mirror of
https://github.com/torvalds/linux.git
synced 2024-11-25 21:51:40 +00:00
b53b831919
With the new __counted_by annotation, the "lli_size" variable needs to
valid for accesses to the "lli" array. This requirement is not met in
stm32_dma3_chan_desc_alloc(), since "lli_size" starts at "0", so "lli"
index "0" will not be considered valid during the initialization for loop.
Fix this by setting lli_size immediately after allocation (similar to
how this is handled in stm32_mdma_alloc_desc() for the node/count
relationship).
Fixes: f561ec8b2b
("dmaengine: Add STM32 DMA3 support")
Signed-off-by: Kees Cook <kees@kernel.org>
Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Link: https://lore.kernel.org/r/20240716213830.work.951-kees@kernel.org
Signed-off-by: Vinod Koul <vkoul@kernel.org>
1848 lines
56 KiB
C
1848 lines
56 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* STM32 DMA3 controller driver
|
|
*
|
|
* Copyright (C) STMicroelectronics 2024
|
|
* Author(s): Amelie Delaunay <amelie.delaunay@foss.st.com>
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/init.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_dma.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/reset.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "../virt-dma.h"
|
|
|
|
#define STM32_DMA3_SECCFGR 0x00
|
|
#define STM32_DMA3_PRIVCFGR 0x04
|
|
#define STM32_DMA3_RCFGLOCKR 0x08
|
|
#define STM32_DMA3_MISR 0x0c
|
|
#define STM32_DMA3_SMISR 0x10
|
|
|
|
#define STM32_DMA3_CLBAR(x) (0x50 + 0x80 * (x))
|
|
#define STM32_DMA3_CCIDCFGR(x) (0x54 + 0x80 * (x))
|
|
#define STM32_DMA3_CSEMCR(x) (0x58 + 0x80 * (x))
|
|
#define STM32_DMA3_CFCR(x) (0x5c + 0x80 * (x))
|
|
#define STM32_DMA3_CSR(x) (0x60 + 0x80 * (x))
|
|
#define STM32_DMA3_CCR(x) (0x64 + 0x80 * (x))
|
|
#define STM32_DMA3_CTR1(x) (0x90 + 0x80 * (x))
|
|
#define STM32_DMA3_CTR2(x) (0x94 + 0x80 * (x))
|
|
#define STM32_DMA3_CBR1(x) (0x98 + 0x80 * (x))
|
|
#define STM32_DMA3_CSAR(x) (0x9c + 0x80 * (x))
|
|
#define STM32_DMA3_CDAR(x) (0xa0 + 0x80 * (x))
|
|
#define STM32_DMA3_CLLR(x) (0xcc + 0x80 * (x))
|
|
|
|
#define STM32_DMA3_HWCFGR13 0xfc0 /* G_PER_CTRL(X) x=8..15 */
|
|
#define STM32_DMA3_HWCFGR12 0xfc4 /* G_PER_CTRL(X) x=0..7 */
|
|
#define STM32_DMA3_HWCFGR4 0xfe4 /* G_FIFO_SIZE(X) x=8..15 */
|
|
#define STM32_DMA3_HWCFGR3 0xfe8 /* G_FIFO_SIZE(X) x=0..7 */
|
|
#define STM32_DMA3_HWCFGR2 0xfec /* G_MAX_REQ_ID */
|
|
#define STM32_DMA3_HWCFGR1 0xff0 /* G_MASTER_PORTS, G_NUM_CHANNELS, G_Mx_DATA_WIDTH */
|
|
#define STM32_DMA3_VERR 0xff4
|
|
|
|
/* SECCFGR DMA secure configuration register */
|
|
#define SECCFGR_SEC(x) BIT(x)
|
|
|
|
/* MISR DMA non-secure/secure masked interrupt status register */
|
|
#define MISR_MIS(x) BIT(x)
|
|
|
|
/* CxLBAR DMA channel x linked_list base address register */
|
|
#define CLBAR_LBA GENMASK(31, 16)
|
|
|
|
/* CxCIDCFGR DMA channel x CID register */
|
|
#define CCIDCFGR_CFEN BIT(0)
|
|
#define CCIDCFGR_SEM_EN BIT(1)
|
|
#define CCIDCFGR_SCID GENMASK(5, 4)
|
|
#define CCIDCFGR_SEM_WLIST_CID0 BIT(16)
|
|
#define CCIDCFGR_SEM_WLIST_CID1 BIT(17)
|
|
#define CCIDCFGR_SEM_WLIST_CID2 BIT(18)
|
|
|
|
enum ccidcfgr_cid {
|
|
CCIDCFGR_CID0,
|
|
CCIDCFGR_CID1,
|
|
CCIDCFGR_CID2,
|
|
};
|
|
|
|
/* CxSEMCR DMA channel x semaphore control register */
|
|
#define CSEMCR_SEM_MUTEX BIT(0)
|
|
#define CSEMCR_SEM_CCID GENMASK(5, 4)
|
|
|
|
/* CxFCR DMA channel x flag clear register */
|
|
#define CFCR_TCF BIT(8)
|
|
#define CFCR_HTF BIT(9)
|
|
#define CFCR_DTEF BIT(10)
|
|
#define CFCR_ULEF BIT(11)
|
|
#define CFCR_USEF BIT(12)
|
|
#define CFCR_SUSPF BIT(13)
|
|
|
|
/* CxSR DMA channel x status register */
|
|
#define CSR_IDLEF BIT(0)
|
|
#define CSR_TCF BIT(8)
|
|
#define CSR_HTF BIT(9)
|
|
#define CSR_DTEF BIT(10)
|
|
#define CSR_ULEF BIT(11)
|
|
#define CSR_USEF BIT(12)
|
|
#define CSR_SUSPF BIT(13)
|
|
#define CSR_ALL_F GENMASK(13, 8)
|
|
#define CSR_FIFOL GENMASK(24, 16)
|
|
|
|
/* CxCR DMA channel x control register */
|
|
#define CCR_EN BIT(0)
|
|
#define CCR_RESET BIT(1)
|
|
#define CCR_SUSP BIT(2)
|
|
#define CCR_TCIE BIT(8)
|
|
#define CCR_HTIE BIT(9)
|
|
#define CCR_DTEIE BIT(10)
|
|
#define CCR_ULEIE BIT(11)
|
|
#define CCR_USEIE BIT(12)
|
|
#define CCR_SUSPIE BIT(13)
|
|
#define CCR_ALLIE GENMASK(13, 8)
|
|
#define CCR_LSM BIT(16)
|
|
#define CCR_LAP BIT(17)
|
|
#define CCR_PRIO GENMASK(23, 22)
|
|
|
|
enum ccr_prio {
|
|
CCR_PRIO_LOW,
|
|
CCR_PRIO_MID,
|
|
CCR_PRIO_HIGH,
|
|
CCR_PRIO_VERY_HIGH,
|
|
};
|
|
|
|
/* CxTR1 DMA channel x transfer register 1 */
|
|
#define CTR1_SINC BIT(3)
|
|
#define CTR1_SBL_1 GENMASK(9, 4)
|
|
#define CTR1_DINC BIT(19)
|
|
#define CTR1_DBL_1 GENMASK(25, 20)
|
|
#define CTR1_SDW_LOG2 GENMASK(1, 0)
|
|
#define CTR1_PAM GENMASK(12, 11)
|
|
#define CTR1_SAP BIT(14)
|
|
#define CTR1_DDW_LOG2 GENMASK(17, 16)
|
|
#define CTR1_DAP BIT(30)
|
|
|
|
enum ctr1_dw {
|
|
CTR1_DW_BYTE,
|
|
CTR1_DW_HWORD,
|
|
CTR1_DW_WORD,
|
|
CTR1_DW_DWORD, /* Depends on HWCFGR1.G_M0_DATA_WIDTH_ENC and .G_M1_DATA_WIDTH_ENC */
|
|
};
|
|
|
|
enum ctr1_pam {
|
|
CTR1_PAM_0S_LT, /* if DDW > SDW, padded with 0s else left-truncated */
|
|
CTR1_PAM_SE_RT, /* if DDW > SDW, sign extended else right-truncated */
|
|
CTR1_PAM_PACK_UNPACK, /* FIFO queued */
|
|
};
|
|
|
|
/* CxTR2 DMA channel x transfer register 2 */
|
|
#define CTR2_REQSEL GENMASK(7, 0)
|
|
#define CTR2_SWREQ BIT(9)
|
|
#define CTR2_DREQ BIT(10)
|
|
#define CTR2_BREQ BIT(11)
|
|
#define CTR2_PFREQ BIT(12)
|
|
#define CTR2_TCEM GENMASK(31, 30)
|
|
|
|
enum ctr2_tcem {
|
|
CTR2_TCEM_BLOCK,
|
|
CTR2_TCEM_REPEAT_BLOCK,
|
|
CTR2_TCEM_LLI,
|
|
CTR2_TCEM_CHANNEL,
|
|
};
|
|
|
|
/* CxBR1 DMA channel x block register 1 */
|
|
#define CBR1_BNDT GENMASK(15, 0)
|
|
|
|
/* CxLLR DMA channel x linked-list address register */
|
|
#define CLLR_LA GENMASK(15, 2)
|
|
#define CLLR_ULL BIT(16)
|
|
#define CLLR_UDA BIT(27)
|
|
#define CLLR_USA BIT(28)
|
|
#define CLLR_UB1 BIT(29)
|
|
#define CLLR_UT2 BIT(30)
|
|
#define CLLR_UT1 BIT(31)
|
|
|
|
/* HWCFGR13 DMA hardware configuration register 13 x=8..15 */
|
|
/* HWCFGR12 DMA hardware configuration register 12 x=0..7 */
|
|
#define G_PER_CTRL(x) (ULL(0x1) << (4 * (x)))
|
|
|
|
/* HWCFGR4 DMA hardware configuration register 4 x=8..15 */
|
|
/* HWCFGR3 DMA hardware configuration register 3 x=0..7 */
|
|
#define G_FIFO_SIZE(x) (ULL(0x7) << (4 * (x)))
|
|
|
|
#define get_chan_hwcfg(x, mask, reg) (((reg) & (mask)) >> (4 * (x)))
|
|
|
|
/* HWCFGR2 DMA hardware configuration register 2 */
|
|
#define G_MAX_REQ_ID GENMASK(7, 0)
|
|
|
|
/* HWCFGR1 DMA hardware configuration register 1 */
|
|
#define G_MASTER_PORTS GENMASK(2, 0)
|
|
#define G_NUM_CHANNELS GENMASK(12, 8)
|
|
#define G_M0_DATA_WIDTH_ENC GENMASK(25, 24)
|
|
#define G_M1_DATA_WIDTH_ENC GENMASK(29, 28)
|
|
|
|
enum stm32_dma3_master_ports {
|
|
AXI64, /* 1x AXI: 64-bit port 0 */
|
|
AHB32, /* 1x AHB: 32-bit port 0 */
|
|
AHB32_AHB32, /* 2x AHB: 32-bit port 0 and 32-bit port 1 */
|
|
AXI64_AHB32, /* 1x AXI 64-bit port 0 and 1x AHB 32-bit port 1 */
|
|
AXI64_AXI64, /* 2x AXI: 64-bit port 0 and 64-bit port 1 */
|
|
AXI128_AHB32, /* 1x AXI 128-bit port 0 and 1x AHB 32-bit port 1 */
|
|
};
|
|
|
|
enum stm32_dma3_port_data_width {
|
|
DW_32, /* 32-bit, for AHB */
|
|
DW_64, /* 64-bit, for AXI */
|
|
DW_128, /* 128-bit, for AXI */
|
|
DW_INVALID,
|
|
};
|
|
|
|
/* VERR DMA version register */
|
|
#define VERR_MINREV GENMASK(3, 0)
|
|
#define VERR_MAJREV GENMASK(7, 4)
|
|
|
|
/* Device tree */
|
|
/* struct stm32_dma3_dt_conf */
|
|
/* .ch_conf */
|
|
#define STM32_DMA3_DT_PRIO GENMASK(1, 0) /* CCR_PRIO */
|
|
#define STM32_DMA3_DT_FIFO GENMASK(7, 4)
|
|
/* .tr_conf */
|
|
#define STM32_DMA3_DT_SINC BIT(0) /* CTR1_SINC */
|
|
#define STM32_DMA3_DT_SAP BIT(1) /* CTR1_SAP */
|
|
#define STM32_DMA3_DT_DINC BIT(4) /* CTR1_DINC */
|
|
#define STM32_DMA3_DT_DAP BIT(5) /* CTR1_DAP */
|
|
#define STM32_DMA3_DT_BREQ BIT(8) /* CTR2_BREQ */
|
|
#define STM32_DMA3_DT_PFREQ BIT(9) /* CTR2_PFREQ */
|
|
#define STM32_DMA3_DT_TCEM GENMASK(13, 12) /* CTR2_TCEM */
|
|
|
|
/* struct stm32_dma3_chan .config_set bitfield */
|
|
#define STM32_DMA3_CFG_SET_DT BIT(0)
|
|
#define STM32_DMA3_CFG_SET_DMA BIT(1)
|
|
#define STM32_DMA3_CFG_SET_BOTH (STM32_DMA3_CFG_SET_DT | STM32_DMA3_CFG_SET_DMA)
|
|
|
|
#define STM32_DMA3_MAX_BLOCK_SIZE ALIGN_DOWN(CBR1_BNDT, 64)
|
|
#define port_is_ahb(maxdw) ({ typeof(maxdw) (_maxdw) = (maxdw); \
|
|
((_maxdw) != DW_INVALID) && ((_maxdw) == DW_32); })
|
|
#define port_is_axi(maxdw) ({ typeof(maxdw) (_maxdw) = (maxdw); \
|
|
((_maxdw) != DW_INVALID) && ((_maxdw) != DW_32); })
|
|
#define get_chan_max_dw(maxdw, maxburst)((port_is_ahb(maxdw) || \
|
|
(maxburst) < DMA_SLAVE_BUSWIDTH_8_BYTES) ? \
|
|
DMA_SLAVE_BUSWIDTH_4_BYTES : DMA_SLAVE_BUSWIDTH_8_BYTES)
|
|
|
|
/* Static linked-list data structure (depends on update bits UT1/UT2/UB1/USA/UDA/ULL) */
|
|
struct stm32_dma3_hwdesc {
|
|
u32 ctr1;
|
|
u32 ctr2;
|
|
u32 cbr1;
|
|
u32 csar;
|
|
u32 cdar;
|
|
u32 cllr;
|
|
} __packed __aligned(32);
|
|
|
|
/*
|
|
* CLLR_LA / sizeof(struct stm32_dma3_hwdesc) represents the number of hdwdesc that can be addressed
|
|
* by the pointer to the next linked-list data structure. The __aligned forces the 32-byte
|
|
* alignment. So use hardcoded 32. Multiplied by the max block size of each item, it represents
|
|
* the sg size limitation.
|
|
*/
|
|
#define STM32_DMA3_MAX_SEG_SIZE ((CLLR_LA / 32) * STM32_DMA3_MAX_BLOCK_SIZE)
|
|
|
|
/*
|
|
* Linked-list items
|
|
*/
|
|
struct stm32_dma3_lli {
|
|
struct stm32_dma3_hwdesc *hwdesc;
|
|
dma_addr_t hwdesc_addr;
|
|
};
|
|
|
|
struct stm32_dma3_swdesc {
|
|
struct virt_dma_desc vdesc;
|
|
u32 ccr;
|
|
bool cyclic;
|
|
u32 lli_size;
|
|
struct stm32_dma3_lli lli[] __counted_by(lli_size);
|
|
};
|
|
|
|
struct stm32_dma3_dt_conf {
|
|
u32 ch_id;
|
|
u32 req_line;
|
|
u32 ch_conf;
|
|
u32 tr_conf;
|
|
};
|
|
|
|
struct stm32_dma3_chan {
|
|
struct virt_dma_chan vchan;
|
|
u32 id;
|
|
int irq;
|
|
u32 fifo_size;
|
|
u32 max_burst;
|
|
bool semaphore_mode;
|
|
struct stm32_dma3_dt_conf dt_config;
|
|
struct dma_slave_config dma_config;
|
|
u8 config_set;
|
|
struct dma_pool *lli_pool;
|
|
struct stm32_dma3_swdesc *swdesc;
|
|
enum ctr2_tcem tcem;
|
|
u32 dma_status;
|
|
};
|
|
|
|
struct stm32_dma3_ddata {
|
|
struct dma_device dma_dev;
|
|
void __iomem *base;
|
|
struct clk *clk;
|
|
struct stm32_dma3_chan *chans;
|
|
u32 dma_channels;
|
|
u32 dma_requests;
|
|
enum stm32_dma3_port_data_width ports_max_dw[2];
|
|
};
|
|
|
|
static inline struct stm32_dma3_ddata *to_stm32_dma3_ddata(struct stm32_dma3_chan *chan)
|
|
{
|
|
return container_of(chan->vchan.chan.device, struct stm32_dma3_ddata, dma_dev);
|
|
}
|
|
|
|
static inline struct stm32_dma3_chan *to_stm32_dma3_chan(struct dma_chan *c)
|
|
{
|
|
return container_of(c, struct stm32_dma3_chan, vchan.chan);
|
|
}
|
|
|
|
static inline struct stm32_dma3_swdesc *to_stm32_dma3_swdesc(struct virt_dma_desc *vdesc)
|
|
{
|
|
return container_of(vdesc, struct stm32_dma3_swdesc, vdesc);
|
|
}
|
|
|
|
static struct device *chan2dev(struct stm32_dma3_chan *chan)
|
|
{
|
|
return &chan->vchan.chan.dev->device;
|
|
}
|
|
|
|
static void stm32_dma3_chan_dump_reg(struct stm32_dma3_chan *chan)
|
|
{
|
|
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
|
|
struct device *dev = chan2dev(chan);
|
|
u32 id = chan->id, offset;
|
|
|
|
offset = STM32_DMA3_SECCFGR;
|
|
dev_dbg(dev, "SECCFGR(0x%03x): %08x\n", offset, readl_relaxed(ddata->base + offset));
|
|
offset = STM32_DMA3_PRIVCFGR;
|
|
dev_dbg(dev, "PRIVCFGR(0x%03x): %08x\n", offset, readl_relaxed(ddata->base + offset));
|
|
offset = STM32_DMA3_CCIDCFGR(id);
|
|
dev_dbg(dev, "C%dCIDCFGR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
|
|
offset = STM32_DMA3_CSEMCR(id);
|
|
dev_dbg(dev, "C%dSEMCR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
|
|
offset = STM32_DMA3_CSR(id);
|
|
dev_dbg(dev, "C%dSR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
|
|
offset = STM32_DMA3_CCR(id);
|
|
dev_dbg(dev, "C%dCR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
|
|
offset = STM32_DMA3_CTR1(id);
|
|
dev_dbg(dev, "C%dTR1(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
|
|
offset = STM32_DMA3_CTR2(id);
|
|
dev_dbg(dev, "C%dTR2(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
|
|
offset = STM32_DMA3_CBR1(id);
|
|
dev_dbg(dev, "C%dBR1(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
|
|
offset = STM32_DMA3_CSAR(id);
|
|
dev_dbg(dev, "C%dSAR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
|
|
offset = STM32_DMA3_CDAR(id);
|
|
dev_dbg(dev, "C%dDAR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
|
|
offset = STM32_DMA3_CLLR(id);
|
|
dev_dbg(dev, "C%dLLR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
|
|
offset = STM32_DMA3_CLBAR(id);
|
|
dev_dbg(dev, "C%dLBAR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
|
|
}
|
|
|
|
static void stm32_dma3_chan_dump_hwdesc(struct stm32_dma3_chan *chan,
|
|
struct stm32_dma3_swdesc *swdesc)
|
|
{
|
|
struct stm32_dma3_hwdesc *hwdesc;
|
|
int i;
|
|
|
|
for (i = 0; i < swdesc->lli_size; i++) {
|
|
hwdesc = swdesc->lli[i].hwdesc;
|
|
if (i)
|
|
dev_dbg(chan2dev(chan), "V\n");
|
|
dev_dbg(chan2dev(chan), "[%d]@%pad\n", i, &swdesc->lli[i].hwdesc_addr);
|
|
dev_dbg(chan2dev(chan), "| C%dTR1: %08x\n", chan->id, hwdesc->ctr1);
|
|
dev_dbg(chan2dev(chan), "| C%dTR2: %08x\n", chan->id, hwdesc->ctr2);
|
|
dev_dbg(chan2dev(chan), "| C%dBR1: %08x\n", chan->id, hwdesc->cbr1);
|
|
dev_dbg(chan2dev(chan), "| C%dSAR: %08x\n", chan->id, hwdesc->csar);
|
|
dev_dbg(chan2dev(chan), "| C%dDAR: %08x\n", chan->id, hwdesc->cdar);
|
|
dev_dbg(chan2dev(chan), "| C%dLLR: %08x\n", chan->id, hwdesc->cllr);
|
|
}
|
|
|
|
if (swdesc->cyclic) {
|
|
dev_dbg(chan2dev(chan), "|\n");
|
|
dev_dbg(chan2dev(chan), "-->[0]@%pad\n", &swdesc->lli[0].hwdesc_addr);
|
|
} else {
|
|
dev_dbg(chan2dev(chan), "X\n");
|
|
}
|
|
}
|
|
|
|
static struct stm32_dma3_swdesc *stm32_dma3_chan_desc_alloc(struct stm32_dma3_chan *chan, u32 count)
|
|
{
|
|
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
|
|
struct stm32_dma3_swdesc *swdesc;
|
|
int i;
|
|
|
|
/*
|
|
* If the memory to be allocated for the number of hwdesc (6 u32 members but 32-bytes
|
|
* aligned) is greater than the maximum address of CLLR_LA, then the last items can't be
|
|
* addressed, so abort the allocation.
|
|
*/
|
|
if ((count * 32) > CLLR_LA) {
|
|
dev_err(chan2dev(chan), "Transfer is too big (> %luB)\n", STM32_DMA3_MAX_SEG_SIZE);
|
|
return NULL;
|
|
}
|
|
|
|
swdesc = kzalloc(struct_size(swdesc, lli, count), GFP_NOWAIT);
|
|
if (!swdesc)
|
|
return NULL;
|
|
swdesc->lli_size = count;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
swdesc->lli[i].hwdesc = dma_pool_zalloc(chan->lli_pool, GFP_NOWAIT,
|
|
&swdesc->lli[i].hwdesc_addr);
|
|
if (!swdesc->lli[i].hwdesc)
|
|
goto err_pool_free;
|
|
}
|
|
swdesc->ccr = 0;
|
|
|
|
/* Set LL base address */
|
|
writel_relaxed(swdesc->lli[0].hwdesc_addr & CLBAR_LBA,
|
|
ddata->base + STM32_DMA3_CLBAR(chan->id));
|
|
|
|
/* Set LL allocated port */
|
|
swdesc->ccr &= ~CCR_LAP;
|
|
|
|
return swdesc;
|
|
|
|
err_pool_free:
|
|
dev_err(chan2dev(chan), "Failed to alloc descriptors\n");
|
|
while (--i >= 0)
|
|
dma_pool_free(chan->lli_pool, swdesc->lli[i].hwdesc, swdesc->lli[i].hwdesc_addr);
|
|
kfree(swdesc);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void stm32_dma3_chan_desc_free(struct stm32_dma3_chan *chan,
|
|
struct stm32_dma3_swdesc *swdesc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < swdesc->lli_size; i++)
|
|
dma_pool_free(chan->lli_pool, swdesc->lli[i].hwdesc, swdesc->lli[i].hwdesc_addr);
|
|
|
|
kfree(swdesc);
|
|
}
|
|
|
|
static void stm32_dma3_chan_vdesc_free(struct virt_dma_desc *vdesc)
|
|
{
|
|
struct stm32_dma3_swdesc *swdesc = to_stm32_dma3_swdesc(vdesc);
|
|
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(vdesc->tx.chan);
|
|
|
|
stm32_dma3_chan_desc_free(chan, swdesc);
|
|
}
|
|
|
|
static void stm32_dma3_check_user_setting(struct stm32_dma3_chan *chan)
|
|
{
|
|
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
|
|
struct device *dev = chan2dev(chan);
|
|
u32 ctr1 = readl_relaxed(ddata->base + STM32_DMA3_CTR1(chan->id));
|
|
u32 cbr1 = readl_relaxed(ddata->base + STM32_DMA3_CBR1(chan->id));
|
|
u32 csar = readl_relaxed(ddata->base + STM32_DMA3_CSAR(chan->id));
|
|
u32 cdar = readl_relaxed(ddata->base + STM32_DMA3_CDAR(chan->id));
|
|
u32 cllr = readl_relaxed(ddata->base + STM32_DMA3_CLLR(chan->id));
|
|
u32 bndt = FIELD_GET(CBR1_BNDT, cbr1);
|
|
u32 sdw = 1 << FIELD_GET(CTR1_SDW_LOG2, ctr1);
|
|
u32 ddw = 1 << FIELD_GET(CTR1_DDW_LOG2, ctr1);
|
|
u32 sap = FIELD_GET(CTR1_SAP, ctr1);
|
|
u32 dap = FIELD_GET(CTR1_DAP, ctr1);
|
|
|
|
if (!bndt && !FIELD_GET(CLLR_UB1, cllr))
|
|
dev_err(dev, "null source block size and no update of this value\n");
|
|
if (bndt % sdw)
|
|
dev_err(dev, "source block size not multiple of src data width\n");
|
|
if (FIELD_GET(CTR1_PAM, ctr1) == CTR1_PAM_PACK_UNPACK && bndt % ddw)
|
|
dev_err(dev, "(un)packing mode w/ src block size not multiple of dst data width\n");
|
|
if (csar % sdw)
|
|
dev_err(dev, "unaligned source address not multiple of src data width\n");
|
|
if (cdar % ddw)
|
|
dev_err(dev, "unaligned destination address not multiple of dst data width\n");
|
|
if (sdw == DMA_SLAVE_BUSWIDTH_8_BYTES && port_is_ahb(ddata->ports_max_dw[sap]))
|
|
dev_err(dev, "double-word source data width not supported on port %u\n", sap);
|
|
if (ddw == DMA_SLAVE_BUSWIDTH_8_BYTES && port_is_ahb(ddata->ports_max_dw[dap]))
|
|
dev_err(dev, "double-word destination data width not supported on port %u\n", dap);
|
|
}
|
|
|
|
static void stm32_dma3_chan_prep_hwdesc(struct stm32_dma3_chan *chan,
|
|
struct stm32_dma3_swdesc *swdesc,
|
|
u32 curr, dma_addr_t src, dma_addr_t dst, u32 len,
|
|
u32 ctr1, u32 ctr2, bool is_last, bool is_cyclic)
|
|
{
|
|
struct stm32_dma3_hwdesc *hwdesc;
|
|
dma_addr_t next_lli;
|
|
u32 next = curr + 1;
|
|
|
|
hwdesc = swdesc->lli[curr].hwdesc;
|
|
hwdesc->ctr1 = ctr1;
|
|
hwdesc->ctr2 = ctr2;
|
|
hwdesc->cbr1 = FIELD_PREP(CBR1_BNDT, len);
|
|
hwdesc->csar = src;
|
|
hwdesc->cdar = dst;
|
|
|
|
if (is_last) {
|
|
if (is_cyclic)
|
|
next_lli = swdesc->lli[0].hwdesc_addr;
|
|
else
|
|
next_lli = 0;
|
|
} else {
|
|
next_lli = swdesc->lli[next].hwdesc_addr;
|
|
}
|
|
|
|
hwdesc->cllr = 0;
|
|
if (next_lli) {
|
|
hwdesc->cllr |= CLLR_UT1 | CLLR_UT2 | CLLR_UB1;
|
|
hwdesc->cllr |= CLLR_USA | CLLR_UDA | CLLR_ULL;
|
|
hwdesc->cllr |= (next_lli & CLLR_LA);
|
|
}
|
|
|
|
/*
|
|
* Make sure to flush the CPU's write buffers so that the descriptors are ready to be read
|
|
* by DMA3. By explicitly using a write memory barrier here, instead of doing it with writel
|
|
* to enable the channel, we avoid an unnecessary barrier in the case where the descriptors
|
|
* are reused (DMA_CTRL_REUSE).
|
|
*/
|
|
if (is_last)
|
|
dma_wmb();
|
|
}
|
|
|
|
static enum dma_slave_buswidth stm32_dma3_get_max_dw(u32 chan_max_burst,
|
|
enum stm32_dma3_port_data_width port_max_dw,
|
|
u32 len, dma_addr_t addr)
|
|
{
|
|
enum dma_slave_buswidth max_dw = get_chan_max_dw(port_max_dw, chan_max_burst);
|
|
|
|
/* len and addr must be a multiple of dw */
|
|
return 1 << __ffs(len | addr | max_dw);
|
|
}
|
|
|
|
static u32 stm32_dma3_get_max_burst(u32 len, enum dma_slave_buswidth dw, u32 chan_max_burst)
|
|
{
|
|
u32 max_burst = chan_max_burst ? chan_max_burst / dw : 1;
|
|
|
|
/* len is a multiple of dw, so if len is < chan_max_burst, shorten burst */
|
|
if (len < chan_max_burst)
|
|
max_burst = len / dw;
|
|
|
|
/*
|
|
* HW doesn't modify the burst if burst size <= half of the fifo size.
|
|
* If len is not a multiple of burst size, last burst is shortened by HW.
|
|
*/
|
|
return max_burst;
|
|
}
|
|
|
|
static int stm32_dma3_chan_prep_hw(struct stm32_dma3_chan *chan, enum dma_transfer_direction dir,
|
|
u32 *ccr, u32 *ctr1, u32 *ctr2,
|
|
dma_addr_t src_addr, dma_addr_t dst_addr, u32 len)
|
|
{
|
|
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
|
|
struct dma_device dma_device = ddata->dma_dev;
|
|
u32 sdw, ddw, sbl_max, dbl_max, tcem, init_dw, init_bl_max;
|
|
u32 _ctr1 = 0, _ctr2 = 0;
|
|
u32 ch_conf = chan->dt_config.ch_conf;
|
|
u32 tr_conf = chan->dt_config.tr_conf;
|
|
u32 sap = FIELD_GET(STM32_DMA3_DT_SAP, tr_conf), sap_max_dw;
|
|
u32 dap = FIELD_GET(STM32_DMA3_DT_DAP, tr_conf), dap_max_dw;
|
|
|
|
dev_dbg(chan2dev(chan), "%s from %pad to %pad\n",
|
|
dmaengine_get_direction_text(dir), &src_addr, &dst_addr);
|
|
|
|
sdw = chan->dma_config.src_addr_width ? : get_chan_max_dw(sap, chan->max_burst);
|
|
ddw = chan->dma_config.dst_addr_width ? : get_chan_max_dw(dap, chan->max_burst);
|
|
sbl_max = chan->dma_config.src_maxburst ? : 1;
|
|
dbl_max = chan->dma_config.dst_maxburst ? : 1;
|
|
|
|
/* Following conditions would raise User Setting Error interrupt */
|
|
if (!(dma_device.src_addr_widths & BIT(sdw)) || !(dma_device.dst_addr_widths & BIT(ddw))) {
|
|
dev_err(chan2dev(chan), "Bus width (src=%u, dst=%u) not supported\n", sdw, ddw);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ddata->ports_max_dw[1] == DW_INVALID && (sap || dap)) {
|
|
dev_err(chan2dev(chan), "Only one master port, port 1 is not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
sap_max_dw = ddata->ports_max_dw[sap];
|
|
dap_max_dw = ddata->ports_max_dw[dap];
|
|
if ((port_is_ahb(sap_max_dw) && sdw == DMA_SLAVE_BUSWIDTH_8_BYTES) ||
|
|
(port_is_ahb(dap_max_dw) && ddw == DMA_SLAVE_BUSWIDTH_8_BYTES)) {
|
|
dev_err(chan2dev(chan),
|
|
"8 bytes buswidth (src=%u, dst=%u) not supported on port (sap=%u, dap=%u\n",
|
|
sdw, ddw, sap, dap);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (FIELD_GET(STM32_DMA3_DT_SINC, tr_conf))
|
|
_ctr1 |= CTR1_SINC;
|
|
if (sap)
|
|
_ctr1 |= CTR1_SAP;
|
|
if (FIELD_GET(STM32_DMA3_DT_DINC, tr_conf))
|
|
_ctr1 |= CTR1_DINC;
|
|
if (dap)
|
|
_ctr1 |= CTR1_DAP;
|
|
|
|
_ctr2 |= FIELD_PREP(CTR2_REQSEL, chan->dt_config.req_line) & ~CTR2_SWREQ;
|
|
if (FIELD_GET(STM32_DMA3_DT_BREQ, tr_conf))
|
|
_ctr2 |= CTR2_BREQ;
|
|
if (dir == DMA_DEV_TO_MEM && FIELD_GET(STM32_DMA3_DT_PFREQ, tr_conf))
|
|
_ctr2 |= CTR2_PFREQ;
|
|
tcem = FIELD_GET(STM32_DMA3_DT_TCEM, tr_conf);
|
|
_ctr2 |= FIELD_PREP(CTR2_TCEM, tcem);
|
|
|
|
/* Store TCEM to know on which event TC flag occurred */
|
|
chan->tcem = tcem;
|
|
/* Store direction for residue computation */
|
|
chan->dma_config.direction = dir;
|
|
|
|
switch (dir) {
|
|
case DMA_MEM_TO_DEV:
|
|
/* Set destination (device) data width and burst */
|
|
ddw = min_t(u32, ddw, stm32_dma3_get_max_dw(chan->max_burst, dap_max_dw,
|
|
len, dst_addr));
|
|
dbl_max = min_t(u32, dbl_max, stm32_dma3_get_max_burst(len, ddw, chan->max_burst));
|
|
|
|
/* Set source (memory) data width and burst */
|
|
sdw = stm32_dma3_get_max_dw(chan->max_burst, sap_max_dw, len, src_addr);
|
|
sbl_max = stm32_dma3_get_max_burst(len, sdw, chan->max_burst);
|
|
|
|
_ctr1 |= FIELD_PREP(CTR1_SDW_LOG2, ilog2(sdw));
|
|
_ctr1 |= FIELD_PREP(CTR1_SBL_1, sbl_max - 1);
|
|
_ctr1 |= FIELD_PREP(CTR1_DDW_LOG2, ilog2(ddw));
|
|
_ctr1 |= FIELD_PREP(CTR1_DBL_1, dbl_max - 1);
|
|
|
|
if (ddw != sdw) {
|
|
_ctr1 |= FIELD_PREP(CTR1_PAM, CTR1_PAM_PACK_UNPACK);
|
|
/* Should never reach this case as ddw is clamped down */
|
|
if (len & (ddw - 1)) {
|
|
dev_err(chan2dev(chan),
|
|
"Packing mode is enabled and len is not multiple of ddw");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* dst = dev */
|
|
_ctr2 |= CTR2_DREQ;
|
|
|
|
break;
|
|
|
|
case DMA_DEV_TO_MEM:
|
|
/* Set source (device) data width and burst */
|
|
sdw = min_t(u32, sdw, stm32_dma3_get_max_dw(chan->max_burst, sap_max_dw,
|
|
len, src_addr));
|
|
sbl_max = min_t(u32, sbl_max, stm32_dma3_get_max_burst(len, sdw, chan->max_burst));
|
|
|
|
/* Set destination (memory) data width and burst */
|
|
ddw = stm32_dma3_get_max_dw(chan->max_burst, dap_max_dw, len, dst_addr);
|
|
dbl_max = stm32_dma3_get_max_burst(len, ddw, chan->max_burst);
|
|
|
|
_ctr1 |= FIELD_PREP(CTR1_SDW_LOG2, ilog2(sdw));
|
|
_ctr1 |= FIELD_PREP(CTR1_SBL_1, sbl_max - 1);
|
|
_ctr1 |= FIELD_PREP(CTR1_DDW_LOG2, ilog2(ddw));
|
|
_ctr1 |= FIELD_PREP(CTR1_DBL_1, dbl_max - 1);
|
|
|
|
if (ddw != sdw) {
|
|
_ctr1 |= FIELD_PREP(CTR1_PAM, CTR1_PAM_PACK_UNPACK);
|
|
/* Should never reach this case as ddw is clamped down */
|
|
if (len & (ddw - 1)) {
|
|
dev_err(chan2dev(chan),
|
|
"Packing mode is enabled and len is not multiple of ddw\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* dst = mem */
|
|
_ctr2 &= ~CTR2_DREQ;
|
|
|
|
break;
|
|
|
|
case DMA_MEM_TO_MEM:
|
|
/* Set source (memory) data width and burst */
|
|
init_dw = sdw;
|
|
init_bl_max = sbl_max;
|
|
sdw = stm32_dma3_get_max_dw(chan->max_burst, sap_max_dw, len, src_addr);
|
|
sbl_max = stm32_dma3_get_max_burst(len, sdw, chan->max_burst);
|
|
if (chan->config_set & STM32_DMA3_CFG_SET_DMA) {
|
|
sdw = min_t(u32, init_dw, sdw);
|
|
sbl_max = min_t(u32, init_bl_max,
|
|
stm32_dma3_get_max_burst(len, sdw, chan->max_burst));
|
|
}
|
|
|
|
/* Set destination (memory) data width and burst */
|
|
init_dw = ddw;
|
|
init_bl_max = dbl_max;
|
|
ddw = stm32_dma3_get_max_dw(chan->max_burst, dap_max_dw, len, dst_addr);
|
|
dbl_max = stm32_dma3_get_max_burst(len, ddw, chan->max_burst);
|
|
if (chan->config_set & STM32_DMA3_CFG_SET_DMA) {
|
|
ddw = min_t(u32, init_dw, ddw);
|
|
dbl_max = min_t(u32, init_bl_max,
|
|
stm32_dma3_get_max_burst(len, ddw, chan->max_burst));
|
|
}
|
|
|
|
_ctr1 |= FIELD_PREP(CTR1_SDW_LOG2, ilog2(sdw));
|
|
_ctr1 |= FIELD_PREP(CTR1_SBL_1, sbl_max - 1);
|
|
_ctr1 |= FIELD_PREP(CTR1_DDW_LOG2, ilog2(ddw));
|
|
_ctr1 |= FIELD_PREP(CTR1_DBL_1, dbl_max - 1);
|
|
|
|
if (ddw != sdw) {
|
|
_ctr1 |= FIELD_PREP(CTR1_PAM, CTR1_PAM_PACK_UNPACK);
|
|
/* Should never reach this case as ddw is clamped down */
|
|
if (len & (ddw - 1)) {
|
|
dev_err(chan2dev(chan),
|
|
"Packing mode is enabled and len is not multiple of ddw");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* CTR2_REQSEL/DREQ/BREQ/PFREQ are ignored with CTR2_SWREQ=1 */
|
|
_ctr2 |= CTR2_SWREQ;
|
|
|
|
break;
|
|
|
|
default:
|
|
dev_err(chan2dev(chan), "Direction %s not supported\n",
|
|
dmaengine_get_direction_text(dir));
|
|
return -EINVAL;
|
|
}
|
|
|
|
*ccr |= FIELD_PREP(CCR_PRIO, FIELD_GET(STM32_DMA3_DT_PRIO, ch_conf));
|
|
*ctr1 = _ctr1;
|
|
*ctr2 = _ctr2;
|
|
|
|
dev_dbg(chan2dev(chan), "%s: sdw=%u bytes sbl=%u beats ddw=%u bytes dbl=%u beats\n",
|
|
__func__, sdw, sbl_max, ddw, dbl_max);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stm32_dma3_chan_start(struct stm32_dma3_chan *chan)
|
|
{
|
|
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
|
|
struct virt_dma_desc *vdesc;
|
|
struct stm32_dma3_hwdesc *hwdesc;
|
|
u32 id = chan->id;
|
|
u32 csr, ccr;
|
|
|
|
vdesc = vchan_next_desc(&chan->vchan);
|
|
if (!vdesc) {
|
|
chan->swdesc = NULL;
|
|
return;
|
|
}
|
|
list_del(&vdesc->node);
|
|
|
|
chan->swdesc = to_stm32_dma3_swdesc(vdesc);
|
|
hwdesc = chan->swdesc->lli[0].hwdesc;
|
|
|
|
stm32_dma3_chan_dump_hwdesc(chan, chan->swdesc);
|
|
|
|
writel_relaxed(chan->swdesc->ccr, ddata->base + STM32_DMA3_CCR(id));
|
|
writel_relaxed(hwdesc->ctr1, ddata->base + STM32_DMA3_CTR1(id));
|
|
writel_relaxed(hwdesc->ctr2, ddata->base + STM32_DMA3_CTR2(id));
|
|
writel_relaxed(hwdesc->cbr1, ddata->base + STM32_DMA3_CBR1(id));
|
|
writel_relaxed(hwdesc->csar, ddata->base + STM32_DMA3_CSAR(id));
|
|
writel_relaxed(hwdesc->cdar, ddata->base + STM32_DMA3_CDAR(id));
|
|
writel_relaxed(hwdesc->cllr, ddata->base + STM32_DMA3_CLLR(id));
|
|
|
|
/* Clear any pending interrupts */
|
|
csr = readl_relaxed(ddata->base + STM32_DMA3_CSR(id));
|
|
if (csr & CSR_ALL_F)
|
|
writel_relaxed(csr, ddata->base + STM32_DMA3_CFCR(id));
|
|
|
|
stm32_dma3_chan_dump_reg(chan);
|
|
|
|
ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(id));
|
|
writel_relaxed(ccr | CCR_EN, ddata->base + STM32_DMA3_CCR(id));
|
|
|
|
chan->dma_status = DMA_IN_PROGRESS;
|
|
|
|
dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
|
|
}
|
|
|
|
static int stm32_dma3_chan_suspend(struct stm32_dma3_chan *chan, bool susp)
|
|
{
|
|
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
|
|
u32 csr, ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)) & ~CCR_EN;
|
|
int ret = 0;
|
|
|
|
if (susp)
|
|
ccr |= CCR_SUSP;
|
|
else
|
|
ccr &= ~CCR_SUSP;
|
|
|
|
writel_relaxed(ccr, ddata->base + STM32_DMA3_CCR(chan->id));
|
|
|
|
if (susp) {
|
|
ret = readl_relaxed_poll_timeout_atomic(ddata->base + STM32_DMA3_CSR(chan->id), csr,
|
|
csr & CSR_SUSPF, 1, 10);
|
|
if (!ret)
|
|
writel_relaxed(CFCR_SUSPF, ddata->base + STM32_DMA3_CFCR(chan->id));
|
|
|
|
stm32_dma3_chan_dump_reg(chan);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void stm32_dma3_chan_reset(struct stm32_dma3_chan *chan)
|
|
{
|
|
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
|
|
u32 ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)) & ~CCR_EN;
|
|
|
|
writel_relaxed(ccr |= CCR_RESET, ddata->base + STM32_DMA3_CCR(chan->id));
|
|
}
|
|
|
|
static int stm32_dma3_chan_get_curr_hwdesc(struct stm32_dma3_swdesc *swdesc, u32 cllr, u32 *residue)
|
|
{
|
|
u32 i, lli_offset, next_lli_offset = cllr & CLLR_LA;
|
|
|
|
/* If cllr is null, it means it is either the last or single item */
|
|
if (!cllr)
|
|
return swdesc->lli_size - 1;
|
|
|
|
/* In cyclic mode, go fast and first check we are not on the last item */
|
|
if (swdesc->cyclic && next_lli_offset == (swdesc->lli[0].hwdesc_addr & CLLR_LA))
|
|
return swdesc->lli_size - 1;
|
|
|
|
/* As transfer is in progress, look backward from the last item */
|
|
for (i = swdesc->lli_size - 1; i > 0; i--) {
|
|
*residue += FIELD_GET(CBR1_BNDT, swdesc->lli[i].hwdesc->cbr1);
|
|
lli_offset = swdesc->lli[i].hwdesc_addr & CLLR_LA;
|
|
if (lli_offset == next_lli_offset)
|
|
return i - 1;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void stm32_dma3_chan_set_residue(struct stm32_dma3_chan *chan,
|
|
struct stm32_dma3_swdesc *swdesc,
|
|
struct dma_tx_state *txstate)
|
|
{
|
|
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
|
|
struct device *dev = chan2dev(chan);
|
|
struct stm32_dma3_hwdesc *hwdesc;
|
|
u32 residue, curr_lli, csr, cdar, cbr1, cllr, bndt, fifol;
|
|
bool pack_unpack;
|
|
int ret;
|
|
|
|
csr = readl_relaxed(ddata->base + STM32_DMA3_CSR(chan->id));
|
|
if (!(csr & CSR_IDLEF) && chan->dma_status != DMA_PAUSED) {
|
|
/* Suspend current transfer to read registers for a snapshot */
|
|
writel_relaxed(swdesc->ccr | CCR_SUSP, ddata->base + STM32_DMA3_CCR(chan->id));
|
|
ret = readl_relaxed_poll_timeout_atomic(ddata->base + STM32_DMA3_CSR(chan->id), csr,
|
|
csr & (CSR_SUSPF | CSR_IDLEF), 1, 10);
|
|
|
|
if (ret || ((csr & CSR_TCF) && (csr & CSR_IDLEF))) {
|
|
writel_relaxed(CFCR_SUSPF, ddata->base + STM32_DMA3_CFCR(chan->id));
|
|
writel_relaxed(swdesc->ccr, ddata->base + STM32_DMA3_CCR(chan->id));
|
|
if (ret)
|
|
dev_err(dev, "Channel suspension timeout, csr=%08x\n", csr);
|
|
}
|
|
}
|
|
|
|
/* If channel is still active (CSR_IDLEF is not set), can't get a reliable residue */
|
|
if (!(csr & CSR_IDLEF))
|
|
dev_warn(dev, "Can't get residue: channel still active, csr=%08x\n", csr);
|
|
|
|
/*
|
|
* If channel is not suspended, but Idle and Transfer Complete are set,
|
|
* linked-list is over, no residue
|
|
*/
|
|
if (!(csr & CSR_SUSPF) && (csr & CSR_TCF) && (csr & CSR_IDLEF))
|
|
return;
|
|
|
|
/* Read registers to have a snapshot */
|
|
cllr = readl_relaxed(ddata->base + STM32_DMA3_CLLR(chan->id));
|
|
cbr1 = readl_relaxed(ddata->base + STM32_DMA3_CBR1(chan->id));
|
|
cdar = readl_relaxed(ddata->base + STM32_DMA3_CDAR(chan->id));
|
|
|
|
/* Resume current transfer */
|
|
if (csr & CSR_SUSPF) {
|
|
writel_relaxed(CFCR_SUSPF, ddata->base + STM32_DMA3_CFCR(chan->id));
|
|
writel_relaxed(swdesc->ccr, ddata->base + STM32_DMA3_CCR(chan->id));
|
|
}
|
|
|
|
/* Add current BNDT */
|
|
bndt = FIELD_GET(CBR1_BNDT, cbr1);
|
|
residue = bndt;
|
|
|
|
/* Get current hwdesc and cumulate residue of pending hwdesc BNDT */
|
|
ret = stm32_dma3_chan_get_curr_hwdesc(swdesc, cllr, &residue);
|
|
if (ret < 0) {
|
|
dev_err(chan2dev(chan), "Can't get residue: current hwdesc not found\n");
|
|
return;
|
|
}
|
|
curr_lli = ret;
|
|
|
|
/* Read current FIFO level - in units of programmed destination data width */
|
|
hwdesc = swdesc->lli[curr_lli].hwdesc;
|
|
fifol = FIELD_GET(CSR_FIFOL, csr) * (1 << FIELD_GET(CTR1_DDW_LOG2, hwdesc->ctr1));
|
|
/* If the FIFO contains as many bytes as its size, it can't contain more */
|
|
if (fifol == (1 << (chan->fifo_size + 1)))
|
|
goto skip_fifol_update;
|
|
|
|
/*
|
|
* In case of PACKING (Destination burst length > Source burst length) or UNPACKING
|
|
* (Source burst length > Destination burst length), bytes could be pending in the FIFO
|
|
* (to be packed up to Destination burst length or unpacked into Destination burst length
|
|
* chunks).
|
|
* BNDT is not reliable, as it reflects the number of bytes read from the source but not the
|
|
* number of bytes written to the destination.
|
|
* FIFOL is also not sufficient, because it reflects the number of available write beats in
|
|
* units of Destination data width but not the bytes not yet packed or unpacked.
|
|
* In case of Destination increment DINC, it is possible to compute the number of bytes in
|
|
* the FIFO:
|
|
* fifol_in_bytes = bytes_read - bytes_written.
|
|
*/
|
|
pack_unpack = !!(FIELD_GET(CTR1_PAM, hwdesc->ctr1) == CTR1_PAM_PACK_UNPACK);
|
|
if (pack_unpack && (hwdesc->ctr1 & CTR1_DINC)) {
|
|
int bytes_read = FIELD_GET(CBR1_BNDT, hwdesc->cbr1) - bndt;
|
|
int bytes_written = cdar - hwdesc->cdar;
|
|
|
|
if (bytes_read > 0)
|
|
fifol = bytes_read - bytes_written;
|
|
}
|
|
|
|
skip_fifol_update:
|
|
if (fifol) {
|
|
dev_dbg(chan2dev(chan), "%u byte(s) in the FIFO\n", fifol);
|
|
dma_set_in_flight_bytes(txstate, fifol);
|
|
/*
|
|
* Residue is already accurate for DMA_MEM_TO_DEV as BNDT reflects data read from
|
|
* the source memory buffer, so just need to add fifol to residue in case of
|
|
* DMA_DEV_TO_MEM transfer because these bytes are not yet written in destination
|
|
* memory buffer.
|
|
*/
|
|
if (chan->dma_config.direction == DMA_DEV_TO_MEM)
|
|
residue += fifol;
|
|
}
|
|
dma_set_residue(txstate, residue);
|
|
}
|
|
|
|
static int stm32_dma3_chan_stop(struct stm32_dma3_chan *chan)
|
|
{
|
|
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
|
|
u32 ccr;
|
|
int ret = 0;
|
|
|
|
chan->dma_status = DMA_COMPLETE;
|
|
|
|
/* Disable interrupts */
|
|
ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id));
|
|
writel_relaxed(ccr & ~(CCR_ALLIE | CCR_EN), ddata->base + STM32_DMA3_CCR(chan->id));
|
|
|
|
if (!(ccr & CCR_SUSP) && (ccr & CCR_EN)) {
|
|
/* Suspend the channel */
|
|
ret = stm32_dma3_chan_suspend(chan, true);
|
|
if (ret)
|
|
dev_warn(chan2dev(chan), "%s: timeout, data might be lost\n", __func__);
|
|
}
|
|
|
|
/*
|
|
* Reset the channel: this causes the reset of the FIFO and the reset of the channel
|
|
* internal state, the reset of CCR_EN and CCR_SUSP bits.
|
|
*/
|
|
stm32_dma3_chan_reset(chan);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void stm32_dma3_chan_complete(struct stm32_dma3_chan *chan)
|
|
{
|
|
if (!chan->swdesc)
|
|
return;
|
|
|
|
vchan_cookie_complete(&chan->swdesc->vdesc);
|
|
chan->swdesc = NULL;
|
|
stm32_dma3_chan_start(chan);
|
|
}
|
|
|
|
static irqreturn_t stm32_dma3_chan_irq(int irq, void *devid)
|
|
{
|
|
struct stm32_dma3_chan *chan = devid;
|
|
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
|
|
u32 misr, csr, ccr;
|
|
|
|
spin_lock(&chan->vchan.lock);
|
|
|
|
misr = readl_relaxed(ddata->base + STM32_DMA3_MISR);
|
|
if (!(misr & MISR_MIS(chan->id))) {
|
|
spin_unlock(&chan->vchan.lock);
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
csr = readl_relaxed(ddata->base + STM32_DMA3_CSR(chan->id));
|
|
ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)) & CCR_ALLIE;
|
|
|
|
if (csr & CSR_TCF && ccr & CCR_TCIE) {
|
|
if (chan->swdesc->cyclic)
|
|
vchan_cyclic_callback(&chan->swdesc->vdesc);
|
|
else
|
|
stm32_dma3_chan_complete(chan);
|
|
}
|
|
|
|
if (csr & CSR_USEF && ccr & CCR_USEIE) {
|
|
dev_err(chan2dev(chan), "User setting error\n");
|
|
chan->dma_status = DMA_ERROR;
|
|
/* CCR.EN automatically cleared by HW */
|
|
stm32_dma3_check_user_setting(chan);
|
|
stm32_dma3_chan_reset(chan);
|
|
}
|
|
|
|
if (csr & CSR_ULEF && ccr & CCR_ULEIE) {
|
|
dev_err(chan2dev(chan), "Update link transfer error\n");
|
|
chan->dma_status = DMA_ERROR;
|
|
/* CCR.EN automatically cleared by HW */
|
|
stm32_dma3_chan_reset(chan);
|
|
}
|
|
|
|
if (csr & CSR_DTEF && ccr & CCR_DTEIE) {
|
|
dev_err(chan2dev(chan), "Data transfer error\n");
|
|
chan->dma_status = DMA_ERROR;
|
|
/* CCR.EN automatically cleared by HW */
|
|
stm32_dma3_chan_reset(chan);
|
|
}
|
|
|
|
/*
|
|
* Half Transfer Interrupt may be disabled but Half Transfer Flag can be set,
|
|
* ensure HTF flag to be cleared, with other flags.
|
|
*/
|
|
csr &= (ccr | CCR_HTIE);
|
|
|
|
if (csr)
|
|
writel_relaxed(csr, ddata->base + STM32_DMA3_CFCR(chan->id));
|
|
|
|
spin_unlock(&chan->vchan.lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int stm32_dma3_alloc_chan_resources(struct dma_chan *c)
|
|
{
|
|
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
|
|
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
|
|
u32 id = chan->id, csemcr, ccid;
|
|
int ret;
|
|
|
|
ret = pm_runtime_resume_and_get(ddata->dma_dev.dev);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Ensure the channel is free */
|
|
if (chan->semaphore_mode &&
|
|
readl_relaxed(ddata->base + STM32_DMA3_CSEMCR(chan->id)) & CSEMCR_SEM_MUTEX) {
|
|
ret = -EBUSY;
|
|
goto err_put_sync;
|
|
}
|
|
|
|
chan->lli_pool = dmam_pool_create(dev_name(&c->dev->device), c->device->dev,
|
|
sizeof(struct stm32_dma3_hwdesc),
|
|
__alignof__(struct stm32_dma3_hwdesc), SZ_64K);
|
|
if (!chan->lli_pool) {
|
|
dev_err(chan2dev(chan), "Failed to create LLI pool\n");
|
|
ret = -ENOMEM;
|
|
goto err_put_sync;
|
|
}
|
|
|
|
/* Take the channel semaphore */
|
|
if (chan->semaphore_mode) {
|
|
writel_relaxed(CSEMCR_SEM_MUTEX, ddata->base + STM32_DMA3_CSEMCR(id));
|
|
csemcr = readl_relaxed(ddata->base + STM32_DMA3_CSEMCR(id));
|
|
ccid = FIELD_GET(CSEMCR_SEM_CCID, csemcr);
|
|
/* Check that the channel is well taken */
|
|
if (ccid != CCIDCFGR_CID1) {
|
|
dev_err(chan2dev(chan), "Not under CID1 control (in-use by CID%d)\n", ccid);
|
|
ret = -EPERM;
|
|
goto err_pool_destroy;
|
|
}
|
|
dev_dbg(chan2dev(chan), "Under CID1 control (semcr=0x%08x)\n", csemcr);
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_pool_destroy:
|
|
dmam_pool_destroy(chan->lli_pool);
|
|
chan->lli_pool = NULL;
|
|
|
|
err_put_sync:
|
|
pm_runtime_put_sync(ddata->dma_dev.dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void stm32_dma3_free_chan_resources(struct dma_chan *c)
|
|
{
|
|
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
|
|
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
|
|
unsigned long flags;
|
|
|
|
/* Ensure channel is in idle state */
|
|
spin_lock_irqsave(&chan->vchan.lock, flags);
|
|
stm32_dma3_chan_stop(chan);
|
|
chan->swdesc = NULL;
|
|
spin_unlock_irqrestore(&chan->vchan.lock, flags);
|
|
|
|
vchan_free_chan_resources(to_virt_chan(c));
|
|
|
|
dmam_pool_destroy(chan->lli_pool);
|
|
chan->lli_pool = NULL;
|
|
|
|
/* Release the channel semaphore */
|
|
if (chan->semaphore_mode)
|
|
writel_relaxed(0, ddata->base + STM32_DMA3_CSEMCR(chan->id));
|
|
|
|
pm_runtime_put_sync(ddata->dma_dev.dev);
|
|
|
|
/* Reset configuration */
|
|
memset(&chan->dt_config, 0, sizeof(chan->dt_config));
|
|
memset(&chan->dma_config, 0, sizeof(chan->dma_config));
|
|
chan->config_set = 0;
|
|
}
|
|
|
|
static void stm32_dma3_init_chan_config_for_memcpy(struct stm32_dma3_chan *chan,
|
|
dma_addr_t dst, dma_addr_t src)
|
|
{
|
|
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
|
|
u32 dw = get_chan_max_dw(ddata->ports_max_dw[0], chan->max_burst); /* port 0 by default */
|
|
u32 burst = chan->max_burst / dw;
|
|
|
|
/* Initialize dt_config if channel not pre-configured through DT */
|
|
if (!(chan->config_set & STM32_DMA3_CFG_SET_DT)) {
|
|
chan->dt_config.ch_conf = FIELD_PREP(STM32_DMA3_DT_PRIO, CCR_PRIO_VERY_HIGH);
|
|
chan->dt_config.ch_conf |= FIELD_PREP(STM32_DMA3_DT_FIFO, chan->fifo_size);
|
|
chan->dt_config.tr_conf = STM32_DMA3_DT_SINC | STM32_DMA3_DT_DINC;
|
|
chan->dt_config.tr_conf |= FIELD_PREP(STM32_DMA3_DT_TCEM, CTR2_TCEM_CHANNEL);
|
|
}
|
|
|
|
/* Initialize dma_config if dmaengine_slave_config() not used */
|
|
if (!(chan->config_set & STM32_DMA3_CFG_SET_DMA)) {
|
|
chan->dma_config.src_addr_width = dw;
|
|
chan->dma_config.dst_addr_width = dw;
|
|
chan->dma_config.src_maxburst = burst;
|
|
chan->dma_config.dst_maxburst = burst;
|
|
chan->dma_config.src_addr = src;
|
|
chan->dma_config.dst_addr = dst;
|
|
}
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *stm32_dma3_prep_dma_memcpy(struct dma_chan *c,
|
|
dma_addr_t dst, dma_addr_t src,
|
|
size_t len, unsigned long flags)
|
|
{
|
|
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
|
|
struct stm32_dma3_swdesc *swdesc;
|
|
size_t next_size, offset;
|
|
u32 count, i, ctr1, ctr2;
|
|
|
|
count = DIV_ROUND_UP(len, STM32_DMA3_MAX_BLOCK_SIZE);
|
|
|
|
swdesc = stm32_dma3_chan_desc_alloc(chan, count);
|
|
if (!swdesc)
|
|
return NULL;
|
|
|
|
if (chan->config_set != STM32_DMA3_CFG_SET_BOTH)
|
|
stm32_dma3_init_chan_config_for_memcpy(chan, dst, src);
|
|
|
|
for (i = 0, offset = 0; offset < len; i++, offset += next_size) {
|
|
size_t remaining;
|
|
int ret;
|
|
|
|
remaining = len - offset;
|
|
next_size = min_t(size_t, remaining, STM32_DMA3_MAX_BLOCK_SIZE);
|
|
|
|
ret = stm32_dma3_chan_prep_hw(chan, DMA_MEM_TO_MEM, &swdesc->ccr, &ctr1, &ctr2,
|
|
src + offset, dst + offset, next_size);
|
|
if (ret)
|
|
goto err_desc_free;
|
|
|
|
stm32_dma3_chan_prep_hwdesc(chan, swdesc, i, src + offset, dst + offset, next_size,
|
|
ctr1, ctr2, next_size == remaining, false);
|
|
}
|
|
|
|
/* Enable Errors interrupts */
|
|
swdesc->ccr |= CCR_USEIE | CCR_ULEIE | CCR_DTEIE;
|
|
/* Enable Transfer state interrupts */
|
|
swdesc->ccr |= CCR_TCIE;
|
|
|
|
swdesc->cyclic = false;
|
|
|
|
return vchan_tx_prep(&chan->vchan, &swdesc->vdesc, flags);
|
|
|
|
err_desc_free:
|
|
stm32_dma3_chan_desc_free(chan, swdesc);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *stm32_dma3_prep_slave_sg(struct dma_chan *c,
|
|
struct scatterlist *sgl,
|
|
unsigned int sg_len,
|
|
enum dma_transfer_direction dir,
|
|
unsigned long flags, void *context)
|
|
{
|
|
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
|
|
struct stm32_dma3_swdesc *swdesc;
|
|
struct scatterlist *sg;
|
|
size_t len;
|
|
dma_addr_t sg_addr, dev_addr, src, dst;
|
|
u32 i, j, count, ctr1, ctr2;
|
|
int ret;
|
|
|
|
count = sg_len;
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
len = sg_dma_len(sg);
|
|
if (len > STM32_DMA3_MAX_BLOCK_SIZE)
|
|
count += DIV_ROUND_UP(len, STM32_DMA3_MAX_BLOCK_SIZE) - 1;
|
|
}
|
|
|
|
swdesc = stm32_dma3_chan_desc_alloc(chan, count);
|
|
if (!swdesc)
|
|
return NULL;
|
|
|
|
/* sg_len and i correspond to the initial sgl; count and j correspond to the hwdesc LL */
|
|
j = 0;
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
sg_addr = sg_dma_address(sg);
|
|
dev_addr = (dir == DMA_MEM_TO_DEV) ? chan->dma_config.dst_addr :
|
|
chan->dma_config.src_addr;
|
|
len = sg_dma_len(sg);
|
|
|
|
do {
|
|
size_t chunk = min_t(size_t, len, STM32_DMA3_MAX_BLOCK_SIZE);
|
|
|
|
if (dir == DMA_MEM_TO_DEV) {
|
|
src = sg_addr;
|
|
dst = dev_addr;
|
|
|
|
ret = stm32_dma3_chan_prep_hw(chan, dir, &swdesc->ccr, &ctr1, &ctr2,
|
|
src, dst, chunk);
|
|
|
|
if (FIELD_GET(CTR1_DINC, ctr1))
|
|
dev_addr += chunk;
|
|
} else { /* (dir == DMA_DEV_TO_MEM || dir == DMA_MEM_TO_MEM) */
|
|
src = dev_addr;
|
|
dst = sg_addr;
|
|
|
|
ret = stm32_dma3_chan_prep_hw(chan, dir, &swdesc->ccr, &ctr1, &ctr2,
|
|
src, dst, chunk);
|
|
|
|
if (FIELD_GET(CTR1_SINC, ctr1))
|
|
dev_addr += chunk;
|
|
}
|
|
|
|
if (ret)
|
|
goto err_desc_free;
|
|
|
|
stm32_dma3_chan_prep_hwdesc(chan, swdesc, j, src, dst, chunk,
|
|
ctr1, ctr2, j == (count - 1), false);
|
|
|
|
sg_addr += chunk;
|
|
len -= chunk;
|
|
j++;
|
|
} while (len);
|
|
}
|
|
|
|
/* Enable Error interrupts */
|
|
swdesc->ccr |= CCR_USEIE | CCR_ULEIE | CCR_DTEIE;
|
|
/* Enable Transfer state interrupts */
|
|
swdesc->ccr |= CCR_TCIE;
|
|
|
|
swdesc->cyclic = false;
|
|
|
|
return vchan_tx_prep(&chan->vchan, &swdesc->vdesc, flags);
|
|
|
|
err_desc_free:
|
|
stm32_dma3_chan_desc_free(chan, swdesc);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *stm32_dma3_prep_dma_cyclic(struct dma_chan *c,
|
|
dma_addr_t buf_addr,
|
|
size_t buf_len, size_t period_len,
|
|
enum dma_transfer_direction dir,
|
|
unsigned long flags)
|
|
{
|
|
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
|
|
struct stm32_dma3_swdesc *swdesc;
|
|
dma_addr_t src, dst;
|
|
u32 count, i, ctr1, ctr2;
|
|
int ret;
|
|
|
|
if (!buf_len || !period_len || period_len > STM32_DMA3_MAX_BLOCK_SIZE) {
|
|
dev_err(chan2dev(chan), "Invalid buffer/period length\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (buf_len % period_len) {
|
|
dev_err(chan2dev(chan), "Buffer length not multiple of period length\n");
|
|
return NULL;
|
|
}
|
|
|
|
count = buf_len / period_len;
|
|
swdesc = stm32_dma3_chan_desc_alloc(chan, count);
|
|
if (!swdesc)
|
|
return NULL;
|
|
|
|
if (dir == DMA_MEM_TO_DEV) {
|
|
src = buf_addr;
|
|
dst = chan->dma_config.dst_addr;
|
|
|
|
ret = stm32_dma3_chan_prep_hw(chan, DMA_MEM_TO_DEV, &swdesc->ccr, &ctr1, &ctr2,
|
|
src, dst, period_len);
|
|
} else if (dir == DMA_DEV_TO_MEM) {
|
|
src = chan->dma_config.src_addr;
|
|
dst = buf_addr;
|
|
|
|
ret = stm32_dma3_chan_prep_hw(chan, DMA_DEV_TO_MEM, &swdesc->ccr, &ctr1, &ctr2,
|
|
src, dst, period_len);
|
|
} else {
|
|
dev_err(chan2dev(chan), "Invalid direction\n");
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
if (ret)
|
|
goto err_desc_free;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (dir == DMA_MEM_TO_DEV) {
|
|
src = buf_addr + i * period_len;
|
|
dst = chan->dma_config.dst_addr;
|
|
} else { /* (dir == DMA_DEV_TO_MEM) */
|
|
src = chan->dma_config.src_addr;
|
|
dst = buf_addr + i * period_len;
|
|
}
|
|
|
|
stm32_dma3_chan_prep_hwdesc(chan, swdesc, i, src, dst, period_len,
|
|
ctr1, ctr2, i == (count - 1), true);
|
|
}
|
|
|
|
/* Enable Error interrupts */
|
|
swdesc->ccr |= CCR_USEIE | CCR_ULEIE | CCR_DTEIE;
|
|
/* Enable Transfer state interrupts */
|
|
swdesc->ccr |= CCR_TCIE;
|
|
|
|
swdesc->cyclic = true;
|
|
|
|
return vchan_tx_prep(&chan->vchan, &swdesc->vdesc, flags);
|
|
|
|
err_desc_free:
|
|
stm32_dma3_chan_desc_free(chan, swdesc);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void stm32_dma3_caps(struct dma_chan *c, struct dma_slave_caps *caps)
|
|
{
|
|
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
|
|
|
|
if (!chan->fifo_size) {
|
|
caps->max_burst = 0;
|
|
caps->src_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
|
|
caps->dst_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
|
|
} else {
|
|
/* Burst transfer should not exceed half of the fifo size */
|
|
caps->max_burst = chan->max_burst;
|
|
if (caps->max_burst < DMA_SLAVE_BUSWIDTH_8_BYTES) {
|
|
caps->src_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
|
|
caps->dst_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int stm32_dma3_config(struct dma_chan *c, struct dma_slave_config *config)
|
|
{
|
|
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
|
|
|
|
memcpy(&chan->dma_config, config, sizeof(*config));
|
|
chan->config_set |= STM32_DMA3_CFG_SET_DMA;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_dma3_pause(struct dma_chan *c)
|
|
{
|
|
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
|
|
int ret;
|
|
|
|
ret = stm32_dma3_chan_suspend(chan, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
chan->dma_status = DMA_PAUSED;
|
|
|
|
dev_dbg(chan2dev(chan), "vchan %pK: paused\n", &chan->vchan);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_dma3_resume(struct dma_chan *c)
|
|
{
|
|
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
|
|
|
|
stm32_dma3_chan_suspend(chan, false);
|
|
|
|
chan->dma_status = DMA_IN_PROGRESS;
|
|
|
|
dev_dbg(chan2dev(chan), "vchan %pK: resumed\n", &chan->vchan);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_dma3_terminate_all(struct dma_chan *c)
|
|
{
|
|
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
|
|
unsigned long flags;
|
|
LIST_HEAD(head);
|
|
|
|
spin_lock_irqsave(&chan->vchan.lock, flags);
|
|
|
|
if (chan->swdesc) {
|
|
vchan_terminate_vdesc(&chan->swdesc->vdesc);
|
|
chan->swdesc = NULL;
|
|
}
|
|
|
|
stm32_dma3_chan_stop(chan);
|
|
|
|
vchan_get_all_descriptors(&chan->vchan, &head);
|
|
|
|
spin_unlock_irqrestore(&chan->vchan.lock, flags);
|
|
vchan_dma_desc_free_list(&chan->vchan, &head);
|
|
|
|
dev_dbg(chan2dev(chan), "vchan %pK: terminated\n", &chan->vchan);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stm32_dma3_synchronize(struct dma_chan *c)
|
|
{
|
|
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
|
|
|
|
vchan_synchronize(&chan->vchan);
|
|
}
|
|
|
|
static enum dma_status stm32_dma3_tx_status(struct dma_chan *c, dma_cookie_t cookie,
|
|
struct dma_tx_state *txstate)
|
|
{
|
|
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
|
|
struct stm32_dma3_swdesc *swdesc = NULL;
|
|
enum dma_status status;
|
|
unsigned long flags;
|
|
struct virt_dma_desc *vd;
|
|
|
|
status = dma_cookie_status(c, cookie, txstate);
|
|
if (status == DMA_COMPLETE)
|
|
return status;
|
|
|
|
if (!txstate)
|
|
return chan->dma_status;
|
|
|
|
spin_lock_irqsave(&chan->vchan.lock, flags);
|
|
|
|
vd = vchan_find_desc(&chan->vchan, cookie);
|
|
if (vd)
|
|
swdesc = to_stm32_dma3_swdesc(vd);
|
|
else if (chan->swdesc && chan->swdesc->vdesc.tx.cookie == cookie)
|
|
swdesc = chan->swdesc;
|
|
|
|
/* Get residue/in_flight_bytes only if a transfer is currently running (swdesc != NULL) */
|
|
if (swdesc)
|
|
stm32_dma3_chan_set_residue(chan, swdesc, txstate);
|
|
|
|
spin_unlock_irqrestore(&chan->vchan.lock, flags);
|
|
|
|
return chan->dma_status;
|
|
}
|
|
|
|
static void stm32_dma3_issue_pending(struct dma_chan *c)
|
|
{
|
|
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&chan->vchan.lock, flags);
|
|
|
|
if (vchan_issue_pending(&chan->vchan) && !chan->swdesc) {
|
|
dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
|
|
stm32_dma3_chan_start(chan);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&chan->vchan.lock, flags);
|
|
}
|
|
|
|
static bool stm32_dma3_filter_fn(struct dma_chan *c, void *fn_param)
|
|
{
|
|
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
|
|
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
|
|
struct stm32_dma3_dt_conf *conf = fn_param;
|
|
u32 mask, semcr;
|
|
int ret;
|
|
|
|
dev_dbg(c->device->dev, "%s(%s): req_line=%d ch_conf=%08x tr_conf=%08x\n",
|
|
__func__, dma_chan_name(c), conf->req_line, conf->ch_conf, conf->tr_conf);
|
|
|
|
if (!of_property_read_u32(c->device->dev->of_node, "dma-channel-mask", &mask))
|
|
if (!(mask & BIT(chan->id)))
|
|
return false;
|
|
|
|
ret = pm_runtime_resume_and_get(ddata->dma_dev.dev);
|
|
if (ret < 0)
|
|
return false;
|
|
semcr = readl_relaxed(ddata->base + STM32_DMA3_CSEMCR(chan->id));
|
|
pm_runtime_put_sync(ddata->dma_dev.dev);
|
|
|
|
/* Check if chan is free */
|
|
if (semcr & CSEMCR_SEM_MUTEX)
|
|
return false;
|
|
|
|
/* Check if chan fifo fits well */
|
|
if (FIELD_GET(STM32_DMA3_DT_FIFO, conf->ch_conf) != chan->fifo_size)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct dma_chan *stm32_dma3_of_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma)
|
|
{
|
|
struct stm32_dma3_ddata *ddata = ofdma->of_dma_data;
|
|
dma_cap_mask_t mask = ddata->dma_dev.cap_mask;
|
|
struct stm32_dma3_dt_conf conf;
|
|
struct stm32_dma3_chan *chan;
|
|
struct dma_chan *c;
|
|
|
|
if (dma_spec->args_count < 3) {
|
|
dev_err(ddata->dma_dev.dev, "Invalid args count\n");
|
|
return NULL;
|
|
}
|
|
|
|
conf.req_line = dma_spec->args[0];
|
|
conf.ch_conf = dma_spec->args[1];
|
|
conf.tr_conf = dma_spec->args[2];
|
|
|
|
if (conf.req_line >= ddata->dma_requests) {
|
|
dev_err(ddata->dma_dev.dev, "Invalid request line\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* Request dma channel among the generic dma controller list */
|
|
c = dma_request_channel(mask, stm32_dma3_filter_fn, &conf);
|
|
if (!c) {
|
|
dev_err(ddata->dma_dev.dev, "No suitable channel found\n");
|
|
return NULL;
|
|
}
|
|
|
|
chan = to_stm32_dma3_chan(c);
|
|
chan->dt_config = conf;
|
|
chan->config_set |= STM32_DMA3_CFG_SET_DT;
|
|
|
|
return c;
|
|
}
|
|
|
|
static u32 stm32_dma3_check_rif(struct stm32_dma3_ddata *ddata)
|
|
{
|
|
u32 chan_reserved, mask = 0, i, ccidcfgr, invalid_cid = 0;
|
|
|
|
/* Reserve Secure channels */
|
|
chan_reserved = readl_relaxed(ddata->base + STM32_DMA3_SECCFGR);
|
|
|
|
/*
|
|
* CID filtering must be configured to ensure that the DMA3 channel will inherit the CID of
|
|
* the processor which is configuring and using the given channel.
|
|
* In case CID filtering is not configured, dma-channel-mask property can be used to
|
|
* specify available DMA channels to the kernel.
|
|
*/
|
|
of_property_read_u32(ddata->dma_dev.dev->of_node, "dma-channel-mask", &mask);
|
|
|
|
/* Reserve !CID-filtered not in dma-channel-mask, static CID != CID1, CID1 not allowed */
|
|
for (i = 0; i < ddata->dma_channels; i++) {
|
|
ccidcfgr = readl_relaxed(ddata->base + STM32_DMA3_CCIDCFGR(i));
|
|
|
|
if (!(ccidcfgr & CCIDCFGR_CFEN)) { /* !CID-filtered */
|
|
invalid_cid |= BIT(i);
|
|
if (!(mask & BIT(i))) /* Not in dma-channel-mask */
|
|
chan_reserved |= BIT(i);
|
|
} else { /* CID-filtered */
|
|
if (!(ccidcfgr & CCIDCFGR_SEM_EN)) { /* Static CID mode */
|
|
if (FIELD_GET(CCIDCFGR_SCID, ccidcfgr) != CCIDCFGR_CID1)
|
|
chan_reserved |= BIT(i);
|
|
} else { /* Semaphore mode */
|
|
if (!FIELD_GET(CCIDCFGR_SEM_WLIST_CID1, ccidcfgr))
|
|
chan_reserved |= BIT(i);
|
|
ddata->chans[i].semaphore_mode = true;
|
|
}
|
|
}
|
|
dev_dbg(ddata->dma_dev.dev, "chan%d: %s mode, %s\n", i,
|
|
!(ccidcfgr & CCIDCFGR_CFEN) ? "!CID-filtered" :
|
|
ddata->chans[i].semaphore_mode ? "Semaphore" : "Static CID",
|
|
(chan_reserved & BIT(i)) ? "denied" :
|
|
mask & BIT(i) ? "force allowed" : "allowed");
|
|
}
|
|
|
|
if (invalid_cid)
|
|
dev_warn(ddata->dma_dev.dev, "chan%*pbl have invalid CID configuration\n",
|
|
ddata->dma_channels, &invalid_cid);
|
|
|
|
return chan_reserved;
|
|
}
|
|
|
|
static const struct of_device_id stm32_dma3_of_match[] = {
|
|
{ .compatible = "st,stm32mp25-dma3", },
|
|
{ /* sentinel */ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, stm32_dma3_of_match);
|
|
|
|
static int stm32_dma3_probe(struct platform_device *pdev)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
struct stm32_dma3_ddata *ddata;
|
|
struct reset_control *reset;
|
|
struct stm32_dma3_chan *chan;
|
|
struct dma_device *dma_dev;
|
|
u32 master_ports, chan_reserved, i, verr;
|
|
u64 hwcfgr;
|
|
int ret;
|
|
|
|
ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL);
|
|
if (!ddata)
|
|
return -ENOMEM;
|
|
platform_set_drvdata(pdev, ddata);
|
|
|
|
dma_dev = &ddata->dma_dev;
|
|
|
|
ddata->base = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(ddata->base))
|
|
return PTR_ERR(ddata->base);
|
|
|
|
ddata->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(ddata->clk))
|
|
return dev_err_probe(&pdev->dev, PTR_ERR(ddata->clk), "Failed to get clk\n");
|
|
|
|
reset = devm_reset_control_get_optional(&pdev->dev, NULL);
|
|
if (IS_ERR(reset))
|
|
return dev_err_probe(&pdev->dev, PTR_ERR(reset), "Failed to get reset\n");
|
|
|
|
ret = clk_prepare_enable(ddata->clk);
|
|
if (ret)
|
|
return dev_err_probe(&pdev->dev, ret, "Failed to enable clk\n");
|
|
|
|
reset_control_reset(reset);
|
|
|
|
INIT_LIST_HEAD(&dma_dev->channels);
|
|
|
|
dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
|
|
dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
|
|
dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
|
|
dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
|
|
dma_dev->dev = &pdev->dev;
|
|
/*
|
|
* This controller supports up to 8-byte buswidth depending on the port used and the
|
|
* channel, and can only access address at even boundaries, multiple of the buswidth.
|
|
*/
|
|
dma_dev->copy_align = DMAENGINE_ALIGN_8_BYTES;
|
|
dma_dev->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
|
|
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
|
|
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
|
|
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
|
|
dma_dev->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
|
|
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
|
|
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
|
|
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
|
|
dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV) | BIT(DMA_MEM_TO_MEM);
|
|
|
|
dma_dev->descriptor_reuse = true;
|
|
dma_dev->max_sg_burst = STM32_DMA3_MAX_SEG_SIZE;
|
|
dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
|
|
dma_dev->device_alloc_chan_resources = stm32_dma3_alloc_chan_resources;
|
|
dma_dev->device_free_chan_resources = stm32_dma3_free_chan_resources;
|
|
dma_dev->device_prep_dma_memcpy = stm32_dma3_prep_dma_memcpy;
|
|
dma_dev->device_prep_slave_sg = stm32_dma3_prep_slave_sg;
|
|
dma_dev->device_prep_dma_cyclic = stm32_dma3_prep_dma_cyclic;
|
|
dma_dev->device_caps = stm32_dma3_caps;
|
|
dma_dev->device_config = stm32_dma3_config;
|
|
dma_dev->device_pause = stm32_dma3_pause;
|
|
dma_dev->device_resume = stm32_dma3_resume;
|
|
dma_dev->device_terminate_all = stm32_dma3_terminate_all;
|
|
dma_dev->device_synchronize = stm32_dma3_synchronize;
|
|
dma_dev->device_tx_status = stm32_dma3_tx_status;
|
|
dma_dev->device_issue_pending = stm32_dma3_issue_pending;
|
|
|
|
/* if dma_channels is not modified, get it from hwcfgr1 */
|
|
if (of_property_read_u32(np, "dma-channels", &ddata->dma_channels)) {
|
|
hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR1);
|
|
ddata->dma_channels = FIELD_GET(G_NUM_CHANNELS, hwcfgr);
|
|
}
|
|
|
|
/* if dma_requests is not modified, get it from hwcfgr2 */
|
|
if (of_property_read_u32(np, "dma-requests", &ddata->dma_requests)) {
|
|
hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR2);
|
|
ddata->dma_requests = FIELD_GET(G_MAX_REQ_ID, hwcfgr) + 1;
|
|
}
|
|
|
|
/* G_MASTER_PORTS, G_M0_DATA_WIDTH_ENC, G_M1_DATA_WIDTH_ENC in HWCFGR1 */
|
|
hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR1);
|
|
master_ports = FIELD_GET(G_MASTER_PORTS, hwcfgr);
|
|
|
|
ddata->ports_max_dw[0] = FIELD_GET(G_M0_DATA_WIDTH_ENC, hwcfgr);
|
|
if (master_ports == AXI64 || master_ports == AHB32) /* Single master port */
|
|
ddata->ports_max_dw[1] = DW_INVALID;
|
|
else /* Dual master ports */
|
|
ddata->ports_max_dw[1] = FIELD_GET(G_M1_DATA_WIDTH_ENC, hwcfgr);
|
|
|
|
ddata->chans = devm_kcalloc(&pdev->dev, ddata->dma_channels, sizeof(*ddata->chans),
|
|
GFP_KERNEL);
|
|
if (!ddata->chans) {
|
|
ret = -ENOMEM;
|
|
goto err_clk_disable;
|
|
}
|
|
|
|
chan_reserved = stm32_dma3_check_rif(ddata);
|
|
|
|
if (chan_reserved == GENMASK(ddata->dma_channels - 1, 0)) {
|
|
ret = -ENODEV;
|
|
dev_err_probe(&pdev->dev, ret, "No channel available, abort registration\n");
|
|
goto err_clk_disable;
|
|
}
|
|
|
|
/* G_FIFO_SIZE x=0..7 in HWCFGR3 and G_FIFO_SIZE x=8..15 in HWCFGR4 */
|
|
hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR3);
|
|
hwcfgr |= ((u64)readl_relaxed(ddata->base + STM32_DMA3_HWCFGR4)) << 32;
|
|
|
|
for (i = 0; i < ddata->dma_channels; i++) {
|
|
if (chan_reserved & BIT(i))
|
|
continue;
|
|
|
|
chan = &ddata->chans[i];
|
|
chan->id = i;
|
|
chan->fifo_size = get_chan_hwcfg(i, G_FIFO_SIZE(i), hwcfgr);
|
|
/* If chan->fifo_size > 0 then half of the fifo size, else no burst when no FIFO */
|
|
chan->max_burst = (chan->fifo_size) ? (1 << (chan->fifo_size + 1)) / 2 : 0;
|
|
}
|
|
|
|
ret = dmaenginem_async_device_register(dma_dev);
|
|
if (ret)
|
|
goto err_clk_disable;
|
|
|
|
for (i = 0; i < ddata->dma_channels; i++) {
|
|
char name[12];
|
|
|
|
if (chan_reserved & BIT(i))
|
|
continue;
|
|
|
|
chan = &ddata->chans[i];
|
|
snprintf(name, sizeof(name), "dma%dchan%d", ddata->dma_dev.dev_id, chan->id);
|
|
|
|
chan->vchan.desc_free = stm32_dma3_chan_vdesc_free;
|
|
vchan_init(&chan->vchan, dma_dev);
|
|
|
|
ret = dma_async_device_channel_register(&ddata->dma_dev, &chan->vchan.chan, name);
|
|
if (ret) {
|
|
dev_err_probe(&pdev->dev, ret, "Failed to register channel %s\n", name);
|
|
goto err_clk_disable;
|
|
}
|
|
|
|
ret = platform_get_irq(pdev, i);
|
|
if (ret < 0)
|
|
goto err_clk_disable;
|
|
chan->irq = ret;
|
|
|
|
ret = devm_request_irq(&pdev->dev, chan->irq, stm32_dma3_chan_irq, 0,
|
|
dev_name(chan2dev(chan)), chan);
|
|
if (ret) {
|
|
dev_err_probe(&pdev->dev, ret, "Failed to request channel %s IRQ\n",
|
|
dev_name(chan2dev(chan)));
|
|
goto err_clk_disable;
|
|
}
|
|
}
|
|
|
|
ret = of_dma_controller_register(np, stm32_dma3_of_xlate, ddata);
|
|
if (ret) {
|
|
dev_err_probe(&pdev->dev, ret, "Failed to register controller\n");
|
|
goto err_clk_disable;
|
|
}
|
|
|
|
verr = readl_relaxed(ddata->base + STM32_DMA3_VERR);
|
|
|
|
pm_runtime_set_active(&pdev->dev);
|
|
pm_runtime_enable(&pdev->dev);
|
|
pm_runtime_get_noresume(&pdev->dev);
|
|
pm_runtime_put(&pdev->dev);
|
|
|
|
dev_info(&pdev->dev, "STM32 DMA3 registered rev:%lu.%lu\n",
|
|
FIELD_GET(VERR_MAJREV, verr), FIELD_GET(VERR_MINREV, verr));
|
|
|
|
return 0;
|
|
|
|
err_clk_disable:
|
|
clk_disable_unprepare(ddata->clk);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void stm32_dma3_remove(struct platform_device *pdev)
|
|
{
|
|
pm_runtime_disable(&pdev->dev);
|
|
}
|
|
|
|
static int stm32_dma3_runtime_suspend(struct device *dev)
|
|
{
|
|
struct stm32_dma3_ddata *ddata = dev_get_drvdata(dev);
|
|
|
|
clk_disable_unprepare(ddata->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_dma3_runtime_resume(struct device *dev)
|
|
{
|
|
struct stm32_dma3_ddata *ddata = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = clk_prepare_enable(ddata->clk);
|
|
if (ret)
|
|
dev_err(dev, "Failed to enable clk: %d\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct dev_pm_ops stm32_dma3_pm_ops = {
|
|
SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
|
|
RUNTIME_PM_OPS(stm32_dma3_runtime_suspend, stm32_dma3_runtime_resume, NULL)
|
|
};
|
|
|
|
static struct platform_driver stm32_dma3_driver = {
|
|
.probe = stm32_dma3_probe,
|
|
.remove_new = stm32_dma3_remove,
|
|
.driver = {
|
|
.name = "stm32-dma3",
|
|
.of_match_table = stm32_dma3_of_match,
|
|
.pm = pm_ptr(&stm32_dma3_pm_ops),
|
|
},
|
|
};
|
|
|
|
static int __init stm32_dma3_init(void)
|
|
{
|
|
return platform_driver_register(&stm32_dma3_driver);
|
|
}
|
|
|
|
subsys_initcall(stm32_dma3_init);
|
|
|
|
MODULE_DESCRIPTION("STM32 DMA3 controller driver");
|
|
MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@foss.st.com>");
|
|
MODULE_LICENSE("GPL");
|