m_sb;
int error;
if (xfs_has_norecovery(mp)) {
xfs_warn(mp,
"ro->rw transition prohibited on norecovery mount");
return -EINVAL;
}
if (xfs_sb_is_v5(sbp) &&
xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) {
xfs_warn(mp,
"ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem",
(sbp->sb_features_ro_compat &
XFS_SB_FEAT_RO_COMPAT_UNKNOWN));
return -EINVAL;
}
xfs_clear_readonly(mp);
/*
* If this is the first remount to writeable state we might have some
* superblock changes to update.
*/
if (mp->m_update_sb) {
error = xfs_sync_sb(mp, false);
if (error) {
xfs_warn(mp, "failed to write sb changes");
return error;
}
mp->m_update_sb = false;
}
/*
* Fill out the reserve pool if it is empty. Use the stashed value if
* it is non-zero, otherwise go with the default.
*/
xfs_restore_resvblks(mp);
xfs_log_work_queue(mp);
xfs_blockgc_start(mp);
/* Create the per-AG metadata reservation pool .*/
error = xfs_fs_reserve_ag_blocks(mp);
if (error && error != -ENOSPC)
return error;
/* Re-enable the background inode inactivation worker. */
xfs_inodegc_start(mp);
return 0;
}
static int
xfs_remount_ro(
struct xfs_mount *mp)
{
struct xfs_icwalk icw = {
.icw_flags = XFS_ICWALK_FLAG_SYNC,
};
int error;
/* Flush all the dirty data to disk. */
error = sync_filesystem(mp->m_super);
if (error)
return error;
/*
* Cancel background eofb scanning so it cannot race with the final
* log force+buftarg wait and deadlock the remount.
*/
xfs_blockgc_stop(mp);
/*
* Clear out all remaining COW staging extents and speculative post-EOF
* preallocations so that we don't leave inodes requiring inactivation
* cleanups during reclaim on a read-only mount. We must process every
* cached inode, so this requires a synchronous cache scan.
*/
error = xfs_blockgc_free_space(mp, &icw);
if (error) {
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
return error;
}
/*
* Stop the inodegc background worker. xfs_fs_reconfigure already
* flushed all pending inodegc work when it sync'd the filesystem.
* The VFS holds s_umount, so we know that inodes cannot enter
* xfs_fs_destroy_inode during a remount operation. In readonly mode
* we send inodes straight to reclaim, so no inodes will be queued.
*/
xfs_inodegc_stop(mp);
/* Free the per-AG metadata reservation pool. */
xfs_fs_unreserve_ag_blocks(mp);
/*
* Before we sync the metadata, we need to free up the reserve block
* pool so that the used block count in the superblock on disk is
* correct at the end of the remount. Stash the current* reserve pool
* size so that if we get remounted rw, we can return it to the same
* size.
*/
xfs_save_resvblks(mp);
xfs_log_clean(mp);
xfs_set_readonly(mp);
return 0;
}
/*
* Logically we would return an error here to prevent users from believing
* they might have changed mount options using remount which can't be changed.
*
* But unfortunately mount(8) adds all options from mtab and fstab to the mount
* arguments in some cases so we can't blindly reject options, but have to
* check for each specified option if it actually differs from the currently
* set option and only reject it if that's the case.
*
* Until that is implemented we return success for every remount request, and
* silently ignore all options that we can't actually change.
*/
static int
xfs_fs_reconfigure(
struct fs_context *fc)
{
struct xfs_mount *mp = XFS_M(fc->root->d_sb);
struct xfs_mount *new_mp = fc->s_fs_info;
int flags = fc->sb_flags;
int error;
/* version 5 superblocks always support version counters. */
if (xfs_has_crc(mp))
fc->sb_flags |= SB_I_VERSION;
error = xfs_fs_validate_params(new_mp);
if (error)
return error;
/* inode32 -> inode64 */
if (xfs_has_small_inums(mp) && !xfs_has_small_inums(new_mp)) {
mp->m_features &= ~XFS_FEAT_SMALL_INUMS;
mp->m_maxagi = xfs_set_inode_alloc(mp, mp->m_sb.sb_agcount);
}
/* inode64 -> inode32 */
if (!xfs_has_small_inums(mp) && xfs_has_small_inums(new_mp)) {
mp->m_features |= XFS_FEAT_SMALL_INUMS;
mp->m_maxagi = xfs_set_inode_alloc(mp, mp->m_sb.sb_agcount);
}
/* ro -> rw */
if (xfs_is_readonly(mp) && !(flags & SB_RDONLY)) {
error = xfs_remount_rw(mp);
if (error)
return error;
}
/* rw -> ro */
if (!xfs_is_readonly(mp) && (flags & SB_RDONLY)) {
error = xfs_remount_ro(mp);
if (error)
return error;
}
return 0;
}
static void
xfs_fs_free(
struct fs_context *fc)
{
struct xfs_mount *mp = fc->s_fs_info;
/*
* mp is stored in the fs_context when it is initialized.
* mp is transferred to the superblock on a successful mount,
* but if an error occurs before the transfer we have to free
* it here.
*/
if (mp)
xfs_mount_free(mp);
}
static const struct fs_context_operations xfs_context_ops = {
.parse_param = xfs_fs_parse_param,
.get_tree = xfs_fs_get_tree,
.reconfigure = xfs_fs_reconfigure,
.free = xfs_fs_free,
};
/*
* WARNING: do not initialise any parameters in this function that depend on
* mount option parsing having already been performed as this can be called from
* fsopen() before any parameters have been set.
*/
static int xfs_init_fs_context(
struct fs_context *fc)
{
struct xfs_mount *mp;
mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL | __GFP_NOFAIL);
if (!mp)
return -ENOMEM;
spin_lock_init(&mp->m_sb_lock);
xa_init(&mp->m_perags);
mutex_init(&mp->m_growlock);
INIT_WORK(&mp->m_flush_inodes_work, xfs_flush_inodes_worker);
INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
mp->m_kobj.kobject.kset = xfs_kset;
/*
* We don't create the finobt per-ag space reservation until after log
* recovery, so we must set this to true so that an ifree transaction
* started during log recovery will not depend on space reservations
* for finobt expansion.
*/
mp->m_finobt_nores = true;
/*
* These can be overridden by the mount option parsing.
*/
mp->m_logbufs = -1;
mp->m_logbsize = -1;
mp->m_allocsize_log = 16; /* 64k */
xfs_hooks_init(&mp->m_dir_update_hooks);
fc->s_fs_info = mp;
fc->ops = &xfs_context_ops;
return 0;
}
static void
xfs_kill_sb(
struct super_block *sb)
{
kill_block_super(sb);
xfs_mount_free(XFS_M(sb));
}
static struct file_system_type xfs_fs_type = {
.owner = THIS_MODULE,
.name = "xfs",
.init_fs_context = xfs_init_fs_context,
.parameters = xfs_fs_parameters,
.kill_sb = xfs_kill_sb,
.fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME,
};
MODULE_ALIAS_FS("xfs");
STATIC int __init
xfs_init_caches(void)
{
int error;
xfs_buf_cache = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
SLAB_HWCACHE_ALIGN |
SLAB_RECLAIM_ACCOUNT,
NULL);
if (!xfs_buf_cache)
goto out;
xfs_log_ticket_cache = kmem_cache_create("xfs_log_ticket",
sizeof(struct xlog_ticket),
0, 0, NULL);
if (!xfs_log_ticket_cache)
goto out_destroy_buf_cache;
error = xfs_btree_init_cur_caches();
if (error)
goto out_destroy_log_ticket_cache;
error = rcbagbt_init_cur_cache();
if (error)
goto out_destroy_btree_cur_cache;
error = xfs_defer_init_item_caches();
if (error)
goto out_destroy_rcbagbt_cur_cache;
xfs_da_state_cache = kmem_cache_create("xfs_da_state",
sizeof(struct xfs_da_state),
0, 0, NULL);
if (!xfs_da_state_cache)
goto out_destroy_defer_item_cache;
xfs_ifork_cache = kmem_cache_create("xfs_ifork",
sizeof(struct xfs_ifork),
0, 0, NULL);
if (!xfs_ifork_cache)
goto out_destroy_da_state_cache;
xfs_trans_cache = kmem_cache_create("xfs_trans",
sizeof(struct xfs_trans),
0, 0, NULL);
if (!xfs_trans_cache)
goto out_destroy_ifork_cache;
/*
* The size of the cache-allocated buf log item is the maximum
* size possible under XFS. This wastes a little bit of memory,
* but it is much faster.
*/
xfs_buf_item_cache = kmem_cache_create("xfs_buf_item",
sizeof(struct xfs_buf_log_item),
0, 0, NULL);
if (!xfs_buf_item_cache)
goto out_destroy_trans_cache;
xfs_efd_cache = kmem_cache_create("xfs_efd_item",
xfs_efd_log_item_sizeof(XFS_EFD_MAX_FAST_EXTENTS),
0, 0, NULL);
if (!xfs_efd_cache)
goto out_destroy_buf_item_cache;
xfs_efi_cache = kmem_cache_create("xfs_efi_item",
xfs_efi_log_item_sizeof(XFS_EFI_MAX_FAST_EXTENTS),
0, 0, NULL);
if (!xfs_efi_cache)
goto out_destroy_efd_cache;
xfs_inode_cache = kmem_cache_create("xfs_inode",
sizeof(struct xfs_inode), 0,
(SLAB_HWCACHE_ALIGN |
SLAB_RECLAIM_ACCOUNT |
SLAB_ACCOUNT),
xfs_fs_inode_init_once);
if (!xfs_inode_cache)
goto out_destroy_efi_cache;
xfs_ili_cache = kmem_cache_create("xfs_ili",
sizeof(struct xfs_inode_log_item), 0,
SLAB_RECLAIM_ACCOUNT,
NULL);
if (!xfs_ili_cache)
goto out_destroy_inode_cache;
xfs_icreate_cache = kmem_cache_create("xfs_icr",
sizeof(struct xfs_icreate_item),
0, 0, NULL);
if (!xfs_icreate_cache)
goto out_destroy_ili_cache;
xfs_rud_cache = kmem_cache_create("xfs_rud_item",
sizeof(struct xfs_rud_log_item),
0, 0, NULL);
if (!xfs_rud_cache)
goto out_destroy_icreate_cache;
xfs_rui_cache = kmem_cache_create("xfs_rui_item",
xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS),
0, 0, NULL);
if (!xfs_rui_cache)
goto out_destroy_rud_cache;
xfs_cud_cache = kmem_cache_create("xfs_cud_item",
sizeof(struct xfs_cud_log_item),
0, 0, NULL);
if (!xfs_cud_cache)
goto out_destroy_rui_cache;
xfs_cui_cache = kmem_cache_create("xfs_cui_item",
xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS),
0, 0, NULL);
if (!xfs_cui_cache)
goto out_destroy_cud_cache;
xfs_bud_cache = kmem_cache_create("xfs_bud_item",
sizeof(struct xfs_bud_log_item),
0, 0, NULL);
if (!xfs_bud_cache)
goto out_destroy_cui_cache;
xfs_bui_cache = kmem_cache_create("xfs_bui_item",
xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS),
0, 0, NULL);
if (!xfs_bui_cache)
goto out_destroy_bud_cache;
xfs_attrd_cache = kmem_cache_create("xfs_attrd_item",
sizeof(struct xfs_attrd_log_item),
0, 0, NULL);
if (!xfs_attrd_cache)
goto out_destroy_bui_cache;
xfs_attri_cache = kmem_cache_create("xfs_attri_item",
sizeof(struct xfs_attri_log_item),
0, 0, NULL);
if (!xfs_attri_cache)
goto out_destroy_attrd_cache;
xfs_iunlink_cache = kmem_cache_create("xfs_iul_item",
sizeof(struct xfs_iunlink_item),
0, 0, NULL);
if (!xfs_iunlink_cache)
goto out_destroy_attri_cache;
xfs_xmd_cache = kmem_cache_create("xfs_xmd_item",
sizeof(struct xfs_xmd_log_item),
0, 0, NULL);
if (!xfs_xmd_cache)
goto out_destroy_iul_cache;
xfs_xmi_cache = kmem_cache_create("xfs_xmi_item",
sizeof(struct xfs_xmi_log_item),
0, 0, NULL);
if (!xfs_xmi_cache)
goto out_destroy_xmd_cache;
xfs_parent_args_cache = kmem_cache_create("xfs_parent_args",
sizeof(struct xfs_parent_args),
0, 0, NULL);
if (!xfs_parent_args_cache)
goto out_destroy_xmi_cache;
return 0;
out_destroy_xmi_cache:
kmem_cache_destroy(xfs_xmi_cache);
out_destroy_xmd_cache:
kmem_cache_destroy(xfs_xmd_cache);
out_destroy_iul_cache:
kmem_cache_destroy(xfs_iunlink_cache);
out_destroy_attri_cache:
kmem_cache_destroy(xfs_attri_cache);
out_destroy_attrd_cache:
kmem_cache_destroy(xfs_attrd_cache);
out_destroy_bui_cache:
kmem_cache_destroy(xfs_bui_cache);
out_destroy_bud_cache:
kmem_cache_destroy(xfs_bud_cache);
out_destroy_cui_cache:
kmem_cache_destroy(xfs_cui_cache);
out_destroy_cud_cache:
kmem_cache_destroy(xfs_cud_cache);
out_destroy_rui_cache:
kmem_cache_destroy(xfs_rui_cache);
out_destroy_rud_cache:
kmem_cache_destroy(xfs_rud_cache);
out_destroy_icreate_cache:
kmem_cache_destroy(xfs_icreate_cache);
out_destroy_ili_cache:
kmem_cache_destroy(xfs_ili_cache);
out_destroy_inode_cache:
kmem_cache_destroy(xfs_inode_cache);
out_destroy_efi_cache:
kmem_cache_destroy(xfs_efi_cache);
out_destroy_efd_cache:
kmem_cache_destroy(xfs_efd_cache);
out_destroy_buf_item_cache:
kmem_cache_destroy(xfs_buf_item_cache);
out_destroy_trans_cache:
kmem_cache_destroy(xfs_trans_cache);
out_destroy_ifork_cache:
kmem_cache_destroy(xfs_ifork_cache);
out_destroy_da_state_cache:
kmem_cache_destroy(xfs_da_state_cache);
out_destroy_defer_item_cache:
xfs_defer_destroy_item_caches();
out_destroy_rcbagbt_cur_cache:
rcbagbt_destroy_cur_cache();
out_destroy_btree_cur_cache:
xfs_btree_destroy_cur_caches();
out_destroy_log_ticket_cache:
kmem_cache_destroy(xfs_log_ticket_cache);
out_destroy_buf_cache:
kmem_cache_destroy(xfs_buf_cache);
out:
return -ENOMEM;
}
STATIC void
xfs_destroy_caches(void)
{
/*
* Make sure all delayed rcu free are flushed before we
* destroy caches.
*/
rcu_barrier();
kmem_cache_destroy(xfs_parent_args_cache);
kmem_cache_destroy(xfs_xmd_cache);
kmem_cache_destroy(xfs_xmi_cache);
kmem_cache_destroy(xfs_iunlink_cache);
kmem_cache_destroy(xfs_attri_cache);
kmem_cache_destroy(xfs_attrd_cache);
kmem_cache_destroy(xfs_bui_cache);
kmem_cache_destroy(xfs_bud_cache);
kmem_cache_destroy(xfs_cui_cache);
kmem_cache_destroy(xfs_cud_cache);
kmem_cache_destroy(xfs_rui_cache);
kmem_cache_destroy(xfs_rud_cache);
kmem_cache_destroy(xfs_icreate_cache);
kmem_cache_destroy(xfs_ili_cache);
kmem_cache_destroy(xfs_inode_cache);
kmem_cache_destroy(xfs_efi_cache);
kmem_cache_destroy(xfs_efd_cache);
kmem_cache_destroy(xfs_buf_item_cache);
kmem_cache_destroy(xfs_trans_cache);
kmem_cache_destroy(xfs_ifork_cache);
kmem_cache_destroy(xfs_da_state_cache);
xfs_defer_destroy_item_caches();
rcbagbt_destroy_cur_cache();
xfs_btree_destroy_cur_caches();
kmem_cache_destroy(xfs_log_ticket_cache);
kmem_cache_destroy(xfs_buf_cache);
}
STATIC int __init
xfs_init_workqueues(void)
{
/*
* The allocation workqueue can be used in memory reclaim situations
* (writepage path), and parallelism is only limited by the number of
* AGs in all the filesystems mounted. Hence use the default large
* max_active value for this workqueue.
*/
xfs_alloc_wq = alloc_workqueue("xfsalloc",
XFS_WQFLAGS(WQ_MEM_RECLAIM | WQ_FREEZABLE), 0);
if (!xfs_alloc_wq)
return -ENOMEM;
xfs_discard_wq = alloc_workqueue("xfsdiscard", XFS_WQFLAGS(WQ_UNBOUND),
0);
if (!xfs_discard_wq)
goto out_free_alloc_wq;
return 0;
out_free_alloc_wq:
destroy_workqueue(xfs_alloc_wq);
return -ENOMEM;
}
STATIC void
xfs_destroy_workqueues(void)
{
destroy_workqueue(xfs_discard_wq);
destroy_workqueue(xfs_alloc_wq);
}
STATIC int __init
init_xfs_fs(void)
{
int error;
xfs_check_ondisk_structs();
error = xfs_dahash_test();
if (error)
return error;
printk(KERN_INFO XFS_VERSION_STRING " with "
XFS_BUILD_OPTIONS " enabled\n");
xfs_dir_startup();
error = xfs_init_caches();
if (error)
goto out;
error = xfs_init_workqueues();
if (error)
goto out_destroy_caches;
error = xfs_mru_cache_init();
if (error)
goto out_destroy_wq;
error = xfs_init_procfs();
if (error)
goto out_mru_cache_uninit;
error = xfs_sysctl_register();
if (error)
goto out_cleanup_procfs;
xfs_debugfs = xfs_debugfs_mkdir("xfs", NULL);
xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj);
if (!xfs_kset) {
error = -ENOMEM;
goto out_debugfs_unregister;
}
xfsstats.xs_kobj.kobject.kset = xfs_kset;
xfsstats.xs_stats = alloc_percpu(struct xfsstats);
if (!xfsstats.xs_stats) {
error = -ENOMEM;
goto out_kset_unregister;
}
error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL,
"stats");
if (error)
goto out_free_stats;
error = xchk_global_stats_setup(xfs_debugfs);
if (error)
goto out_remove_stats_kobj;
#ifdef DEBUG
xfs_dbg_kobj.kobject.kset = xfs_kset;
error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug");
if (error)
goto out_remove_scrub_stats;
#endif
error = xfs_qm_init();
if (error)
goto out_remove_dbg_kobj;
error = register_filesystem(&xfs_fs_type);
if (error)
goto out_qm_exit;
return 0;
out_qm_exit:
xfs_qm_exit();
out_remove_dbg_kobj:
#ifdef DEBUG
xfs_sysfs_del(&xfs_dbg_kobj);
out_remove_scrub_stats:
#endif
xchk_global_stats_teardown();
out_remove_stats_kobj:
xfs_sysfs_del(&xfsstats.xs_kobj);
out_free_stats:
free_percpu(xfsstats.xs_stats);
out_kset_unregister:
kset_unregister(xfs_kset);
out_debugfs_unregister:
debugfs_remove(xfs_debugfs);
xfs_sysctl_unregister();
out_cleanup_procfs:
xfs_cleanup_procfs();
out_mru_cache_uninit:
xfs_mru_cache_uninit();
out_destroy_wq:
xfs_destroy_workqueues();
out_destroy_caches:
xfs_destroy_caches();
out:
return error;
}
STATIC void __exit
exit_xfs_fs(void)
{
xfs_qm_exit();
unregister_filesystem(&xfs_fs_type);
#ifdef DEBUG
xfs_sysfs_del(&xfs_dbg_kobj);
#endif
xchk_global_stats_teardown();
xfs_sysfs_del(&xfsstats.xs_kobj);
free_percpu(xfsstats.xs_stats);
kset_unregister(xfs_kset);
debugfs_remove(xfs_debugfs);
xfs_sysctl_unregister();
xfs_cleanup_procfs();
xfs_mru_cache_uninit();
xfs_destroy_workqueues();
xfs_destroy_caches();
xfs_uuid_table_free();
}
module_init(init_xfs_fs);
module_exit(exit_xfs_fs);
MODULE_AUTHOR("Silicon Graphics, Inc.");
MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
MODULE_LICENSE("GPL");