mirror of
https://github.com/torvalds/linux.git
synced 2024-11-24 13:11:40 +00:00
8594d9b85c
Since introduced, OOB skb holds an additional reference count with no special reason and caused many issues. Also, kfree_skb() and consume_skb() are used to decrement the count, which is confusing. Let's drop the unnecessary skb_get() in queue_oob() and corresponding kfree_skb(), consume_skb(), and skb_unref(). Now unix_sk(sk)->oob_skb is just a pointer to skb in the receive queue, so special handing is no longer needed in GC. Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Link: https://patch.msgid.link/20240816233921.57800-1-kuniyu@amazon.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
614 lines
15 KiB
C
614 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* NET3: Garbage Collector For AF_UNIX sockets
|
|
*
|
|
* Garbage Collector:
|
|
* Copyright (C) Barak A. Pearlmutter.
|
|
*
|
|
* Chopped about by Alan Cox 22/3/96 to make it fit the AF_UNIX socket problem.
|
|
* If it doesn't work blame me, it worked when Barak sent it.
|
|
*
|
|
* Assumptions:
|
|
*
|
|
* - object w/ a bit
|
|
* - free list
|
|
*
|
|
* Current optimizations:
|
|
*
|
|
* - explicit stack instead of recursion
|
|
* - tail recurse on first born instead of immediate push/pop
|
|
* - we gather the stuff that should not be killed into tree
|
|
* and stack is just a path from root to the current pointer.
|
|
*
|
|
* Future optimizations:
|
|
*
|
|
* - don't just push entire root set; process in place
|
|
*
|
|
* Fixes:
|
|
* Alan Cox 07 Sept 1997 Vmalloc internal stack as needed.
|
|
* Cope with changing max_files.
|
|
* Al Viro 11 Oct 1998
|
|
* Graph may have cycles. That is, we can send the descriptor
|
|
* of foo to bar and vice versa. Current code chokes on that.
|
|
* Fix: move SCM_RIGHTS ones into the separate list and then
|
|
* skb_free() them all instead of doing explicit fput's.
|
|
* Another problem: since fput() may block somebody may
|
|
* create a new unix_socket when we are in the middle of sweep
|
|
* phase. Fix: revert the logic wrt MARKED. Mark everything
|
|
* upon the beginning and unmark non-junk ones.
|
|
*
|
|
* [12 Oct 1998] AAARGH! New code purges all SCM_RIGHTS
|
|
* sent to connect()'ed but still not accept()'ed sockets.
|
|
* Fixed. Old code had slightly different problem here:
|
|
* extra fput() in situation when we passed the descriptor via
|
|
* such socket and closed it (descriptor). That would happen on
|
|
* each unix_gc() until the accept(). Since the struct file in
|
|
* question would go to the free list and might be reused...
|
|
* That might be the reason of random oopses on filp_close()
|
|
* in unrelated processes.
|
|
*
|
|
* AV 28 Feb 1999
|
|
* Kill the explicit allocation of stack. Now we keep the tree
|
|
* with root in dummy + pointer (gc_current) to one of the nodes.
|
|
* Stack is represented as path from gc_current to dummy. Unmark
|
|
* now means "add to tree". Push == "make it a son of gc_current".
|
|
* Pop == "move gc_current to parent". We keep only pointers to
|
|
* parents (->gc_tree).
|
|
* AV 1 Mar 1999
|
|
* Damn. Added missing check for ->dead in listen queues scanning.
|
|
*
|
|
* Miklos Szeredi 25 Jun 2007
|
|
* Reimplement with a cycle collecting algorithm. This should
|
|
* solve several problems with the previous code, like being racy
|
|
* wrt receive and holding up unrelated socket operations.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/socket.h>
|
|
#include <linux/un.h>
|
|
#include <linux/net.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/file.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/wait.h>
|
|
|
|
#include <net/sock.h>
|
|
#include <net/af_unix.h>
|
|
#include <net/scm.h>
|
|
#include <net/tcp_states.h>
|
|
|
|
struct unix_sock *unix_get_socket(struct file *filp)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
|
|
/* Socket ? */
|
|
if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) {
|
|
struct socket *sock = SOCKET_I(inode);
|
|
const struct proto_ops *ops;
|
|
struct sock *sk = sock->sk;
|
|
|
|
ops = READ_ONCE(sock->ops);
|
|
|
|
/* PF_UNIX ? */
|
|
if (sk && ops && ops->family == PF_UNIX)
|
|
return unix_sk(sk);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct unix_vertex *unix_edge_successor(struct unix_edge *edge)
|
|
{
|
|
/* If an embryo socket has a fd,
|
|
* the listener indirectly holds the fd's refcnt.
|
|
*/
|
|
if (edge->successor->listener)
|
|
return unix_sk(edge->successor->listener)->vertex;
|
|
|
|
return edge->successor->vertex;
|
|
}
|
|
|
|
static bool unix_graph_maybe_cyclic;
|
|
static bool unix_graph_grouped;
|
|
|
|
static void unix_update_graph(struct unix_vertex *vertex)
|
|
{
|
|
/* If the receiver socket is not inflight, no cyclic
|
|
* reference could be formed.
|
|
*/
|
|
if (!vertex)
|
|
return;
|
|
|
|
unix_graph_maybe_cyclic = true;
|
|
unix_graph_grouped = false;
|
|
}
|
|
|
|
static LIST_HEAD(unix_unvisited_vertices);
|
|
|
|
enum unix_vertex_index {
|
|
UNIX_VERTEX_INDEX_MARK1,
|
|
UNIX_VERTEX_INDEX_MARK2,
|
|
UNIX_VERTEX_INDEX_START,
|
|
};
|
|
|
|
static unsigned long unix_vertex_unvisited_index = UNIX_VERTEX_INDEX_MARK1;
|
|
|
|
static void unix_add_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
|
|
{
|
|
struct unix_vertex *vertex = edge->predecessor->vertex;
|
|
|
|
if (!vertex) {
|
|
vertex = list_first_entry(&fpl->vertices, typeof(*vertex), entry);
|
|
vertex->index = unix_vertex_unvisited_index;
|
|
vertex->out_degree = 0;
|
|
INIT_LIST_HEAD(&vertex->edges);
|
|
INIT_LIST_HEAD(&vertex->scc_entry);
|
|
|
|
list_move_tail(&vertex->entry, &unix_unvisited_vertices);
|
|
edge->predecessor->vertex = vertex;
|
|
}
|
|
|
|
vertex->out_degree++;
|
|
list_add_tail(&edge->vertex_entry, &vertex->edges);
|
|
|
|
unix_update_graph(unix_edge_successor(edge));
|
|
}
|
|
|
|
static void unix_del_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
|
|
{
|
|
struct unix_vertex *vertex = edge->predecessor->vertex;
|
|
|
|
if (!fpl->dead)
|
|
unix_update_graph(unix_edge_successor(edge));
|
|
|
|
list_del(&edge->vertex_entry);
|
|
vertex->out_degree--;
|
|
|
|
if (!vertex->out_degree) {
|
|
edge->predecessor->vertex = NULL;
|
|
list_move_tail(&vertex->entry, &fpl->vertices);
|
|
}
|
|
}
|
|
|
|
static void unix_free_vertices(struct scm_fp_list *fpl)
|
|
{
|
|
struct unix_vertex *vertex, *next_vertex;
|
|
|
|
list_for_each_entry_safe(vertex, next_vertex, &fpl->vertices, entry) {
|
|
list_del(&vertex->entry);
|
|
kfree(vertex);
|
|
}
|
|
}
|
|
|
|
static DEFINE_SPINLOCK(unix_gc_lock);
|
|
unsigned int unix_tot_inflight;
|
|
|
|
void unix_add_edges(struct scm_fp_list *fpl, struct unix_sock *receiver)
|
|
{
|
|
int i = 0, j = 0;
|
|
|
|
spin_lock(&unix_gc_lock);
|
|
|
|
if (!fpl->count_unix)
|
|
goto out;
|
|
|
|
do {
|
|
struct unix_sock *inflight = unix_get_socket(fpl->fp[j++]);
|
|
struct unix_edge *edge;
|
|
|
|
if (!inflight)
|
|
continue;
|
|
|
|
edge = fpl->edges + i++;
|
|
edge->predecessor = inflight;
|
|
edge->successor = receiver;
|
|
|
|
unix_add_edge(fpl, edge);
|
|
} while (i < fpl->count_unix);
|
|
|
|
receiver->scm_stat.nr_unix_fds += fpl->count_unix;
|
|
WRITE_ONCE(unix_tot_inflight, unix_tot_inflight + fpl->count_unix);
|
|
out:
|
|
WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight + fpl->count);
|
|
|
|
spin_unlock(&unix_gc_lock);
|
|
|
|
fpl->inflight = true;
|
|
|
|
unix_free_vertices(fpl);
|
|
}
|
|
|
|
void unix_del_edges(struct scm_fp_list *fpl)
|
|
{
|
|
struct unix_sock *receiver;
|
|
int i = 0;
|
|
|
|
spin_lock(&unix_gc_lock);
|
|
|
|
if (!fpl->count_unix)
|
|
goto out;
|
|
|
|
do {
|
|
struct unix_edge *edge = fpl->edges + i++;
|
|
|
|
unix_del_edge(fpl, edge);
|
|
} while (i < fpl->count_unix);
|
|
|
|
if (!fpl->dead) {
|
|
receiver = fpl->edges[0].successor;
|
|
receiver->scm_stat.nr_unix_fds -= fpl->count_unix;
|
|
}
|
|
WRITE_ONCE(unix_tot_inflight, unix_tot_inflight - fpl->count_unix);
|
|
out:
|
|
WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight - fpl->count);
|
|
|
|
spin_unlock(&unix_gc_lock);
|
|
|
|
fpl->inflight = false;
|
|
}
|
|
|
|
void unix_update_edges(struct unix_sock *receiver)
|
|
{
|
|
/* nr_unix_fds is only updated under unix_state_lock().
|
|
* If it's 0 here, the embryo socket is not part of the
|
|
* inflight graph, and GC will not see it, so no lock needed.
|
|
*/
|
|
if (!receiver->scm_stat.nr_unix_fds) {
|
|
receiver->listener = NULL;
|
|
} else {
|
|
spin_lock(&unix_gc_lock);
|
|
unix_update_graph(unix_sk(receiver->listener)->vertex);
|
|
receiver->listener = NULL;
|
|
spin_unlock(&unix_gc_lock);
|
|
}
|
|
}
|
|
|
|
int unix_prepare_fpl(struct scm_fp_list *fpl)
|
|
{
|
|
struct unix_vertex *vertex;
|
|
int i;
|
|
|
|
if (!fpl->count_unix)
|
|
return 0;
|
|
|
|
for (i = 0; i < fpl->count_unix; i++) {
|
|
vertex = kmalloc(sizeof(*vertex), GFP_KERNEL);
|
|
if (!vertex)
|
|
goto err;
|
|
|
|
list_add(&vertex->entry, &fpl->vertices);
|
|
}
|
|
|
|
fpl->edges = kvmalloc_array(fpl->count_unix, sizeof(*fpl->edges),
|
|
GFP_KERNEL_ACCOUNT);
|
|
if (!fpl->edges)
|
|
goto err;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
unix_free_vertices(fpl);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void unix_destroy_fpl(struct scm_fp_list *fpl)
|
|
{
|
|
if (fpl->inflight)
|
|
unix_del_edges(fpl);
|
|
|
|
kvfree(fpl->edges);
|
|
unix_free_vertices(fpl);
|
|
}
|
|
|
|
static bool unix_vertex_dead(struct unix_vertex *vertex)
|
|
{
|
|
struct unix_edge *edge;
|
|
struct unix_sock *u;
|
|
long total_ref;
|
|
|
|
list_for_each_entry(edge, &vertex->edges, vertex_entry) {
|
|
struct unix_vertex *next_vertex = unix_edge_successor(edge);
|
|
|
|
/* The vertex's fd can be received by a non-inflight socket. */
|
|
if (!next_vertex)
|
|
return false;
|
|
|
|
/* The vertex's fd can be received by an inflight socket in
|
|
* another SCC.
|
|
*/
|
|
if (next_vertex->scc_index != vertex->scc_index)
|
|
return false;
|
|
}
|
|
|
|
/* No receiver exists out of the same SCC. */
|
|
|
|
edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry);
|
|
u = edge->predecessor;
|
|
total_ref = file_count(u->sk.sk_socket->file);
|
|
|
|
/* If not close()d, total_ref > out_degree. */
|
|
if (total_ref != vertex->out_degree)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void unix_collect_skb(struct list_head *scc, struct sk_buff_head *hitlist)
|
|
{
|
|
struct unix_vertex *vertex;
|
|
|
|
list_for_each_entry_reverse(vertex, scc, scc_entry) {
|
|
struct sk_buff_head *queue;
|
|
struct unix_edge *edge;
|
|
struct unix_sock *u;
|
|
|
|
edge = list_first_entry(&vertex->edges, typeof(*edge), vertex_entry);
|
|
u = edge->predecessor;
|
|
queue = &u->sk.sk_receive_queue;
|
|
|
|
spin_lock(&queue->lock);
|
|
|
|
if (u->sk.sk_state == TCP_LISTEN) {
|
|
struct sk_buff *skb;
|
|
|
|
skb_queue_walk(queue, skb) {
|
|
struct sk_buff_head *embryo_queue = &skb->sk->sk_receive_queue;
|
|
|
|
spin_lock(&embryo_queue->lock);
|
|
skb_queue_splice_init(embryo_queue, hitlist);
|
|
spin_unlock(&embryo_queue->lock);
|
|
}
|
|
} else {
|
|
skb_queue_splice_init(queue, hitlist);
|
|
}
|
|
|
|
spin_unlock(&queue->lock);
|
|
}
|
|
}
|
|
|
|
static bool unix_scc_cyclic(struct list_head *scc)
|
|
{
|
|
struct unix_vertex *vertex;
|
|
struct unix_edge *edge;
|
|
|
|
/* SCC containing multiple vertices ? */
|
|
if (!list_is_singular(scc))
|
|
return true;
|
|
|
|
vertex = list_first_entry(scc, typeof(*vertex), scc_entry);
|
|
|
|
/* Self-reference or a embryo-listener circle ? */
|
|
list_for_each_entry(edge, &vertex->edges, vertex_entry) {
|
|
if (unix_edge_successor(edge) == vertex)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static LIST_HEAD(unix_visited_vertices);
|
|
static unsigned long unix_vertex_grouped_index = UNIX_VERTEX_INDEX_MARK2;
|
|
|
|
static void __unix_walk_scc(struct unix_vertex *vertex, unsigned long *last_index,
|
|
struct sk_buff_head *hitlist)
|
|
{
|
|
LIST_HEAD(vertex_stack);
|
|
struct unix_edge *edge;
|
|
LIST_HEAD(edge_stack);
|
|
|
|
next_vertex:
|
|
/* Push vertex to vertex_stack and mark it as on-stack
|
|
* (index >= UNIX_VERTEX_INDEX_START).
|
|
* The vertex will be popped when finalising SCC later.
|
|
*/
|
|
list_add(&vertex->scc_entry, &vertex_stack);
|
|
|
|
vertex->index = *last_index;
|
|
vertex->scc_index = *last_index;
|
|
(*last_index)++;
|
|
|
|
/* Explore neighbour vertices (receivers of the current vertex's fd). */
|
|
list_for_each_entry(edge, &vertex->edges, vertex_entry) {
|
|
struct unix_vertex *next_vertex = unix_edge_successor(edge);
|
|
|
|
if (!next_vertex)
|
|
continue;
|
|
|
|
if (next_vertex->index == unix_vertex_unvisited_index) {
|
|
/* Iterative deepening depth first search
|
|
*
|
|
* 1. Push a forward edge to edge_stack and set
|
|
* the successor to vertex for the next iteration.
|
|
*/
|
|
list_add(&edge->stack_entry, &edge_stack);
|
|
|
|
vertex = next_vertex;
|
|
goto next_vertex;
|
|
|
|
/* 2. Pop the edge directed to the current vertex
|
|
* and restore the ancestor for backtracking.
|
|
*/
|
|
prev_vertex:
|
|
edge = list_first_entry(&edge_stack, typeof(*edge), stack_entry);
|
|
list_del_init(&edge->stack_entry);
|
|
|
|
next_vertex = vertex;
|
|
vertex = edge->predecessor->vertex;
|
|
|
|
/* If the successor has a smaller scc_index, two vertices
|
|
* are in the same SCC, so propagate the smaller scc_index
|
|
* to skip SCC finalisation.
|
|
*/
|
|
vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index);
|
|
} else if (next_vertex->index != unix_vertex_grouped_index) {
|
|
/* Loop detected by a back/cross edge.
|
|
*
|
|
* The successor is on vertex_stack, so two vertices are in
|
|
* the same SCC. If the successor has a smaller *scc_index*,
|
|
* propagate it to skip SCC finalisation.
|
|
*/
|
|
vertex->scc_index = min(vertex->scc_index, next_vertex->scc_index);
|
|
} else {
|
|
/* The successor was already grouped as another SCC */
|
|
}
|
|
}
|
|
|
|
if (vertex->index == vertex->scc_index) {
|
|
struct unix_vertex *v;
|
|
struct list_head scc;
|
|
bool scc_dead = true;
|
|
|
|
/* SCC finalised.
|
|
*
|
|
* If the scc_index was not updated, all the vertices above on
|
|
* vertex_stack are in the same SCC. Group them using scc_entry.
|
|
*/
|
|
__list_cut_position(&scc, &vertex_stack, &vertex->scc_entry);
|
|
|
|
list_for_each_entry_reverse(v, &scc, scc_entry) {
|
|
/* Don't restart DFS from this vertex in unix_walk_scc(). */
|
|
list_move_tail(&v->entry, &unix_visited_vertices);
|
|
|
|
/* Mark vertex as off-stack. */
|
|
v->index = unix_vertex_grouped_index;
|
|
|
|
if (scc_dead)
|
|
scc_dead = unix_vertex_dead(v);
|
|
}
|
|
|
|
if (scc_dead)
|
|
unix_collect_skb(&scc, hitlist);
|
|
else if (!unix_graph_maybe_cyclic)
|
|
unix_graph_maybe_cyclic = unix_scc_cyclic(&scc);
|
|
|
|
list_del(&scc);
|
|
}
|
|
|
|
/* Need backtracking ? */
|
|
if (!list_empty(&edge_stack))
|
|
goto prev_vertex;
|
|
}
|
|
|
|
static void unix_walk_scc(struct sk_buff_head *hitlist)
|
|
{
|
|
unsigned long last_index = UNIX_VERTEX_INDEX_START;
|
|
|
|
unix_graph_maybe_cyclic = false;
|
|
|
|
/* Visit every vertex exactly once.
|
|
* __unix_walk_scc() moves visited vertices to unix_visited_vertices.
|
|
*/
|
|
while (!list_empty(&unix_unvisited_vertices)) {
|
|
struct unix_vertex *vertex;
|
|
|
|
vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry);
|
|
__unix_walk_scc(vertex, &last_index, hitlist);
|
|
}
|
|
|
|
list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices);
|
|
swap(unix_vertex_unvisited_index, unix_vertex_grouped_index);
|
|
|
|
unix_graph_grouped = true;
|
|
}
|
|
|
|
static void unix_walk_scc_fast(struct sk_buff_head *hitlist)
|
|
{
|
|
unix_graph_maybe_cyclic = false;
|
|
|
|
while (!list_empty(&unix_unvisited_vertices)) {
|
|
struct unix_vertex *vertex;
|
|
struct list_head scc;
|
|
bool scc_dead = true;
|
|
|
|
vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry);
|
|
list_add(&scc, &vertex->scc_entry);
|
|
|
|
list_for_each_entry_reverse(vertex, &scc, scc_entry) {
|
|
list_move_tail(&vertex->entry, &unix_visited_vertices);
|
|
|
|
if (scc_dead)
|
|
scc_dead = unix_vertex_dead(vertex);
|
|
}
|
|
|
|
if (scc_dead)
|
|
unix_collect_skb(&scc, hitlist);
|
|
else if (!unix_graph_maybe_cyclic)
|
|
unix_graph_maybe_cyclic = unix_scc_cyclic(&scc);
|
|
|
|
list_del(&scc);
|
|
}
|
|
|
|
list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices);
|
|
}
|
|
|
|
static bool gc_in_progress;
|
|
|
|
static void __unix_gc(struct work_struct *work)
|
|
{
|
|
struct sk_buff_head hitlist;
|
|
struct sk_buff *skb;
|
|
|
|
spin_lock(&unix_gc_lock);
|
|
|
|
if (!unix_graph_maybe_cyclic) {
|
|
spin_unlock(&unix_gc_lock);
|
|
goto skip_gc;
|
|
}
|
|
|
|
__skb_queue_head_init(&hitlist);
|
|
|
|
if (unix_graph_grouped)
|
|
unix_walk_scc_fast(&hitlist);
|
|
else
|
|
unix_walk_scc(&hitlist);
|
|
|
|
spin_unlock(&unix_gc_lock);
|
|
|
|
skb_queue_walk(&hitlist, skb) {
|
|
if (UNIXCB(skb).fp)
|
|
UNIXCB(skb).fp->dead = true;
|
|
}
|
|
|
|
__skb_queue_purge(&hitlist);
|
|
skip_gc:
|
|
WRITE_ONCE(gc_in_progress, false);
|
|
}
|
|
|
|
static DECLARE_WORK(unix_gc_work, __unix_gc);
|
|
|
|
void unix_gc(void)
|
|
{
|
|
WRITE_ONCE(gc_in_progress, true);
|
|
queue_work(system_unbound_wq, &unix_gc_work);
|
|
}
|
|
|
|
#define UNIX_INFLIGHT_TRIGGER_GC 16000
|
|
#define UNIX_INFLIGHT_SANE_USER (SCM_MAX_FD * 8)
|
|
|
|
void wait_for_unix_gc(struct scm_fp_list *fpl)
|
|
{
|
|
/* If number of inflight sockets is insane,
|
|
* force a garbage collect right now.
|
|
*
|
|
* Paired with the WRITE_ONCE() in unix_inflight(),
|
|
* unix_notinflight(), and __unix_gc().
|
|
*/
|
|
if (READ_ONCE(unix_tot_inflight) > UNIX_INFLIGHT_TRIGGER_GC &&
|
|
!READ_ONCE(gc_in_progress))
|
|
unix_gc();
|
|
|
|
/* Penalise users who want to send AF_UNIX sockets
|
|
* but whose sockets have not been received yet.
|
|
*/
|
|
if (!fpl || !fpl->count_unix ||
|
|
READ_ONCE(fpl->user->unix_inflight) < UNIX_INFLIGHT_SANE_USER)
|
|
return;
|
|
|
|
if (READ_ONCE(gc_in_progress))
|
|
flush_work(&unix_gc_work);
|
|
}
|