linux/drivers/edac/amd64_edac.c
Thomas Gleixner 09c434b8a0 treewide: Add SPDX license identifier for more missed files
Add SPDX license identifiers to all files which:

 - Have no license information of any form

 - Have MODULE_LICENCE("GPL*") inside which was used in the initial
   scan/conversion to ignore the file

These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:

  GPL-2.0-only

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-21 10:50:45 +02:00

3628 lines
91 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include "amd64_edac.h"
#include <asm/amd_nb.h>
static struct edac_pci_ctl_info *pci_ctl;
static int report_gart_errors;
module_param(report_gart_errors, int, 0644);
/*
* Set by command line parameter. If BIOS has enabled the ECC, this override is
* cleared to prevent re-enabling the hardware by this driver.
*/
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);
static struct msr __percpu *msrs;
/* Per-node stuff */
static struct ecc_settings **ecc_stngs;
/* Number of Unified Memory Controllers */
static u8 num_umcs;
/*
* Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
* bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
* or higher value'.
*
*FIXME: Produce a better mapping/linearisation.
*/
static const struct scrubrate {
u32 scrubval; /* bit pattern for scrub rate */
u32 bandwidth; /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
{ 0x01, 1600000000UL},
{ 0x02, 800000000UL},
{ 0x03, 400000000UL},
{ 0x04, 200000000UL},
{ 0x05, 100000000UL},
{ 0x06, 50000000UL},
{ 0x07, 25000000UL},
{ 0x08, 12284069UL},
{ 0x09, 6274509UL},
{ 0x0A, 3121951UL},
{ 0x0B, 1560975UL},
{ 0x0C, 781440UL},
{ 0x0D, 390720UL},
{ 0x0E, 195300UL},
{ 0x0F, 97650UL},
{ 0x10, 48854UL},
{ 0x11, 24427UL},
{ 0x12, 12213UL},
{ 0x13, 6101UL},
{ 0x14, 3051UL},
{ 0x15, 1523UL},
{ 0x16, 761UL},
{ 0x00, 0UL}, /* scrubbing off */
};
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
u32 *val, const char *func)
{
int err = 0;
err = pci_read_config_dword(pdev, offset, val);
if (err)
amd64_warn("%s: error reading F%dx%03x.\n",
func, PCI_FUNC(pdev->devfn), offset);
return err;
}
int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
u32 val, const char *func)
{
int err = 0;
err = pci_write_config_dword(pdev, offset, val);
if (err)
amd64_warn("%s: error writing to F%dx%03x.\n",
func, PCI_FUNC(pdev->devfn), offset);
return err;
}
/*
* Select DCT to which PCI cfg accesses are routed
*/
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
u32 reg = 0;
amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
reg &= (pvt->model == 0x30) ? ~3 : ~1;
reg |= dct;
amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}
/*
*
* Depending on the family, F2 DCT reads need special handling:
*
* K8: has a single DCT only and no address offsets >= 0x100
*
* F10h: each DCT has its own set of regs
* DCT0 -> F2x040..
* DCT1 -> F2x140..
*
* F16h: has only 1 DCT
*
* F15h: we select which DCT we access using F1x10C[DctCfgSel]
*/
static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
int offset, u32 *val)
{
switch (pvt->fam) {
case 0xf:
if (dct || offset >= 0x100)
return -EINVAL;
break;
case 0x10:
if (dct) {
/*
* Note: If ganging is enabled, barring the regs
* F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
* return 0. (cf. Section 2.8.1 F10h BKDG)
*/
if (dct_ganging_enabled(pvt))
return 0;
offset += 0x100;
}
break;
case 0x15:
/*
* F15h: F2x1xx addresses do not map explicitly to DCT1.
* We should select which DCT we access using F1x10C[DctCfgSel]
*/
dct = (dct && pvt->model == 0x30) ? 3 : dct;
f15h_select_dct(pvt, dct);
break;
case 0x16:
if (dct)
return -EINVAL;
break;
default:
break;
}
return amd64_read_pci_cfg(pvt->F2, offset, val);
}
/*
* Memory scrubber control interface. For K8, memory scrubbing is handled by
* hardware and can involve L2 cache, dcache as well as the main memory. With
* F10, this is extended to L3 cache scrubbing on CPU models sporting that
* functionality.
*
* This causes the "units" for the scrubbing speed to vary from 64 byte blocks
* (dram) over to cache lines. This is nasty, so we will use bandwidth in
* bytes/sec for the setting.
*
* Currently, we only do dram scrubbing. If the scrubbing is done in software on
* other archs, we might not have access to the caches directly.
*/
static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
{
/*
* Fam17h supports scrub values between 0x5 and 0x14. Also, the values
* are shifted down by 0x5, so scrubval 0x5 is written to the register
* as 0x0, scrubval 0x6 as 0x1, etc.
*/
if (scrubval >= 0x5 && scrubval <= 0x14) {
scrubval -= 0x5;
pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
} else {
pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
}
}
/*
* Scan the scrub rate mapping table for a close or matching bandwidth value to
* issue. If requested is too big, then use last maximum value found.
*/
static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
{
u32 scrubval;
int i;
/*
* map the configured rate (new_bw) to a value specific to the AMD64
* memory controller and apply to register. Search for the first
* bandwidth entry that is greater or equal than the setting requested
* and program that. If at last entry, turn off DRAM scrubbing.
*
* If no suitable bandwidth is found, turn off DRAM scrubbing entirely
* by falling back to the last element in scrubrates[].
*/
for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
/*
* skip scrub rates which aren't recommended
* (see F10 BKDG, F3x58)
*/
if (scrubrates[i].scrubval < min_rate)
continue;
if (scrubrates[i].bandwidth <= new_bw)
break;
}
scrubval = scrubrates[i].scrubval;
if (pvt->fam == 0x17 || pvt->fam == 0x18) {
__f17h_set_scrubval(pvt, scrubval);
} else if (pvt->fam == 0x15 && pvt->model == 0x60) {
f15h_select_dct(pvt, 0);
pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
f15h_select_dct(pvt, 1);
pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
} else {
pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
}
if (scrubval)
return scrubrates[i].bandwidth;
return 0;
}
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
{
struct amd64_pvt *pvt = mci->pvt_info;
u32 min_scrubrate = 0x5;
if (pvt->fam == 0xf)
min_scrubrate = 0x0;
if (pvt->fam == 0x15) {
/* Erratum #505 */
if (pvt->model < 0x10)
f15h_select_dct(pvt, 0);
if (pvt->model == 0x60)
min_scrubrate = 0x6;
}
return __set_scrub_rate(pvt, bw, min_scrubrate);
}
static int get_scrub_rate(struct mem_ctl_info *mci)
{
struct amd64_pvt *pvt = mci->pvt_info;
int i, retval = -EINVAL;
u32 scrubval = 0;
switch (pvt->fam) {
case 0x15:
/* Erratum #505 */
if (pvt->model < 0x10)
f15h_select_dct(pvt, 0);
if (pvt->model == 0x60)
amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
break;
case 0x17:
case 0x18:
amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
if (scrubval & BIT(0)) {
amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
scrubval &= 0xF;
scrubval += 0x5;
} else {
scrubval = 0;
}
break;
default:
amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
break;
}
scrubval = scrubval & 0x001F;
for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
if (scrubrates[i].scrubval == scrubval) {
retval = scrubrates[i].bandwidth;
break;
}
}
return retval;
}
/*
* returns true if the SysAddr given by sys_addr matches the
* DRAM base/limit associated with node_id
*/
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
{
u64 addr;
/* The K8 treats this as a 40-bit value. However, bits 63-40 will be
* all ones if the most significant implemented address bit is 1.
* Here we discard bits 63-40. See section 3.4.2 of AMD publication
* 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
* Application Programming.
*/
addr = sys_addr & 0x000000ffffffffffull;
return ((addr >= get_dram_base(pvt, nid)) &&
(addr <= get_dram_limit(pvt, nid)));
}
/*
* Attempt to map a SysAddr to a node. On success, return a pointer to the
* mem_ctl_info structure for the node that the SysAddr maps to.
*
* On failure, return NULL.
*/
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
u64 sys_addr)
{
struct amd64_pvt *pvt;
u8 node_id;
u32 intlv_en, bits;
/*
* Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
* 3.4.4.2) registers to map the SysAddr to a node ID.
*/
pvt = mci->pvt_info;
/*
* The value of this field should be the same for all DRAM Base
* registers. Therefore we arbitrarily choose to read it from the
* register for node 0.
*/
intlv_en = dram_intlv_en(pvt, 0);
if (intlv_en == 0) {
for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
if (base_limit_match(pvt, sys_addr, node_id))
goto found;
}
goto err_no_match;
}
if (unlikely((intlv_en != 0x01) &&
(intlv_en != 0x03) &&
(intlv_en != 0x07))) {
amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
return NULL;
}
bits = (((u32) sys_addr) >> 12) & intlv_en;
for (node_id = 0; ; ) {
if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
break; /* intlv_sel field matches */
if (++node_id >= DRAM_RANGES)
goto err_no_match;
}
/* sanity test for sys_addr */
if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
"range for node %d with node interleaving enabled.\n",
__func__, sys_addr, node_id);
return NULL;
}
found:
return edac_mc_find((int)node_id);
err_no_match:
edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
(unsigned long)sys_addr);
return NULL;
}
/*
* compute the CS base address of the @csrow on the DRAM controller @dct.
* For details see F2x[5C:40] in the processor's BKDG
*/
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
u64 *base, u64 *mask)
{
u64 csbase, csmask, base_bits, mask_bits;
u8 addr_shift;
if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
csbase = pvt->csels[dct].csbases[csrow];
csmask = pvt->csels[dct].csmasks[csrow];
base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
addr_shift = 4;
/*
* F16h and F15h, models 30h and later need two addr_shift values:
* 8 for high and 6 for low (cf. F16h BKDG).
*/
} else if (pvt->fam == 0x16 ||
(pvt->fam == 0x15 && pvt->model >= 0x30)) {
csbase = pvt->csels[dct].csbases[csrow];
csmask = pvt->csels[dct].csmasks[csrow >> 1];
*base = (csbase & GENMASK_ULL(15, 5)) << 6;
*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
*mask = ~0ULL;
/* poke holes for the csmask */
*mask &= ~((GENMASK_ULL(15, 5) << 6) |
(GENMASK_ULL(30, 19) << 8));
*mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
return;
} else {
csbase = pvt->csels[dct].csbases[csrow];
csmask = pvt->csels[dct].csmasks[csrow >> 1];
addr_shift = 8;
if (pvt->fam == 0x15)
base_bits = mask_bits =
GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
else
base_bits = mask_bits =
GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
}
*base = (csbase & base_bits) << addr_shift;
*mask = ~0ULL;
/* poke holes for the csmask */
*mask &= ~(mask_bits << addr_shift);
/* OR them in */
*mask |= (csmask & mask_bits) << addr_shift;
}
#define for_each_chip_select(i, dct, pvt) \
for (i = 0; i < pvt->csels[dct].b_cnt; i++)
#define chip_select_base(i, dct, pvt) \
pvt->csels[dct].csbases[i]
#define for_each_chip_select_mask(i, dct, pvt) \
for (i = 0; i < pvt->csels[dct].m_cnt; i++)
#define for_each_umc(i) \
for (i = 0; i < num_umcs; i++)
/*
* @input_addr is an InputAddr associated with the node given by mci. Return the
* csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
*/
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
struct amd64_pvt *pvt;
int csrow;
u64 base, mask;
pvt = mci->pvt_info;
for_each_chip_select(csrow, 0, pvt) {
if (!csrow_enabled(csrow, 0, pvt))
continue;
get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
mask = ~mask;
if ((input_addr & mask) == (base & mask)) {
edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
(unsigned long)input_addr, csrow,
pvt->mc_node_id);
return csrow;
}
}
edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
(unsigned long)input_addr, pvt->mc_node_id);
return -1;
}
/*
* Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
* for the node represented by mci. Info is passed back in *hole_base,
* *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
* info is invalid. Info may be invalid for either of the following reasons:
*
* - The revision of the node is not E or greater. In this case, the DRAM Hole
* Address Register does not exist.
*
* - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
* indicating that its contents are not valid.
*
* The values passed back in *hole_base, *hole_offset, and *hole_size are
* complete 32-bit values despite the fact that the bitfields in the DHAR
* only represent bits 31-24 of the base and offset values.
*/
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
u64 *hole_offset, u64 *hole_size)
{
struct amd64_pvt *pvt = mci->pvt_info;
/* only revE and later have the DRAM Hole Address Register */
if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
edac_dbg(1, " revision %d for node %d does not support DHAR\n",
pvt->ext_model, pvt->mc_node_id);
return 1;
}
/* valid for Fam10h and above */
if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
return 1;
}
if (!dhar_valid(pvt)) {
edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
pvt->mc_node_id);
return 1;
}
/* This node has Memory Hoisting */
/* +------------------+--------------------+--------------------+-----
* | memory | DRAM hole | relocated |
* | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
* | | | DRAM hole |
* | | | [0x100000000, |
* | | | (0x100000000+ |
* | | | (0xffffffff-x))] |
* +------------------+--------------------+--------------------+-----
*
* Above is a diagram of physical memory showing the DRAM hole and the
* relocated addresses from the DRAM hole. As shown, the DRAM hole
* starts at address x (the base address) and extends through address
* 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
* addresses in the hole so that they start at 0x100000000.
*/
*hole_base = dhar_base(pvt);
*hole_size = (1ULL << 32) - *hole_base;
*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
: k8_dhar_offset(pvt);
edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
pvt->mc_node_id, (unsigned long)*hole_base,
(unsigned long)*hole_offset, (unsigned long)*hole_size);
return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
/*
* Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
* assumed that sys_addr maps to the node given by mci.
*
* The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
* 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
* SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
* then it is also involved in translating a SysAddr to a DramAddr. Sections
* 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
* These parts of the documentation are unclear. I interpret them as follows:
*
* When node n receives a SysAddr, it processes the SysAddr as follows:
*
* 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
* Limit registers for node n. If the SysAddr is not within the range
* specified by the base and limit values, then node n ignores the Sysaddr
* (since it does not map to node n). Otherwise continue to step 2 below.
*
* 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
* disabled so skip to step 3 below. Otherwise see if the SysAddr is within
* the range of relocated addresses (starting at 0x100000000) from the DRAM
* hole. If not, skip to step 3 below. Else get the value of the
* DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
* offset defined by this value from the SysAddr.
*
* 3. Obtain the base address for node n from the DRAMBase field of the DRAM
* Base register for node n. To obtain the DramAddr, subtract the base
* address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
*/
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
struct amd64_pvt *pvt = mci->pvt_info;
u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
int ret;
dram_base = get_dram_base(pvt, pvt->mc_node_id);
ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
&hole_size);
if (!ret) {
if ((sys_addr >= (1ULL << 32)) &&
(sys_addr < ((1ULL << 32) + hole_size))) {
/* use DHAR to translate SysAddr to DramAddr */
dram_addr = sys_addr - hole_offset;
edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
(unsigned long)sys_addr,
(unsigned long)dram_addr);
return dram_addr;
}
}
/*
* Translate the SysAddr to a DramAddr as shown near the start of
* section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
* only deals with 40-bit values. Therefore we discard bits 63-40 of
* sys_addr below. If bit 39 of sys_addr is 1 then the bits we
* discard are all 1s. Otherwise the bits we discard are all 0s. See
* section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
* Programmer's Manual Volume 1 Application Programming.
*/
dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
(unsigned long)sys_addr, (unsigned long)dram_addr);
return dram_addr;
}
/*
* @intlv_en is the value of the IntlvEn field from a DRAM Base register
* (section 3.4.4.1). Return the number of bits from a SysAddr that are used
* for node interleaving.
*/
static int num_node_interleave_bits(unsigned intlv_en)
{
static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
int n;
BUG_ON(intlv_en > 7);
n = intlv_shift_table[intlv_en];
return n;
}
/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
struct amd64_pvt *pvt;
int intlv_shift;
u64 input_addr;
pvt = mci->pvt_info;
/*
* See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
* concerning translating a DramAddr to an InputAddr.
*/
intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
(dram_addr & 0xfff);
edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
intlv_shift, (unsigned long)dram_addr,
(unsigned long)input_addr);
return input_addr;
}
/*
* Translate the SysAddr represented by @sys_addr to an InputAddr. It is
* assumed that @sys_addr maps to the node given by mci.
*/
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
u64 input_addr;
input_addr =
dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
(unsigned long)sys_addr, (unsigned long)input_addr);
return input_addr;
}
/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
struct err_info *err)
{
err->page = (u32) (error_address >> PAGE_SHIFT);
err->offset = ((u32) error_address) & ~PAGE_MASK;
}
/*
* @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
* Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
* of a node that detected an ECC memory error. mci represents the node that
* the error address maps to (possibly different from the node that detected
* the error). Return the number of the csrow that sys_addr maps to, or -1 on
* error.
*/
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
int csrow;
csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
if (csrow == -1)
amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
"address 0x%lx\n", (unsigned long)sys_addr);
return csrow;
}
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
/*
* Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
* are ECC capable.
*/
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
{
unsigned long edac_cap = EDAC_FLAG_NONE;
u8 bit;
if (pvt->umc) {
u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
for_each_umc(i) {
if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
continue;
umc_en_mask |= BIT(i);
/* UMC Configuration bit 12 (DimmEccEn) */
if (pvt->umc[i].umc_cfg & BIT(12))
dimm_ecc_en_mask |= BIT(i);
}
if (umc_en_mask == dimm_ecc_en_mask)
edac_cap = EDAC_FLAG_SECDED;
} else {
bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
? 19
: 17;
if (pvt->dclr0 & BIT(bit))
edac_cap = EDAC_FLAG_SECDED;
}
return edac_cap;
}
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
{
edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
if (pvt->dram_type == MEM_LRDDR3) {
u32 dcsm = pvt->csels[chan].csmasks[0];
/*
* It's assumed all LRDIMMs in a DCT are going to be of
* same 'type' until proven otherwise. So, use a cs
* value of '0' here to get dcsm value.
*/
edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
}
edac_dbg(1, "All DIMMs support ECC:%s\n",
(dclr & BIT(19)) ? "yes" : "no");
edac_dbg(1, " PAR/ERR parity: %s\n",
(dclr & BIT(8)) ? "enabled" : "disabled");
if (pvt->fam == 0x10)
edac_dbg(1, " DCT 128bit mode width: %s\n",
(dclr & BIT(11)) ? "128b" : "64b");
edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
(dclr & BIT(12)) ? "yes" : "no",
(dclr & BIT(13)) ? "yes" : "no",
(dclr & BIT(14)) ? "yes" : "no",
(dclr & BIT(15)) ? "yes" : "no");
}
/*
* The Address Mask should be a contiguous set of bits in the non-interleaved
* case. So to check for CS interleaving, find the most- and least-significant
* bits of the mask, generate a contiguous bitmask, and compare the two.
*/
static bool f17_cs_interleaved(struct amd64_pvt *pvt, u8 ctrl, int cs)
{
u32 mask = pvt->csels[ctrl].csmasks[cs >> 1];
u32 msb = fls(mask) - 1, lsb = ffs(mask) - 1;
u32 test_mask = GENMASK(msb, lsb);
edac_dbg(1, "mask=0x%08x test_mask=0x%08x\n", mask, test_mask);
return mask ^ test_mask;
}
static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
{
int dimm, size0, size1, cs0, cs1;
edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);
for (dimm = 0; dimm < 4; dimm++) {
size0 = 0;
cs0 = dimm * 2;
if (csrow_enabled(cs0, ctrl, pvt))
size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, cs0);
size1 = 0;
cs1 = dimm * 2 + 1;
if (csrow_enabled(cs1, ctrl, pvt)) {
/*
* CS interleaving is only supported if both CSes have
* the same amount of memory. Because they are
* interleaved, it will look like both CSes have the
* full amount of memory. Save the size for both as
* half the amount we found on CS0, if interleaved.
*/
if (f17_cs_interleaved(pvt, ctrl, cs1))
size1 = size0 = (size0 >> 1);
else
size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, cs1);
}
amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
cs0, size0,
cs1, size1);
}
}
static void __dump_misc_regs_df(struct amd64_pvt *pvt)
{
struct amd64_umc *umc;
u32 i, tmp, umc_base;
for_each_umc(i) {
umc_base = get_umc_base(i);
umc = &pvt->umc[i];
edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);
amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);
amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);
edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
(umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");
if (pvt->dram_type == MEM_LRDDR4) {
amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
i, 1 << ((tmp >> 4) & 0x3));
}
debug_display_dimm_sizes_df(pvt, i);
}
edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
pvt->dhar, dhar_base(pvt));
}
/* Display and decode various NB registers for debug purposes. */
static void __dump_misc_regs(struct amd64_pvt *pvt)
{
edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
edac_dbg(1, " NB two channel DRAM capable: %s\n",
(pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
(pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
(pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
pvt->dhar, dhar_base(pvt),
(pvt->fam == 0xf) ? k8_dhar_offset(pvt)
: f10_dhar_offset(pvt));
debug_display_dimm_sizes(pvt, 0);
/* everything below this point is Fam10h and above */
if (pvt->fam == 0xf)
return;
debug_display_dimm_sizes(pvt, 1);
/* Only if NOT ganged does dclr1 have valid info */
if (!dct_ganging_enabled(pvt))
debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
}
/* Display and decode various NB registers for debug purposes. */
static void dump_misc_regs(struct amd64_pvt *pvt)
{
if (pvt->umc)
__dump_misc_regs_df(pvt);
else
__dump_misc_regs(pvt);
edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
amd64_info("using x%u syndromes.\n", pvt->ecc_sym_sz);
}
/*
* See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
*/
static void prep_chip_selects(struct amd64_pvt *pvt)
{
if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
} else {
pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
}
}
/*
* Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
*/
static void read_dct_base_mask(struct amd64_pvt *pvt)
{
int base_reg0, base_reg1, mask_reg0, mask_reg1, cs;
prep_chip_selects(pvt);
if (pvt->umc) {
base_reg0 = get_umc_base(0) + UMCCH_BASE_ADDR;
base_reg1 = get_umc_base(1) + UMCCH_BASE_ADDR;
mask_reg0 = get_umc_base(0) + UMCCH_ADDR_MASK;
mask_reg1 = get_umc_base(1) + UMCCH_ADDR_MASK;
} else {
base_reg0 = DCSB0;
base_reg1 = DCSB1;
mask_reg0 = DCSM0;
mask_reg1 = DCSM1;
}
for_each_chip_select(cs, 0, pvt) {
int reg0 = base_reg0 + (cs * 4);
int reg1 = base_reg1 + (cs * 4);
u32 *base0 = &pvt->csels[0].csbases[cs];
u32 *base1 = &pvt->csels[1].csbases[cs];
if (pvt->umc) {
if (!amd_smn_read(pvt->mc_node_id, reg0, base0))
edac_dbg(0, " DCSB0[%d]=0x%08x reg: 0x%x\n",
cs, *base0, reg0);
if (!amd_smn_read(pvt->mc_node_id, reg1, base1))
edac_dbg(0, " DCSB1[%d]=0x%08x reg: 0x%x\n",
cs, *base1, reg1);
} else {
if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
cs, *base0, reg0);
if (pvt->fam == 0xf)
continue;
if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
cs, *base1, (pvt->fam == 0x10) ? reg1
: reg0);
}
}
for_each_chip_select_mask(cs, 0, pvt) {
int reg0 = mask_reg0 + (cs * 4);
int reg1 = mask_reg1 + (cs * 4);
u32 *mask0 = &pvt->csels[0].csmasks[cs];
u32 *mask1 = &pvt->csels[1].csmasks[cs];
if (pvt->umc) {
if (!amd_smn_read(pvt->mc_node_id, reg0, mask0))
edac_dbg(0, " DCSM0[%d]=0x%08x reg: 0x%x\n",
cs, *mask0, reg0);
if (!amd_smn_read(pvt->mc_node_id, reg1, mask1))
edac_dbg(0, " DCSM1[%d]=0x%08x reg: 0x%x\n",
cs, *mask1, reg1);
} else {
if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
cs, *mask0, reg0);
if (pvt->fam == 0xf)
continue;
if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
cs, *mask1, (pvt->fam == 0x10) ? reg1
: reg0);
}
}
}
static void determine_memory_type(struct amd64_pvt *pvt)
{
u32 dram_ctrl, dcsm;
switch (pvt->fam) {
case 0xf:
if (pvt->ext_model >= K8_REV_F)
goto ddr3;
pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
return;
case 0x10:
if (pvt->dchr0 & DDR3_MODE)
goto ddr3;
pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
return;
case 0x15:
if (pvt->model < 0x60)
goto ddr3;
/*
* Model 0x60h needs special handling:
*
* We use a Chip Select value of '0' to obtain dcsm.
* Theoretically, it is possible to populate LRDIMMs of different
* 'Rank' value on a DCT. But this is not the common case. So,
* it's reasonable to assume all DIMMs are going to be of same
* 'type' until proven otherwise.
*/
amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
dcsm = pvt->csels[0].csmasks[0];
if (((dram_ctrl >> 8) & 0x7) == 0x2)
pvt->dram_type = MEM_DDR4;
else if (pvt->dclr0 & BIT(16))
pvt->dram_type = MEM_DDR3;
else if (dcsm & 0x3)
pvt->dram_type = MEM_LRDDR3;
else
pvt->dram_type = MEM_RDDR3;
return;
case 0x16:
goto ddr3;
case 0x17:
case 0x18:
if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
pvt->dram_type = MEM_LRDDR4;
else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
pvt->dram_type = MEM_RDDR4;
else
pvt->dram_type = MEM_DDR4;
return;
default:
WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
pvt->dram_type = MEM_EMPTY;
}
return;
ddr3:
pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
}
/* Get the number of DCT channels the memory controller is using. */
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
int flag;
if (pvt->ext_model >= K8_REV_F)
/* RevF (NPT) and later */
flag = pvt->dclr0 & WIDTH_128;
else
/* RevE and earlier */
flag = pvt->dclr0 & REVE_WIDTH_128;
/* not used */
pvt->dclr1 = 0;
return (flag) ? 2 : 1;
}
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
{
u16 mce_nid = amd_get_nb_id(m->extcpu);
struct mem_ctl_info *mci;
u8 start_bit = 1;
u8 end_bit = 47;
u64 addr;
mci = edac_mc_find(mce_nid);
if (!mci)
return 0;
pvt = mci->pvt_info;
if (pvt->fam == 0xf) {
start_bit = 3;
end_bit = 39;
}
addr = m->addr & GENMASK_ULL(end_bit, start_bit);
/*
* Erratum 637 workaround
*/
if (pvt->fam == 0x15) {
u64 cc6_base, tmp_addr;
u32 tmp;
u8 intlv_en;
if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
return addr;
amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
intlv_en = tmp >> 21 & 0x7;
/* add [47:27] + 3 trailing bits */
cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
/* reverse and add DramIntlvEn */
cc6_base |= intlv_en ^ 0x7;
/* pin at [47:24] */
cc6_base <<= 24;
if (!intlv_en)
return cc6_base | (addr & GENMASK_ULL(23, 0));
amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
/* faster log2 */
tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
/* OR DramIntlvSel into bits [14:12] */
tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
/* add remaining [11:0] bits from original MC4_ADDR */
tmp_addr |= addr & GENMASK_ULL(11, 0);
return cc6_base | tmp_addr;
}
return addr;
}
static struct pci_dev *pci_get_related_function(unsigned int vendor,
unsigned int device,
struct pci_dev *related)
{
struct pci_dev *dev = NULL;
while ((dev = pci_get_device(vendor, device, dev))) {
if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
(dev->bus->number == related->bus->number) &&
(PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
break;
}
return dev;
}
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
{
struct amd_northbridge *nb;
struct pci_dev *f1 = NULL;
unsigned int pci_func;
int off = range << 3;
u32 llim;
amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
if (pvt->fam == 0xf)
return;
if (!dram_rw(pvt, range))
return;
amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
/* F15h: factor in CC6 save area by reading dst node's limit reg */
if (pvt->fam != 0x15)
return;
nb = node_to_amd_nb(dram_dst_node(pvt, range));
if (WARN_ON(!nb))
return;
if (pvt->model == 0x60)
pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
else if (pvt->model == 0x30)
pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
else
pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
if (WARN_ON(!f1))
return;
amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
/* {[39:27],111b} */
pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
/* [47:40] */
pvt->ranges[range].lim.hi |= llim >> 13;
pci_dev_put(f1);
}
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
struct err_info *err)
{
struct amd64_pvt *pvt = mci->pvt_info;
error_address_to_page_and_offset(sys_addr, err);
/*
* Find out which node the error address belongs to. This may be
* different from the node that detected the error.
*/
err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
if (!err->src_mci) {
amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
(unsigned long)sys_addr);
err->err_code = ERR_NODE;
return;
}
/* Now map the sys_addr to a CSROW */
err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
if (err->csrow < 0) {
err->err_code = ERR_CSROW;
return;
}
/* CHIPKILL enabled */
if (pvt->nbcfg & NBCFG_CHIPKILL) {
err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
if (err->channel < 0) {
/*
* Syndrome didn't map, so we don't know which of the
* 2 DIMMs is in error. So we need to ID 'both' of them
* as suspect.
*/
amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
"possible error reporting race\n",
err->syndrome);
err->err_code = ERR_CHANNEL;
return;
}
} else {
/*
* non-chipkill ecc mode
*
* The k8 documentation is unclear about how to determine the
* channel number when using non-chipkill memory. This method
* was obtained from email communication with someone at AMD.
* (Wish the email was placed in this comment - norsk)
*/
err->channel = ((sys_addr & BIT(3)) != 0);
}
}
static int ddr2_cs_size(unsigned i, bool dct_width)
{
unsigned shift = 0;
if (i <= 2)
shift = i;
else if (!(i & 0x1))
shift = i >> 1;
else
shift = (i + 1) >> 1;
return 128 << (shift + !!dct_width);
}
static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
unsigned cs_mode, int cs_mask_nr)
{
u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
if (pvt->ext_model >= K8_REV_F) {
WARN_ON(cs_mode > 11);
return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}
else if (pvt->ext_model >= K8_REV_D) {
unsigned diff;
WARN_ON(cs_mode > 10);
/*
* the below calculation, besides trying to win an obfuscated C
* contest, maps cs_mode values to DIMM chip select sizes. The
* mappings are:
*
* cs_mode CS size (mb)
* ======= ============
* 0 32
* 1 64
* 2 128
* 3 128
* 4 256
* 5 512
* 6 256
* 7 512
* 8 1024
* 9 1024
* 10 2048
*
* Basically, it calculates a value with which to shift the
* smallest CS size of 32MB.
*
* ddr[23]_cs_size have a similar purpose.
*/
diff = cs_mode/3 + (unsigned)(cs_mode > 5);
return 32 << (cs_mode - diff);
}
else {
WARN_ON(cs_mode > 6);
return 32 << cs_mode;
}
}
/*
* Get the number of DCT channels in use.
*
* Return:
* number of Memory Channels in operation
* Pass back:
* contents of the DCL0_LOW register
*/
static int f1x_early_channel_count(struct amd64_pvt *pvt)
{
int i, j, channels = 0;
/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
return 2;
/*
* Need to check if in unganged mode: In such, there are 2 channels,
* but they are not in 128 bit mode and thus the above 'dclr0' status
* bit will be OFF.
*
* Need to check DCT0[0] and DCT1[0] to see if only one of them has
* their CSEnable bit on. If so, then SINGLE DIMM case.
*/
edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
/*
* Check DRAM Bank Address Mapping values for each DIMM to see if there
* is more than just one DIMM present in unganged mode. Need to check
* both controllers since DIMMs can be placed in either one.
*/
for (i = 0; i < 2; i++) {
u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
for (j = 0; j < 4; j++) {
if (DBAM_DIMM(j, dbam) > 0) {
channels++;
break;
}
}
}
if (channels > 2)
channels = 2;
amd64_info("MCT channel count: %d\n", channels);
return channels;
}
static int f17_early_channel_count(struct amd64_pvt *pvt)
{
int i, channels = 0;
/* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
for_each_umc(i)
channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);
amd64_info("MCT channel count: %d\n", channels);
return channels;
}
static int ddr3_cs_size(unsigned i, bool dct_width)
{
unsigned shift = 0;
int cs_size = 0;
if (i == 0 || i == 3 || i == 4)
cs_size = -1;
else if (i <= 2)
shift = i;
else if (i == 12)
shift = 7;
else if (!(i & 0x1))
shift = i >> 1;
else
shift = (i + 1) >> 1;
if (cs_size != -1)
cs_size = (128 * (1 << !!dct_width)) << shift;
return cs_size;
}
static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
{
unsigned shift = 0;
int cs_size = 0;
if (i < 4 || i == 6)
cs_size = -1;
else if (i == 12)
shift = 7;
else if (!(i & 0x1))
shift = i >> 1;
else
shift = (i + 1) >> 1;
if (cs_size != -1)
cs_size = rank_multiply * (128 << shift);
return cs_size;
}
static int ddr4_cs_size(unsigned i)
{
int cs_size = 0;
if (i == 0)
cs_size = -1;
else if (i == 1)
cs_size = 1024;
else
/* Min cs_size = 1G */
cs_size = 1024 * (1 << (i >> 1));
return cs_size;
}
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
unsigned cs_mode, int cs_mask_nr)
{
u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
WARN_ON(cs_mode > 11);
if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
else
return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}
/*
* F15h supports only 64bit DCT interfaces
*/
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
unsigned cs_mode, int cs_mask_nr)
{
WARN_ON(cs_mode > 12);
return ddr3_cs_size(cs_mode, false);
}
/* F15h M60h supports DDR4 mapping as well.. */
static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
unsigned cs_mode, int cs_mask_nr)
{
int cs_size;
u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];
WARN_ON(cs_mode > 12);
if (pvt->dram_type == MEM_DDR4) {
if (cs_mode > 9)
return -1;
cs_size = ddr4_cs_size(cs_mode);
} else if (pvt->dram_type == MEM_LRDDR3) {
unsigned rank_multiply = dcsm & 0xf;
if (rank_multiply == 3)
rank_multiply = 4;
cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
} else {
/* Minimum cs size is 512mb for F15hM60h*/
if (cs_mode == 0x1)
return -1;
cs_size = ddr3_cs_size(cs_mode, false);
}
return cs_size;
}
/*
* F16h and F15h model 30h have only limited cs_modes.
*/
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
unsigned cs_mode, int cs_mask_nr)
{
WARN_ON(cs_mode > 12);
if (cs_mode == 6 || cs_mode == 8 ||
cs_mode == 9 || cs_mode == 12)
return -1;
else
return ddr3_cs_size(cs_mode, false);
}
static int f17_base_addr_to_cs_size(struct amd64_pvt *pvt, u8 umc,
unsigned int cs_mode, int csrow_nr)
{
u32 base_addr = pvt->csels[umc].csbases[csrow_nr];
/* Each mask is used for every two base addresses. */
u32 addr_mask = pvt->csels[umc].csmasks[csrow_nr >> 1];
/* Register [31:1] = Address [39:9]. Size is in kBs here. */
u32 size = ((addr_mask >> 1) - (base_addr >> 1) + 1) >> 1;
edac_dbg(1, "BaseAddr: 0x%x, AddrMask: 0x%x\n", base_addr, addr_mask);
/* Return size in MBs. */
return size >> 10;
}
static void read_dram_ctl_register(struct amd64_pvt *pvt)
{
if (pvt->fam == 0xf)
return;
if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
edac_dbg(0, " DCTs operate in %s mode\n",
(dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
if (!dct_ganging_enabled(pvt))
edac_dbg(0, " Address range split per DCT: %s\n",
(dct_high_range_enabled(pvt) ? "yes" : "no"));
edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
(dct_memory_cleared(pvt) ? "yes" : "no"));
edac_dbg(0, " channel interleave: %s, "
"interleave bits selector: 0x%x\n",
(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
dct_sel_interleave_addr(pvt));
}
amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
}
/*
* Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
* 2.10.12 Memory Interleaving Modes).
*/
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
u8 intlv_en, int num_dcts_intlv,
u32 dct_sel)
{
u8 channel = 0;
u8 select;
if (!(intlv_en))
return (u8)(dct_sel);
if (num_dcts_intlv == 2) {
select = (sys_addr >> 8) & 0x3;
channel = select ? 0x3 : 0;
} else if (num_dcts_intlv == 4) {
u8 intlv_addr = dct_sel_interleave_addr(pvt);
switch (intlv_addr) {
case 0x4:
channel = (sys_addr >> 8) & 0x3;
break;
case 0x5:
channel = (sys_addr >> 9) & 0x3;
break;
}
}
return channel;
}
/*
* Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
* Interleaving Modes.
*/
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
bool hi_range_sel, u8 intlv_en)
{
u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
if (dct_ganging_enabled(pvt))
return 0;
if (hi_range_sel)
return dct_sel_high;
/*
* see F2x110[DctSelIntLvAddr] - channel interleave mode
*/
if (dct_interleave_enabled(pvt)) {
u8 intlv_addr = dct_sel_interleave_addr(pvt);
/* return DCT select function: 0=DCT0, 1=DCT1 */
if (!intlv_addr)
return sys_addr >> 6 & 1;
if (intlv_addr & 0x2) {
u8 shift = intlv_addr & 0x1 ? 9 : 6;
u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
return ((sys_addr >> shift) & 1) ^ temp;
}
if (intlv_addr & 0x4) {
u8 shift = intlv_addr & 0x1 ? 9 : 8;
return (sys_addr >> shift) & 1;
}
return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
}
if (dct_high_range_enabled(pvt))
return ~dct_sel_high & 1;
return 0;
}
/* Convert the sys_addr to the normalized DCT address */
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
u64 sys_addr, bool hi_rng,
u32 dct_sel_base_addr)
{
u64 chan_off;
u64 dram_base = get_dram_base(pvt, range);
u64 hole_off = f10_dhar_offset(pvt);
u64 dct_sel_base_off = (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
if (hi_rng) {
/*
* if
* base address of high range is below 4Gb
* (bits [47:27] at [31:11])
* DRAM address space on this DCT is hoisted above 4Gb &&
* sys_addr > 4Gb
*
* remove hole offset from sys_addr
* else
* remove high range offset from sys_addr
*/
if ((!(dct_sel_base_addr >> 16) ||
dct_sel_base_addr < dhar_base(pvt)) &&
dhar_valid(pvt) &&
(sys_addr >= BIT_64(32)))
chan_off = hole_off;
else
chan_off = dct_sel_base_off;
} else {
/*
* if
* we have a valid hole &&
* sys_addr > 4Gb
*
* remove hole
* else
* remove dram base to normalize to DCT address
*/
if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
chan_off = hole_off;
else
chan_off = dram_base;
}
return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
}
/*
* checks if the csrow passed in is marked as SPARED, if so returns the new
* spare row
*/
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
{
int tmp_cs;
if (online_spare_swap_done(pvt, dct) &&
csrow == online_spare_bad_dramcs(pvt, dct)) {
for_each_chip_select(tmp_cs, dct, pvt) {
if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
csrow = tmp_cs;
break;
}
}
}
return csrow;
}
/*
* Iterate over the DRAM DCT "base" and "mask" registers looking for a
* SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
*
* Return:
* -EINVAL: NOT FOUND
* 0..csrow = Chip-Select Row
*/
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
{
struct mem_ctl_info *mci;
struct amd64_pvt *pvt;
u64 cs_base, cs_mask;
int cs_found = -EINVAL;
int csrow;
mci = edac_mc_find(nid);
if (!mci)
return cs_found;
pvt = mci->pvt_info;
edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
for_each_chip_select(csrow, dct, pvt) {
if (!csrow_enabled(csrow, dct, pvt))
continue;
get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
csrow, cs_base, cs_mask);
cs_mask = ~cs_mask;
edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
(in_addr & cs_mask), (cs_base & cs_mask));
if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
if (pvt->fam == 0x15 && pvt->model >= 0x30) {
cs_found = csrow;
break;
}
cs_found = f10_process_possible_spare(pvt, dct, csrow);
edac_dbg(1, " MATCH csrow=%d\n", cs_found);
break;
}
}
return cs_found;
}
/*
* See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
* swapped with a region located at the bottom of memory so that the GPU can use
* the interleaved region and thus two channels.
*/
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
{
u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
if (pvt->fam == 0x10) {
/* only revC3 and revE have that feature */
if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
return sys_addr;
}
amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
if (!(swap_reg & 0x1))
return sys_addr;
swap_base = (swap_reg >> 3) & 0x7f;
swap_limit = (swap_reg >> 11) & 0x7f;
rgn_size = (swap_reg >> 20) & 0x7f;
tmp_addr = sys_addr >> 27;
if (!(sys_addr >> 34) &&
(((tmp_addr >= swap_base) &&
(tmp_addr <= swap_limit)) ||
(tmp_addr < rgn_size)))
return sys_addr ^ (u64)swap_base << 27;
return sys_addr;
}
/* For a given @dram_range, check if @sys_addr falls within it. */
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
u64 sys_addr, int *chan_sel)
{
int cs_found = -EINVAL;
u64 chan_addr;
u32 dct_sel_base;
u8 channel;
bool high_range = false;
u8 node_id = dram_dst_node(pvt, range);
u8 intlv_en = dram_intlv_en(pvt, range);
u32 intlv_sel = dram_intlv_sel(pvt, range);
edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
range, sys_addr, get_dram_limit(pvt, range));
if (dhar_valid(pvt) &&
dhar_base(pvt) <= sys_addr &&
sys_addr < BIT_64(32)) {
amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
sys_addr);
return -EINVAL;
}
if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
return -EINVAL;
sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
dct_sel_base = dct_sel_baseaddr(pvt);
/*
* check whether addresses >= DctSelBaseAddr[47:27] are to be used to
* select between DCT0 and DCT1.
*/
if (dct_high_range_enabled(pvt) &&
!dct_ganging_enabled(pvt) &&
((sys_addr >> 27) >= (dct_sel_base >> 11)))
high_range = true;
channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
high_range, dct_sel_base);
/* Remove node interleaving, see F1x120 */
if (intlv_en)
chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
(chan_addr & 0xfff);
/* remove channel interleave */
if (dct_interleave_enabled(pvt) &&
!dct_high_range_enabled(pvt) &&
!dct_ganging_enabled(pvt)) {
if (dct_sel_interleave_addr(pvt) != 1) {
if (dct_sel_interleave_addr(pvt) == 0x3)
/* hash 9 */
chan_addr = ((chan_addr >> 10) << 9) |
(chan_addr & 0x1ff);
else
/* A[6] or hash 6 */
chan_addr = ((chan_addr >> 7) << 6) |
(chan_addr & 0x3f);
} else
/* A[12] */
chan_addr = ((chan_addr >> 13) << 12) |
(chan_addr & 0xfff);
}
edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
if (cs_found >= 0)
*chan_sel = channel;
return cs_found;
}
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
u64 sys_addr, int *chan_sel)
{
int cs_found = -EINVAL;
int num_dcts_intlv = 0;
u64 chan_addr, chan_offset;
u64 dct_base, dct_limit;
u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
u64 dhar_offset = f10_dhar_offset(pvt);
u8 intlv_addr = dct_sel_interleave_addr(pvt);
u8 node_id = dram_dst_node(pvt, range);
u8 intlv_en = dram_intlv_en(pvt, range);
amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
range, sys_addr, get_dram_limit(pvt, range));
if (!(get_dram_base(pvt, range) <= sys_addr) &&
!(get_dram_limit(pvt, range) >= sys_addr))
return -EINVAL;
if (dhar_valid(pvt) &&
dhar_base(pvt) <= sys_addr &&
sys_addr < BIT_64(32)) {
amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
sys_addr);
return -EINVAL;
}
/* Verify sys_addr is within DCT Range. */
dct_base = (u64) dct_sel_baseaddr(pvt);
dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
if (!(dct_cont_base_reg & BIT(0)) &&
!(dct_base <= (sys_addr >> 27) &&
dct_limit >= (sys_addr >> 27)))
return -EINVAL;
/* Verify number of dct's that participate in channel interleaving. */
num_dcts_intlv = (int) hweight8(intlv_en);
if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
return -EINVAL;
if (pvt->model >= 0x60)
channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
else
channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
num_dcts_intlv, dct_sel);
/* Verify we stay within the MAX number of channels allowed */
if (channel > 3)
return -EINVAL;
leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
/* Get normalized DCT addr */
if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
chan_offset = dhar_offset;
else
chan_offset = dct_base << 27;
chan_addr = sys_addr - chan_offset;
/* remove channel interleave */
if (num_dcts_intlv == 2) {
if (intlv_addr == 0x4)
chan_addr = ((chan_addr >> 9) << 8) |
(chan_addr & 0xff);
else if (intlv_addr == 0x5)
chan_addr = ((chan_addr >> 10) << 9) |
(chan_addr & 0x1ff);
else
return -EINVAL;
} else if (num_dcts_intlv == 4) {
if (intlv_addr == 0x4)
chan_addr = ((chan_addr >> 10) << 8) |
(chan_addr & 0xff);
else if (intlv_addr == 0x5)
chan_addr = ((chan_addr >> 11) << 9) |
(chan_addr & 0x1ff);
else
return -EINVAL;
}
if (dct_offset_en) {
amd64_read_pci_cfg(pvt->F1,
DRAM_CONT_HIGH_OFF + (int) channel * 4,
&tmp);
chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
}
f15h_select_dct(pvt, channel);
edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
/*
* Find Chip select:
* if channel = 3, then alias it to 1. This is because, in F15 M30h,
* there is support for 4 DCT's, but only 2 are currently functional.
* They are DCT0 and DCT3. But we have read all registers of DCT3 into
* pvt->csels[1]. So we need to use '1' here to get correct info.
* Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
*/
alias_channel = (channel == 3) ? 1 : channel;
cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
if (cs_found >= 0)
*chan_sel = alias_channel;
return cs_found;
}
static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
u64 sys_addr,
int *chan_sel)
{
int cs_found = -EINVAL;
unsigned range;
for (range = 0; range < DRAM_RANGES; range++) {
if (!dram_rw(pvt, range))
continue;
if (pvt->fam == 0x15 && pvt->model >= 0x30)
cs_found = f15_m30h_match_to_this_node(pvt, range,
sys_addr,
chan_sel);
else if ((get_dram_base(pvt, range) <= sys_addr) &&
(get_dram_limit(pvt, range) >= sys_addr)) {
cs_found = f1x_match_to_this_node(pvt, range,
sys_addr, chan_sel);
if (cs_found >= 0)
break;
}
}
return cs_found;
}
/*
* For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
* a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
*
* The @sys_addr is usually an error address received from the hardware
* (MCX_ADDR).
*/
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
struct err_info *err)
{
struct amd64_pvt *pvt = mci->pvt_info;
error_address_to_page_and_offset(sys_addr, err);
err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
if (err->csrow < 0) {
err->err_code = ERR_CSROW;
return;
}
/*
* We need the syndromes for channel detection only when we're
* ganged. Otherwise @chan should already contain the channel at
* this point.
*/
if (dct_ganging_enabled(pvt))
err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
}
/*
* debug routine to display the memory sizes of all logical DIMMs and its
* CSROWs
*/
static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
{
int dimm, size0, size1;
u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
if (pvt->fam == 0xf) {
/* K8 families < revF not supported yet */
if (pvt->ext_model < K8_REV_F)
return;
else
WARN_ON(ctrl != 0);
}
if (pvt->fam == 0x10) {
dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
: pvt->dbam0;
dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
pvt->csels[1].csbases :
pvt->csels[0].csbases;
} else if (ctrl) {
dbam = pvt->dbam0;
dcsb = pvt->csels[1].csbases;
}
edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
ctrl, dbam);
edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
/* Dump memory sizes for DIMM and its CSROWs */
for (dimm = 0; dimm < 4; dimm++) {
size0 = 0;
if (dcsb[dimm*2] & DCSB_CS_ENABLE)
/*
* For F15m60h, we need multiplier for LRDIMM cs_size
* calculation. We pass dimm value to the dbam_to_cs
* mapper so we can find the multiplier from the
* corresponding DCSM.
*/
size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
DBAM_DIMM(dimm, dbam),
dimm);
size1 = 0;
if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
DBAM_DIMM(dimm, dbam),
dimm);
amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
dimm * 2, size0,
dimm * 2 + 1, size1);
}
}
static struct amd64_family_type family_types[] = {
[K8_CPUS] = {
.ctl_name = "K8",
.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
.ops = {
.early_channel_count = k8_early_channel_count,
.map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
.dbam_to_cs = k8_dbam_to_chip_select,
}
},
[F10_CPUS] = {
.ctl_name = "F10h",
.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
.ops = {
.early_channel_count = f1x_early_channel_count,
.map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
.dbam_to_cs = f10_dbam_to_chip_select,
}
},
[F15_CPUS] = {
.ctl_name = "F15h",
.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
.ops = {
.early_channel_count = f1x_early_channel_count,
.map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
.dbam_to_cs = f15_dbam_to_chip_select,
}
},
[F15_M30H_CPUS] = {
.ctl_name = "F15h_M30h",
.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
.ops = {
.early_channel_count = f1x_early_channel_count,
.map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
.dbam_to_cs = f16_dbam_to_chip_select,
}
},
[F15_M60H_CPUS] = {
.ctl_name = "F15h_M60h",
.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
.ops = {
.early_channel_count = f1x_early_channel_count,
.map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
.dbam_to_cs = f15_m60h_dbam_to_chip_select,
}
},
[F16_CPUS] = {
.ctl_name = "F16h",
.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
.ops = {
.early_channel_count = f1x_early_channel_count,
.map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
.dbam_to_cs = f16_dbam_to_chip_select,
}
},
[F16_M30H_CPUS] = {
.ctl_name = "F16h_M30h",
.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
.ops = {
.early_channel_count = f1x_early_channel_count,
.map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
.dbam_to_cs = f16_dbam_to_chip_select,
}
},
[F17_CPUS] = {
.ctl_name = "F17h",
.f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
.f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
.ops = {
.early_channel_count = f17_early_channel_count,
.dbam_to_cs = f17_base_addr_to_cs_size,
}
},
[F17_M10H_CPUS] = {
.ctl_name = "F17h_M10h",
.f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0,
.f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6,
.ops = {
.early_channel_count = f17_early_channel_count,
.dbam_to_cs = f17_base_addr_to_cs_size,
}
},
[F17_M30H_CPUS] = {
.ctl_name = "F17h_M30h",
.f0_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F0,
.f6_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F6,
.ops = {
.early_channel_count = f17_early_channel_count,
.dbam_to_cs = f17_base_addr_to_cs_size,
}
},
};
/*
* These are tables of eigenvectors (one per line) which can be used for the
* construction of the syndrome tables. The modified syndrome search algorithm
* uses those to find the symbol in error and thus the DIMM.
*
* Algorithm courtesy of Ross LaFetra from AMD.
*/
static const u16 x4_vectors[] = {
0x2f57, 0x1afe, 0x66cc, 0xdd88,
0x11eb, 0x3396, 0x7f4c, 0xeac8,
0x0001, 0x0002, 0x0004, 0x0008,
0x1013, 0x3032, 0x4044, 0x8088,
0x106b, 0x30d6, 0x70fc, 0xe0a8,
0x4857, 0xc4fe, 0x13cc, 0x3288,
0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
0x1f39, 0x251e, 0xbd6c, 0x6bd8,
0x15c1, 0x2a42, 0x89ac, 0x4758,
0x2b03, 0x1602, 0x4f0c, 0xca08,
0x1f07, 0x3a0e, 0x6b04, 0xbd08,
0x8ba7, 0x465e, 0x244c, 0x1cc8,
0x2b87, 0x164e, 0x642c, 0xdc18,
0x40b9, 0x80de, 0x1094, 0x20e8,
0x27db, 0x1eb6, 0x9dac, 0x7b58,
0x11c1, 0x2242, 0x84ac, 0x4c58,
0x1be5, 0x2d7a, 0x5e34, 0xa718,
0x4b39, 0x8d1e, 0x14b4, 0x28d8,
0x4c97, 0xc87e, 0x11fc, 0x33a8,
0x8e97, 0x497e, 0x2ffc, 0x1aa8,
0x16b3, 0x3d62, 0x4f34, 0x8518,
0x1e2f, 0x391a, 0x5cac, 0xf858,
0x1d9f, 0x3b7a, 0x572c, 0xfe18,
0x15f5, 0x2a5a, 0x5264, 0xa3b8,
0x1dbb, 0x3b66, 0x715c, 0xe3f8,
0x4397, 0xc27e, 0x17fc, 0x3ea8,
0x1617, 0x3d3e, 0x6464, 0xb8b8,
0x23ff, 0x12aa, 0xab6c, 0x56d8,
0x2dfb, 0x1ba6, 0x913c, 0x7328,
0x185d, 0x2ca6, 0x7914, 0x9e28,
0x171b, 0x3e36, 0x7d7c, 0xebe8,
0x4199, 0x82ee, 0x19f4, 0x2e58,
0x4807, 0xc40e, 0x130c, 0x3208,
0x1905, 0x2e0a, 0x5804, 0xac08,
0x213f, 0x132a, 0xadfc, 0x5ba8,
0x19a9, 0x2efe, 0xb5cc, 0x6f88,
};
static const u16 x8_vectors[] = {
0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
unsigned v_dim)
{
unsigned int i, err_sym;
for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
u16 s = syndrome;
unsigned v_idx = err_sym * v_dim;
unsigned v_end = (err_sym + 1) * v_dim;
/* walk over all 16 bits of the syndrome */
for (i = 1; i < (1U << 16); i <<= 1) {
/* if bit is set in that eigenvector... */
if (v_idx < v_end && vectors[v_idx] & i) {
u16 ev_comp = vectors[v_idx++];
/* ... and bit set in the modified syndrome, */
if (s & i) {
/* remove it. */
s ^= ev_comp;
if (!s)
return err_sym;
}
} else if (s & i)
/* can't get to zero, move to next symbol */
break;
}
}
edac_dbg(0, "syndrome(%x) not found\n", syndrome);
return -1;
}
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
if (sym_size == 4)
switch (err_sym) {
case 0x20:
case 0x21:
return 0;
break;
case 0x22:
case 0x23:
return 1;
break;
default:
return err_sym >> 4;
break;
}
/* x8 symbols */
else
switch (err_sym) {
/* imaginary bits not in a DIMM */
case 0x10:
WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
err_sym);
return -1;
break;
case 0x11:
return 0;
break;
case 0x12:
return 1;
break;
default:
return err_sym >> 3;
break;
}
return -1;
}
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
struct amd64_pvt *pvt = mci->pvt_info;
int err_sym = -1;
if (pvt->ecc_sym_sz == 8)
err_sym = decode_syndrome(syndrome, x8_vectors,
ARRAY_SIZE(x8_vectors),
pvt->ecc_sym_sz);
else if (pvt->ecc_sym_sz == 4)
err_sym = decode_syndrome(syndrome, x4_vectors,
ARRAY_SIZE(x4_vectors),
pvt->ecc_sym_sz);
else {
amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
return err_sym;
}
return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
}
static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
u8 ecc_type)
{
enum hw_event_mc_err_type err_type;
const char *string;
if (ecc_type == 2)
err_type = HW_EVENT_ERR_CORRECTED;
else if (ecc_type == 1)
err_type = HW_EVENT_ERR_UNCORRECTED;
else if (ecc_type == 3)
err_type = HW_EVENT_ERR_DEFERRED;
else {
WARN(1, "Something is rotten in the state of Denmark.\n");
return;
}
switch (err->err_code) {
case DECODE_OK:
string = "";
break;
case ERR_NODE:
string = "Failed to map error addr to a node";
break;
case ERR_CSROW:
string = "Failed to map error addr to a csrow";
break;
case ERR_CHANNEL:
string = "Unknown syndrome - possible error reporting race";
break;
case ERR_SYND:
string = "MCA_SYND not valid - unknown syndrome and csrow";
break;
case ERR_NORM_ADDR:
string = "Cannot decode normalized address";
break;
default:
string = "WTF error";
break;
}
edac_mc_handle_error(err_type, mci, 1,
err->page, err->offset, err->syndrome,
err->csrow, err->channel, -1,
string, "");
}
static inline void decode_bus_error(int node_id, struct mce *m)
{
struct mem_ctl_info *mci;
struct amd64_pvt *pvt;
u8 ecc_type = (m->status >> 45) & 0x3;
u8 xec = XEC(m->status, 0x1f);
u16 ec = EC(m->status);
u64 sys_addr;
struct err_info err;
mci = edac_mc_find(node_id);
if (!mci)
return;
pvt = mci->pvt_info;
/* Bail out early if this was an 'observed' error */
if (PP(ec) == NBSL_PP_OBS)
return;
/* Do only ECC errors */
if (xec && xec != F10_NBSL_EXT_ERR_ECC)
return;
memset(&err, 0, sizeof(err));
sys_addr = get_error_address(pvt, m);
if (ecc_type == 2)
err.syndrome = extract_syndrome(m->status);
pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
__log_ecc_error(mci, &err, ecc_type);
}
/*
* To find the UMC channel represented by this bank we need to match on its
* instance_id. The instance_id of a bank is held in the lower 32 bits of its
* IPID.
*
* Currently, we can derive the channel number by looking at the 6th nibble in
* the instance_id. For example, instance_id=0xYXXXXX where Y is the channel
* number.
*/
static int find_umc_channel(struct mce *m)
{
return (m->ipid & GENMASK(31, 0)) >> 20;
}
static void decode_umc_error(int node_id, struct mce *m)
{
u8 ecc_type = (m->status >> 45) & 0x3;
struct mem_ctl_info *mci;
struct amd64_pvt *pvt;
struct err_info err;
u64 sys_addr;
mci = edac_mc_find(node_id);
if (!mci)
return;
pvt = mci->pvt_info;
memset(&err, 0, sizeof(err));
if (m->status & MCI_STATUS_DEFERRED)
ecc_type = 3;
err.channel = find_umc_channel(m);
if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
err.err_code = ERR_NORM_ADDR;
goto log_error;
}
error_address_to_page_and_offset(sys_addr, &err);
if (!(m->status & MCI_STATUS_SYNDV)) {
err.err_code = ERR_SYND;
goto log_error;
}
if (ecc_type == 2) {
u8 length = (m->synd >> 18) & 0x3f;
if (length)
err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
else
err.err_code = ERR_CHANNEL;
}
err.csrow = m->synd & 0x7;
log_error:
__log_ecc_error(mci, &err, ecc_type);
}
/*
* Use pvt->F3 which contains the F3 CPU PCI device to get the related
* F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
* Reserve F0 and F6 on systems with a UMC.
*/
static int
reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
{
if (pvt->umc) {
pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
if (!pvt->F0) {
amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1);
return -ENODEV;
}
pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
if (!pvt->F6) {
pci_dev_put(pvt->F0);
pvt->F0 = NULL;
amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2);
return -ENODEV;
}
edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));
return 0;
}
/* Reserve the ADDRESS MAP Device */
pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
if (!pvt->F1) {
amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1);
return -ENODEV;
}
/* Reserve the DCT Device */
pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
if (!pvt->F2) {
pci_dev_put(pvt->F1);
pvt->F1 = NULL;
amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2);
return -ENODEV;
}
edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
return 0;
}
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
{
if (pvt->umc) {
pci_dev_put(pvt->F0);
pci_dev_put(pvt->F6);
} else {
pci_dev_put(pvt->F1);
pci_dev_put(pvt->F2);
}
}
static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
{
pvt->ecc_sym_sz = 4;
if (pvt->umc) {
u8 i;
for_each_umc(i) {
/* Check enabled channels only: */
if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
if (pvt->umc[i].ecc_ctrl & BIT(9)) {
pvt->ecc_sym_sz = 16;
return;
} else if (pvt->umc[i].ecc_ctrl & BIT(7)) {
pvt->ecc_sym_sz = 8;
return;
}
}
}
} else if (pvt->fam >= 0x10) {
u32 tmp;
amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
/* F16h has only DCT0, so no need to read dbam1. */
if (pvt->fam != 0x16)
amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
/* F10h, revD and later can do x8 ECC too. */
if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
pvt->ecc_sym_sz = 8;
}
}
/*
* Retrieve the hardware registers of the memory controller.
*/
static void __read_mc_regs_df(struct amd64_pvt *pvt)
{
u8 nid = pvt->mc_node_id;
struct amd64_umc *umc;
u32 i, umc_base;
/* Read registers from each UMC */
for_each_umc(i) {
umc_base = get_umc_base(i);
umc = &pvt->umc[i];
amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
}
}
/*
* Retrieve the hardware registers of the memory controller (this includes the
* 'Address Map' and 'Misc' device regs)
*/
static void read_mc_regs(struct amd64_pvt *pvt)
{
unsigned int range;
u64 msr_val;
/*
* Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
* those are Read-As-Zero.
*/
rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
/* Check first whether TOP_MEM2 is enabled: */
rdmsrl(MSR_K8_SYSCFG, msr_val);
if (msr_val & BIT(21)) {
rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
} else {
edac_dbg(0, " TOP_MEM2 disabled\n");
}
if (pvt->umc) {
__read_mc_regs_df(pvt);
amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);
goto skip;
}
amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
read_dram_ctl_register(pvt);
for (range = 0; range < DRAM_RANGES; range++) {
u8 rw;
/* read settings for this DRAM range */
read_dram_base_limit_regs(pvt, range);
rw = dram_rw(pvt, range);
if (!rw)
continue;
edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
range,
get_dram_base(pvt, range),
get_dram_limit(pvt, range));
edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
(rw & 0x1) ? "R" : "-",
(rw & 0x2) ? "W" : "-",
dram_intlv_sel(pvt, range),
dram_dst_node(pvt, range));
}
amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
if (!dct_ganging_enabled(pvt)) {
amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
}
skip:
read_dct_base_mask(pvt);
determine_memory_type(pvt);
edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
determine_ecc_sym_sz(pvt);
dump_misc_regs(pvt);
}
/*
* NOTE: CPU Revision Dependent code
*
* Input:
* @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
* k8 private pointer to -->
* DRAM Bank Address mapping register
* node_id
* DCL register where dual_channel_active is
*
* The DBAM register consists of 4 sets of 4 bits each definitions:
*
* Bits: CSROWs
* 0-3 CSROWs 0 and 1
* 4-7 CSROWs 2 and 3
* 8-11 CSROWs 4 and 5
* 12-15 CSROWs 6 and 7
*
* Values range from: 0 to 15
* The meaning of the values depends on CPU revision and dual-channel state,
* see relevant BKDG more info.
*
* The memory controller provides for total of only 8 CSROWs in its current
* architecture. Each "pair" of CSROWs normally represents just one DIMM in
* single channel or two (2) DIMMs in dual channel mode.
*
* The following code logic collapses the various tables for CSROW based on CPU
* revision.
*
* Returns:
* The number of PAGE_SIZE pages on the specified CSROW number it
* encompasses
*
*/
static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig)
{
u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
int csrow_nr = csrow_nr_orig;
u32 cs_mode, nr_pages;
if (!pvt->umc)
csrow_nr >>= 1;
cs_mode = DBAM_DIMM(csrow_nr, dbam);
nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr);
nr_pages <<= 20 - PAGE_SHIFT;
edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
csrow_nr_orig, dct, cs_mode);
edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
return nr_pages;
}
/*
* Initialize the array of csrow attribute instances, based on the values
* from pci config hardware registers.
*/
static int init_csrows(struct mem_ctl_info *mci)
{
struct amd64_pvt *pvt = mci->pvt_info;
enum edac_type edac_mode = EDAC_NONE;
struct csrow_info *csrow;
struct dimm_info *dimm;
int i, j, empty = 1;
int nr_pages = 0;
u32 val;
if (!pvt->umc) {
amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
pvt->nbcfg = val;
edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
pvt->mc_node_id, val,
!!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
}
/*
* We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
*/
for_each_chip_select(i, 0, pvt) {
bool row_dct0 = !!csrow_enabled(i, 0, pvt);
bool row_dct1 = false;
if (pvt->fam != 0xf)
row_dct1 = !!csrow_enabled(i, 1, pvt);
if (!row_dct0 && !row_dct1)
continue;
csrow = mci->csrows[i];
empty = 0;
edac_dbg(1, "MC node: %d, csrow: %d\n",
pvt->mc_node_id, i);
if (row_dct0) {
nr_pages = get_csrow_nr_pages(pvt, 0, i);
csrow->channels[0]->dimm->nr_pages = nr_pages;
}
/* K8 has only one DCT */
if (pvt->fam != 0xf && row_dct1) {
int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
nr_pages += row_dct1_pages;
}
edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
/* Determine DIMM ECC mode: */
if (pvt->umc) {
if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED)
edac_mode = EDAC_S4ECD4ED;
else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED)
edac_mode = EDAC_SECDED;
} else if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
? EDAC_S4ECD4ED
: EDAC_SECDED;
}
for (j = 0; j < pvt->channel_count; j++) {
dimm = csrow->channels[j]->dimm;
dimm->mtype = pvt->dram_type;
dimm->edac_mode = edac_mode;
}
}
return empty;
}
/* get all cores on this DCT */
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
{
int cpu;
for_each_online_cpu(cpu)
if (amd_get_nb_id(cpu) == nid)
cpumask_set_cpu(cpu, mask);
}
/* check MCG_CTL on all the cpus on this node */
static bool nb_mce_bank_enabled_on_node(u16 nid)
{
cpumask_var_t mask;
int cpu, nbe;
bool ret = false;
if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
amd64_warn("%s: Error allocating mask\n", __func__);
return false;
}
get_cpus_on_this_dct_cpumask(mask, nid);
rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
for_each_cpu(cpu, mask) {
struct msr *reg = per_cpu_ptr(msrs, cpu);
nbe = reg->l & MSR_MCGCTL_NBE;
edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
cpu, reg->q,
(nbe ? "enabled" : "disabled"));
if (!nbe)
goto out;
}
ret = true;
out:
free_cpumask_var(mask);
return ret;
}
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
{
cpumask_var_t cmask;
int cpu;
if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
amd64_warn("%s: error allocating mask\n", __func__);
return -ENOMEM;
}
get_cpus_on_this_dct_cpumask(cmask, nid);
rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
for_each_cpu(cpu, cmask) {
struct msr *reg = per_cpu_ptr(msrs, cpu);
if (on) {
if (reg->l & MSR_MCGCTL_NBE)
s->flags.nb_mce_enable = 1;
reg->l |= MSR_MCGCTL_NBE;
} else {
/*
* Turn off NB MCE reporting only when it was off before
*/
if (!s->flags.nb_mce_enable)
reg->l &= ~MSR_MCGCTL_NBE;
}
}
wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
free_cpumask_var(cmask);
return 0;
}
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
struct pci_dev *F3)
{
bool ret = true;
u32 value, mask = 0x3; /* UECC/CECC enable */
if (toggle_ecc_err_reporting(s, nid, ON)) {
amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
return false;
}
amd64_read_pci_cfg(F3, NBCTL, &value);
s->old_nbctl = value & mask;
s->nbctl_valid = true;
value |= mask;
amd64_write_pci_cfg(F3, NBCTL, value);
amd64_read_pci_cfg(F3, NBCFG, &value);
edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
nid, value, !!(value & NBCFG_ECC_ENABLE));
if (!(value & NBCFG_ECC_ENABLE)) {
amd64_warn("DRAM ECC disabled on this node, enabling...\n");
s->flags.nb_ecc_prev = 0;
/* Attempt to turn on DRAM ECC Enable */
value |= NBCFG_ECC_ENABLE;
amd64_write_pci_cfg(F3, NBCFG, value);
amd64_read_pci_cfg(F3, NBCFG, &value);
if (!(value & NBCFG_ECC_ENABLE)) {
amd64_warn("Hardware rejected DRAM ECC enable,"
"check memory DIMM configuration.\n");
ret = false;
} else {
amd64_info("Hardware accepted DRAM ECC Enable\n");
}
} else {
s->flags.nb_ecc_prev = 1;
}
edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
nid, value, !!(value & NBCFG_ECC_ENABLE));
return ret;
}
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
struct pci_dev *F3)
{
u32 value, mask = 0x3; /* UECC/CECC enable */
if (!s->nbctl_valid)
return;
amd64_read_pci_cfg(F3, NBCTL, &value);
value &= ~mask;
value |= s->old_nbctl;
amd64_write_pci_cfg(F3, NBCTL, value);
/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
if (!s->flags.nb_ecc_prev) {
amd64_read_pci_cfg(F3, NBCFG, &value);
value &= ~NBCFG_ECC_ENABLE;
amd64_write_pci_cfg(F3, NBCFG, value);
}
/* restore the NB Enable MCGCTL bit */
if (toggle_ecc_err_reporting(s, nid, OFF))
amd64_warn("Error restoring NB MCGCTL settings!\n");
}
/*
* EDAC requires that the BIOS have ECC enabled before
* taking over the processing of ECC errors. A command line
* option allows to force-enable hardware ECC later in
* enable_ecc_error_reporting().
*/
static const char *ecc_msg =
"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
" Either enable ECC checking or force module loading by setting "
"'ecc_enable_override'.\n"
" (Note that use of the override may cause unknown side effects.)\n";
static bool ecc_enabled(struct pci_dev *F3, u16 nid)
{
bool nb_mce_en = false;
u8 ecc_en = 0, i;
u32 value;
if (boot_cpu_data.x86 >= 0x17) {
u8 umc_en_mask = 0, ecc_en_mask = 0;
for_each_umc(i) {
u32 base = get_umc_base(i);
/* Only check enabled UMCs. */
if (amd_smn_read(nid, base + UMCCH_SDP_CTRL, &value))
continue;
if (!(value & UMC_SDP_INIT))
continue;
umc_en_mask |= BIT(i);
if (amd_smn_read(nid, base + UMCCH_UMC_CAP_HI, &value))
continue;
if (value & UMC_ECC_ENABLED)
ecc_en_mask |= BIT(i);
}
/* Check whether at least one UMC is enabled: */
if (umc_en_mask)
ecc_en = umc_en_mask == ecc_en_mask;
else
edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
/* Assume UMC MCA banks are enabled. */
nb_mce_en = true;
} else {
amd64_read_pci_cfg(F3, NBCFG, &value);
ecc_en = !!(value & NBCFG_ECC_ENABLE);
nb_mce_en = nb_mce_bank_enabled_on_node(nid);
if (!nb_mce_en)
edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
MSR_IA32_MCG_CTL, nid);
}
amd64_info("Node %d: DRAM ECC %s.\n",
nid, (ecc_en ? "enabled" : "disabled"));
if (!ecc_en || !nb_mce_en) {
amd64_info("%s", ecc_msg);
return false;
}
return true;
}
static inline void
f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
{
u8 i, ecc_en = 1, cpk_en = 1;
for_each_umc(i) {
if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
}
}
/* Set chipkill only if ECC is enabled: */
if (ecc_en) {
mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
if (cpk_en)
mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
}
}
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
struct amd64_family_type *fam)
{
struct amd64_pvt *pvt = mci->pvt_info;
mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
mci->edac_ctl_cap = EDAC_FLAG_NONE;
if (pvt->umc) {
f17h_determine_edac_ctl_cap(mci, pvt);
} else {
if (pvt->nbcap & NBCAP_SECDED)
mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
if (pvt->nbcap & NBCAP_CHIPKILL)
mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
}
mci->edac_cap = determine_edac_cap(pvt);
mci->mod_name = EDAC_MOD_STR;
mci->ctl_name = fam->ctl_name;
mci->dev_name = pci_name(pvt->F3);
mci->ctl_page_to_phys = NULL;
/* memory scrubber interface */
mci->set_sdram_scrub_rate = set_scrub_rate;
mci->get_sdram_scrub_rate = get_scrub_rate;
}
/*
* returns a pointer to the family descriptor on success, NULL otherwise.
*/
static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
{
struct amd64_family_type *fam_type = NULL;
pvt->ext_model = boot_cpu_data.x86_model >> 4;
pvt->stepping = boot_cpu_data.x86_stepping;
pvt->model = boot_cpu_data.x86_model;
pvt->fam = boot_cpu_data.x86;
switch (pvt->fam) {
case 0xf:
fam_type = &family_types[K8_CPUS];
pvt->ops = &family_types[K8_CPUS].ops;
break;
case 0x10:
fam_type = &family_types[F10_CPUS];
pvt->ops = &family_types[F10_CPUS].ops;
break;
case 0x15:
if (pvt->model == 0x30) {
fam_type = &family_types[F15_M30H_CPUS];
pvt->ops = &family_types[F15_M30H_CPUS].ops;
break;
} else if (pvt->model == 0x60) {
fam_type = &family_types[F15_M60H_CPUS];
pvt->ops = &family_types[F15_M60H_CPUS].ops;
break;
}
fam_type = &family_types[F15_CPUS];
pvt->ops = &family_types[F15_CPUS].ops;
break;
case 0x16:
if (pvt->model == 0x30) {
fam_type = &family_types[F16_M30H_CPUS];
pvt->ops = &family_types[F16_M30H_CPUS].ops;
break;
}
fam_type = &family_types[F16_CPUS];
pvt->ops = &family_types[F16_CPUS].ops;
break;
case 0x17:
if (pvt->model >= 0x10 && pvt->model <= 0x2f) {
fam_type = &family_types[F17_M10H_CPUS];
pvt->ops = &family_types[F17_M10H_CPUS].ops;
break;
} else if (pvt->model >= 0x30 && pvt->model <= 0x3f) {
fam_type = &family_types[F17_M30H_CPUS];
pvt->ops = &family_types[F17_M30H_CPUS].ops;
break;
}
/* fall through */
case 0x18:
fam_type = &family_types[F17_CPUS];
pvt->ops = &family_types[F17_CPUS].ops;
if (pvt->fam == 0x18)
family_types[F17_CPUS].ctl_name = "F18h";
break;
default:
amd64_err("Unsupported family!\n");
return NULL;
}
amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
(pvt->fam == 0xf ?
(pvt->ext_model >= K8_REV_F ? "revF or later "
: "revE or earlier ")
: ""), pvt->mc_node_id);
return fam_type;
}
static const struct attribute_group *amd64_edac_attr_groups[] = {
#ifdef CONFIG_EDAC_DEBUG
&amd64_edac_dbg_group,
#endif
#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
&amd64_edac_inj_group,
#endif
NULL
};
/* Set the number of Unified Memory Controllers in the system. */
static void compute_num_umcs(void)
{
u8 model = boot_cpu_data.x86_model;
if (boot_cpu_data.x86 < 0x17)
return;
if (model >= 0x30 && model <= 0x3f)
num_umcs = 8;
else
num_umcs = 2;
edac_dbg(1, "Number of UMCs: %x", num_umcs);
}
static int init_one_instance(unsigned int nid)
{
struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
struct amd64_family_type *fam_type = NULL;
struct mem_ctl_info *mci = NULL;
struct edac_mc_layer layers[2];
struct amd64_pvt *pvt = NULL;
u16 pci_id1, pci_id2;
int err = 0, ret;
ret = -ENOMEM;
pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
if (!pvt)
goto err_ret;
pvt->mc_node_id = nid;
pvt->F3 = F3;
ret = -EINVAL;
fam_type = per_family_init(pvt);
if (!fam_type)
goto err_free;
if (pvt->fam >= 0x17) {
pvt->umc = kcalloc(num_umcs, sizeof(struct amd64_umc), GFP_KERNEL);
if (!pvt->umc) {
ret = -ENOMEM;
goto err_free;
}
pci_id1 = fam_type->f0_id;
pci_id2 = fam_type->f6_id;
} else {
pci_id1 = fam_type->f1_id;
pci_id2 = fam_type->f2_id;
}
err = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
if (err)
goto err_post_init;
read_mc_regs(pvt);
/*
* We need to determine how many memory channels there are. Then use
* that information for calculating the size of the dynamic instance
* tables in the 'mci' structure.
*/
ret = -EINVAL;
pvt->channel_count = pvt->ops->early_channel_count(pvt);
if (pvt->channel_count < 0)
goto err_siblings;
ret = -ENOMEM;
layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
layers[0].size = pvt->csels[0].b_cnt;
layers[0].is_virt_csrow = true;
layers[1].type = EDAC_MC_LAYER_CHANNEL;
/*
* Always allocate two channels since we can have setups with DIMMs on
* only one channel. Also, this simplifies handling later for the price
* of a couple of KBs tops.
*
* On Fam17h+, the number of controllers may be greater than two. So set
* the size equal to the maximum number of UMCs.
*/
if (pvt->fam >= 0x17)
layers[1].size = num_umcs;
else
layers[1].size = 2;
layers[1].is_virt_csrow = false;
mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
if (!mci)
goto err_siblings;
mci->pvt_info = pvt;
mci->pdev = &pvt->F3->dev;
setup_mci_misc_attrs(mci, fam_type);
if (init_csrows(mci))
mci->edac_cap = EDAC_FLAG_NONE;
ret = -ENODEV;
if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
edac_dbg(1, "failed edac_mc_add_mc()\n");
goto err_add_mc;
}
return 0;
err_add_mc:
edac_mc_free(mci);
err_siblings:
free_mc_sibling_devs(pvt);
err_post_init:
if (pvt->fam >= 0x17)
kfree(pvt->umc);
err_free:
kfree(pvt);
err_ret:
return ret;
}
static int probe_one_instance(unsigned int nid)
{
struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
struct ecc_settings *s;
int ret;
ret = -ENOMEM;
s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
if (!s)
goto err_out;
ecc_stngs[nid] = s;
if (!ecc_enabled(F3, nid)) {
ret = 0;
if (!ecc_enable_override)
goto err_enable;
if (boot_cpu_data.x86 >= 0x17) {
amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
goto err_enable;
} else
amd64_warn("Forcing ECC on!\n");
if (!enable_ecc_error_reporting(s, nid, F3))
goto err_enable;
}
ret = init_one_instance(nid);
if (ret < 0) {
amd64_err("Error probing instance: %d\n", nid);
if (boot_cpu_data.x86 < 0x17)
restore_ecc_error_reporting(s, nid, F3);
goto err_enable;
}
return ret;
err_enable:
kfree(s);
ecc_stngs[nid] = NULL;
err_out:
return ret;
}
static void remove_one_instance(unsigned int nid)
{
struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
struct ecc_settings *s = ecc_stngs[nid];
struct mem_ctl_info *mci;
struct amd64_pvt *pvt;
mci = find_mci_by_dev(&F3->dev);
WARN_ON(!mci);
/* Remove from EDAC CORE tracking list */
mci = edac_mc_del_mc(&F3->dev);
if (!mci)
return;
pvt = mci->pvt_info;
restore_ecc_error_reporting(s, nid, F3);
free_mc_sibling_devs(pvt);
kfree(ecc_stngs[nid]);
ecc_stngs[nid] = NULL;
/* Free the EDAC CORE resources */
mci->pvt_info = NULL;
kfree(pvt);
edac_mc_free(mci);
}
static void setup_pci_device(void)
{
struct mem_ctl_info *mci;
struct amd64_pvt *pvt;
if (pci_ctl)
return;
mci = edac_mc_find(0);
if (!mci)
return;
pvt = mci->pvt_info;
if (pvt->umc)
pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
else
pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
if (!pci_ctl) {
pr_warn("%s(): Unable to create PCI control\n", __func__);
pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
}
}
static const struct x86_cpu_id amd64_cpuids[] = {
{ X86_VENDOR_AMD, 0xF, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
{ X86_VENDOR_AMD, 0x10, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
{ X86_VENDOR_AMD, 0x15, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
{ X86_VENDOR_AMD, 0x16, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
{ X86_VENDOR_AMD, 0x17, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
{ X86_VENDOR_HYGON, 0x18, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
{ }
};
MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);
static int __init amd64_edac_init(void)
{
const char *owner;
int err = -ENODEV;
int i;
owner = edac_get_owner();
if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
return -EBUSY;
if (!x86_match_cpu(amd64_cpuids))
return -ENODEV;
if (amd_cache_northbridges() < 0)
return -ENODEV;
opstate_init();
err = -ENOMEM;
ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL);
if (!ecc_stngs)
goto err_free;
msrs = msrs_alloc();
if (!msrs)
goto err_free;
compute_num_umcs();
for (i = 0; i < amd_nb_num(); i++) {
err = probe_one_instance(i);
if (err) {
/* unwind properly */
while (--i >= 0)
remove_one_instance(i);
goto err_pci;
}
}
if (!edac_has_mcs()) {
err = -ENODEV;
goto err_pci;
}
/* register stuff with EDAC MCE */
if (report_gart_errors)
amd_report_gart_errors(true);
if (boot_cpu_data.x86 >= 0x17)
amd_register_ecc_decoder(decode_umc_error);
else
amd_register_ecc_decoder(decode_bus_error);
setup_pci_device();
#ifdef CONFIG_X86_32
amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
#endif
printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
return 0;
err_pci:
msrs_free(msrs);
msrs = NULL;
err_free:
kfree(ecc_stngs);
ecc_stngs = NULL;
return err;
}
static void __exit amd64_edac_exit(void)
{
int i;
if (pci_ctl)
edac_pci_release_generic_ctl(pci_ctl);
/* unregister from EDAC MCE */
amd_report_gart_errors(false);
if (boot_cpu_data.x86 >= 0x17)
amd_unregister_ecc_decoder(decode_umc_error);
else
amd_unregister_ecc_decoder(decode_bus_error);
for (i = 0; i < amd_nb_num(); i++)
remove_one_instance(i);
kfree(ecc_stngs);
ecc_stngs = NULL;
msrs_free(msrs);
msrs = NULL;
}
module_init(amd64_edac_init);
module_exit(amd64_edac_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
EDAC_AMD64_VERSION);
module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");