mirror of
https://github.com/torvalds/linux.git
synced 2024-11-26 14:12:06 +00:00
80fe9e5151
This is the next upgrade to the Rust toolchain, from 1.73.0 to 1.74.1
(i.e. the latest) [1].
See the upgrade policy [2] and the comments on the first upgrade in
commit 3ed03f4da0
("rust: upgrade to Rust 1.68.2").
# Unstable features
No unstable features (that we use) were stabilized.
Therefore, the only unstable features allowed to be used outside the
`kernel` crate are still `new_uninit,offset_of`, though other code to
be upstreamed may increase the list (e.g. `offset_of` was added recently).
Please see [3] for details.
# Other improvements
Rust 1.74.0 allows to use `#[repr(Rust)]` explicitly [4], which can be
useful to be explicit about particular cases that would normally use
e.g. the C representation, such as silencing lints like the upcoming
additions we requested [5] to the `no_mangle_with_rust_abi` Clippy lint
(which in turn triggered the `#[repr(Rust)]` addition).
Rust 1.74.0 includes a fix for one of the false negative cases we reported
in Clippy's `disallowed_macros` lint [6] that we would like to use in
the future.
Rust 1.74.1 fixes an ICE that the Apple AGX GPU driver was hitting [7].
# Required changes
For this upgrade, no changes were required (i.e. on our side).
# `alloc` upgrade and reviewing
The vast majority of changes are due to our `alloc` fork being upgraded
at once.
There are two kinds of changes to be aware of: the ones coming from
upstream, which we should follow as closely as possible, and the updates
needed in our added fallible APIs to keep them matching the newer
infallible APIs coming from upstream.
Instead of taking a look at the diff of this patch, an alternative
approach is reviewing a diff of the changes between upstream `alloc` and
the kernel's. This allows to easily inspect the kernel additions only,
especially to check if the fallible methods we already have still match
the infallible ones in the new version coming from upstream.
Another approach is reviewing the changes introduced in the additions in
the kernel fork between the two versions. This is useful to spot
potentially unintended changes to our additions.
To apply these approaches, one may follow steps similar to the following
to generate a pair of patches that show the differences between upstream
Rust and the kernel (for the subset of `alloc` we use) before and after
applying this patch:
# Get the difference with respect to the old version.
git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
cut -d/ -f3- |
grep -Fv README.md |
xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
git -C linux diff --patch-with-stat --summary -R > old.patch
git -C linux restore rust/alloc
# Apply this patch.
git -C linux am rust-upgrade.patch
# Get the difference with respect to the new version.
git -C rust checkout $(linux/scripts/min-tool-version.sh rustc)
git -C linux ls-tree -r --name-only HEAD -- rust/alloc |
cut -d/ -f3- |
grep -Fv README.md |
xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH
git -C linux diff --patch-with-stat --summary -R > new.patch
git -C linux restore rust/alloc
Now one may check the `new.patch` to take a look at the additions (first
approach) or at the difference between those two patches (second
approach). For the latter, a side-by-side tool is recommended.
Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1741-2023-12-07 [1]
Link: https://rust-for-linux.com/rust-version-policy [2]
Link: https://github.com/Rust-for-Linux/linux/issues/2 [3]
Link: https://github.com/rust-lang/rust/pull/114201 [4]
Link: https://github.com/rust-lang/rust-clippy/issues/11219 [5]
Link: https://github.com/rust-lang/rust-clippy/issues/11431 [6]
Link: https://github.com/rust-lang/rust/issues/117976#issuecomment-1822225691 [7]
Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com>
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Tested-by: David Gow <davidgow@google.com>
Link: https://lore.kernel.org/r/20231214092958.377061-1-ojeda@kernel.org
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
443 lines
16 KiB
Rust
443 lines
16 KiB
Rust
// SPDX-License-Identifier: Apache-2.0 OR MIT
|
||
|
||
//! Memory allocation APIs
|
||
|
||
#![stable(feature = "alloc_module", since = "1.28.0")]
|
||
|
||
#[cfg(not(test))]
|
||
use core::intrinsics;
|
||
|
||
#[cfg(not(test))]
|
||
use core::ptr::{self, NonNull};
|
||
|
||
#[stable(feature = "alloc_module", since = "1.28.0")]
|
||
#[doc(inline)]
|
||
pub use core::alloc::*;
|
||
|
||
#[cfg(test)]
|
||
mod tests;
|
||
|
||
extern "Rust" {
|
||
// These are the magic symbols to call the global allocator. rustc generates
|
||
// them to call `__rg_alloc` etc. if there is a `#[global_allocator]` attribute
|
||
// (the code expanding that attribute macro generates those functions), or to call
|
||
// the default implementations in std (`__rdl_alloc` etc. in `library/std/src/alloc.rs`)
|
||
// otherwise.
|
||
// The rustc fork of LLVM 14 and earlier also special-cases these function names to be able to optimize them
|
||
// like `malloc`, `realloc`, and `free`, respectively.
|
||
#[rustc_allocator]
|
||
#[rustc_nounwind]
|
||
fn __rust_alloc(size: usize, align: usize) -> *mut u8;
|
||
#[rustc_deallocator]
|
||
#[rustc_nounwind]
|
||
fn __rust_dealloc(ptr: *mut u8, size: usize, align: usize);
|
||
#[rustc_reallocator]
|
||
#[rustc_nounwind]
|
||
fn __rust_realloc(ptr: *mut u8, old_size: usize, align: usize, new_size: usize) -> *mut u8;
|
||
#[rustc_allocator_zeroed]
|
||
#[rustc_nounwind]
|
||
fn __rust_alloc_zeroed(size: usize, align: usize) -> *mut u8;
|
||
|
||
static __rust_no_alloc_shim_is_unstable: u8;
|
||
}
|
||
|
||
/// The global memory allocator.
|
||
///
|
||
/// This type implements the [`Allocator`] trait by forwarding calls
|
||
/// to the allocator registered with the `#[global_allocator]` attribute
|
||
/// if there is one, or the `std` crate’s default.
|
||
///
|
||
/// Note: while this type is unstable, the functionality it provides can be
|
||
/// accessed through the [free functions in `alloc`](self#functions).
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
#[derive(Copy, Clone, Default, Debug)]
|
||
#[cfg(not(test))]
|
||
pub struct Global;
|
||
|
||
#[cfg(test)]
|
||
pub use std::alloc::Global;
|
||
|
||
/// Allocate memory with the global allocator.
|
||
///
|
||
/// This function forwards calls to the [`GlobalAlloc::alloc`] method
|
||
/// of the allocator registered with the `#[global_allocator]` attribute
|
||
/// if there is one, or the `std` crate’s default.
|
||
///
|
||
/// This function is expected to be deprecated in favor of the `alloc` method
|
||
/// of the [`Global`] type when it and the [`Allocator`] trait become stable.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// See [`GlobalAlloc::alloc`].
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::alloc::{alloc, dealloc, handle_alloc_error, Layout};
|
||
///
|
||
/// unsafe {
|
||
/// let layout = Layout::new::<u16>();
|
||
/// let ptr = alloc(layout);
|
||
/// if ptr.is_null() {
|
||
/// handle_alloc_error(layout);
|
||
/// }
|
||
///
|
||
/// *(ptr as *mut u16) = 42;
|
||
/// assert_eq!(*(ptr as *mut u16), 42);
|
||
///
|
||
/// dealloc(ptr, layout);
|
||
/// }
|
||
/// ```
|
||
#[stable(feature = "global_alloc", since = "1.28.0")]
|
||
#[must_use = "losing the pointer will leak memory"]
|
||
#[inline]
|
||
pub unsafe fn alloc(layout: Layout) -> *mut u8 {
|
||
unsafe {
|
||
// Make sure we don't accidentally allow omitting the allocator shim in
|
||
// stable code until it is actually stabilized.
|
||
core::ptr::read_volatile(&__rust_no_alloc_shim_is_unstable);
|
||
|
||
__rust_alloc(layout.size(), layout.align())
|
||
}
|
||
}
|
||
|
||
/// Deallocate memory with the global allocator.
|
||
///
|
||
/// This function forwards calls to the [`GlobalAlloc::dealloc`] method
|
||
/// of the allocator registered with the `#[global_allocator]` attribute
|
||
/// if there is one, or the `std` crate’s default.
|
||
///
|
||
/// This function is expected to be deprecated in favor of the `dealloc` method
|
||
/// of the [`Global`] type when it and the [`Allocator`] trait become stable.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// See [`GlobalAlloc::dealloc`].
|
||
#[stable(feature = "global_alloc", since = "1.28.0")]
|
||
#[inline]
|
||
pub unsafe fn dealloc(ptr: *mut u8, layout: Layout) {
|
||
unsafe { __rust_dealloc(ptr, layout.size(), layout.align()) }
|
||
}
|
||
|
||
/// Reallocate memory with the global allocator.
|
||
///
|
||
/// This function forwards calls to the [`GlobalAlloc::realloc`] method
|
||
/// of the allocator registered with the `#[global_allocator]` attribute
|
||
/// if there is one, or the `std` crate’s default.
|
||
///
|
||
/// This function is expected to be deprecated in favor of the `realloc` method
|
||
/// of the [`Global`] type when it and the [`Allocator`] trait become stable.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// See [`GlobalAlloc::realloc`].
|
||
#[stable(feature = "global_alloc", since = "1.28.0")]
|
||
#[must_use = "losing the pointer will leak memory"]
|
||
#[inline]
|
||
pub unsafe fn realloc(ptr: *mut u8, layout: Layout, new_size: usize) -> *mut u8 {
|
||
unsafe { __rust_realloc(ptr, layout.size(), layout.align(), new_size) }
|
||
}
|
||
|
||
/// Allocate zero-initialized memory with the global allocator.
|
||
///
|
||
/// This function forwards calls to the [`GlobalAlloc::alloc_zeroed`] method
|
||
/// of the allocator registered with the `#[global_allocator]` attribute
|
||
/// if there is one, or the `std` crate’s default.
|
||
///
|
||
/// This function is expected to be deprecated in favor of the `alloc_zeroed` method
|
||
/// of the [`Global`] type when it and the [`Allocator`] trait become stable.
|
||
///
|
||
/// # Safety
|
||
///
|
||
/// See [`GlobalAlloc::alloc_zeroed`].
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::alloc::{alloc_zeroed, dealloc, Layout};
|
||
///
|
||
/// unsafe {
|
||
/// let layout = Layout::new::<u16>();
|
||
/// let ptr = alloc_zeroed(layout);
|
||
///
|
||
/// assert_eq!(*(ptr as *mut u16), 0);
|
||
///
|
||
/// dealloc(ptr, layout);
|
||
/// }
|
||
/// ```
|
||
#[stable(feature = "global_alloc", since = "1.28.0")]
|
||
#[must_use = "losing the pointer will leak memory"]
|
||
#[inline]
|
||
pub unsafe fn alloc_zeroed(layout: Layout) -> *mut u8 {
|
||
unsafe { __rust_alloc_zeroed(layout.size(), layout.align()) }
|
||
}
|
||
|
||
#[cfg(not(test))]
|
||
impl Global {
|
||
#[inline]
|
||
fn alloc_impl(&self, layout: Layout, zeroed: bool) -> Result<NonNull<[u8]>, AllocError> {
|
||
match layout.size() {
|
||
0 => Ok(NonNull::slice_from_raw_parts(layout.dangling(), 0)),
|
||
// SAFETY: `layout` is non-zero in size,
|
||
size => unsafe {
|
||
let raw_ptr = if zeroed { alloc_zeroed(layout) } else { alloc(layout) };
|
||
let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
|
||
Ok(NonNull::slice_from_raw_parts(ptr, size))
|
||
},
|
||
}
|
||
}
|
||
|
||
// SAFETY: Same as `Allocator::grow`
|
||
#[inline]
|
||
unsafe fn grow_impl(
|
||
&self,
|
||
ptr: NonNull<u8>,
|
||
old_layout: Layout,
|
||
new_layout: Layout,
|
||
zeroed: bool,
|
||
) -> Result<NonNull<[u8]>, AllocError> {
|
||
debug_assert!(
|
||
new_layout.size() >= old_layout.size(),
|
||
"`new_layout.size()` must be greater than or equal to `old_layout.size()`"
|
||
);
|
||
|
||
match old_layout.size() {
|
||
0 => self.alloc_impl(new_layout, zeroed),
|
||
|
||
// SAFETY: `new_size` is non-zero as `old_size` is greater than or equal to `new_size`
|
||
// as required by safety conditions. Other conditions must be upheld by the caller
|
||
old_size if old_layout.align() == new_layout.align() => unsafe {
|
||
let new_size = new_layout.size();
|
||
|
||
// `realloc` probably checks for `new_size >= old_layout.size()` or something similar.
|
||
intrinsics::assume(new_size >= old_layout.size());
|
||
|
||
let raw_ptr = realloc(ptr.as_ptr(), old_layout, new_size);
|
||
let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
|
||
if zeroed {
|
||
raw_ptr.add(old_size).write_bytes(0, new_size - old_size);
|
||
}
|
||
Ok(NonNull::slice_from_raw_parts(ptr, new_size))
|
||
},
|
||
|
||
// SAFETY: because `new_layout.size()` must be greater than or equal to `old_size`,
|
||
// both the old and new memory allocation are valid for reads and writes for `old_size`
|
||
// bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap
|
||
// `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract
|
||
// for `dealloc` must be upheld by the caller.
|
||
old_size => unsafe {
|
||
let new_ptr = self.alloc_impl(new_layout, zeroed)?;
|
||
ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_mut_ptr(), old_size);
|
||
self.deallocate(ptr, old_layout);
|
||
Ok(new_ptr)
|
||
},
|
||
}
|
||
}
|
||
}
|
||
|
||
#[unstable(feature = "allocator_api", issue = "32838")]
|
||
#[cfg(not(test))]
|
||
unsafe impl Allocator for Global {
|
||
#[inline]
|
||
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
|
||
self.alloc_impl(layout, false)
|
||
}
|
||
|
||
#[inline]
|
||
fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
|
||
self.alloc_impl(layout, true)
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) {
|
||
if layout.size() != 0 {
|
||
// SAFETY: `layout` is non-zero in size,
|
||
// other conditions must be upheld by the caller
|
||
unsafe { dealloc(ptr.as_ptr(), layout) }
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn grow(
|
||
&self,
|
||
ptr: NonNull<u8>,
|
||
old_layout: Layout,
|
||
new_layout: Layout,
|
||
) -> Result<NonNull<[u8]>, AllocError> {
|
||
// SAFETY: all conditions must be upheld by the caller
|
||
unsafe { self.grow_impl(ptr, old_layout, new_layout, false) }
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn grow_zeroed(
|
||
&self,
|
||
ptr: NonNull<u8>,
|
||
old_layout: Layout,
|
||
new_layout: Layout,
|
||
) -> Result<NonNull<[u8]>, AllocError> {
|
||
// SAFETY: all conditions must be upheld by the caller
|
||
unsafe { self.grow_impl(ptr, old_layout, new_layout, true) }
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn shrink(
|
||
&self,
|
||
ptr: NonNull<u8>,
|
||
old_layout: Layout,
|
||
new_layout: Layout,
|
||
) -> Result<NonNull<[u8]>, AllocError> {
|
||
debug_assert!(
|
||
new_layout.size() <= old_layout.size(),
|
||
"`new_layout.size()` must be smaller than or equal to `old_layout.size()`"
|
||
);
|
||
|
||
match new_layout.size() {
|
||
// SAFETY: conditions must be upheld by the caller
|
||
0 => unsafe {
|
||
self.deallocate(ptr, old_layout);
|
||
Ok(NonNull::slice_from_raw_parts(new_layout.dangling(), 0))
|
||
},
|
||
|
||
// SAFETY: `new_size` is non-zero. Other conditions must be upheld by the caller
|
||
new_size if old_layout.align() == new_layout.align() => unsafe {
|
||
// `realloc` probably checks for `new_size <= old_layout.size()` or something similar.
|
||
intrinsics::assume(new_size <= old_layout.size());
|
||
|
||
let raw_ptr = realloc(ptr.as_ptr(), old_layout, new_size);
|
||
let ptr = NonNull::new(raw_ptr).ok_or(AllocError)?;
|
||
Ok(NonNull::slice_from_raw_parts(ptr, new_size))
|
||
},
|
||
|
||
// SAFETY: because `new_size` must be smaller than or equal to `old_layout.size()`,
|
||
// both the old and new memory allocation are valid for reads and writes for `new_size`
|
||
// bytes. Also, because the old allocation wasn't yet deallocated, it cannot overlap
|
||
// `new_ptr`. Thus, the call to `copy_nonoverlapping` is safe. The safety contract
|
||
// for `dealloc` must be upheld by the caller.
|
||
new_size => unsafe {
|
||
let new_ptr = self.allocate(new_layout)?;
|
||
ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_mut_ptr(), new_size);
|
||
self.deallocate(ptr, old_layout);
|
||
Ok(new_ptr)
|
||
},
|
||
}
|
||
}
|
||
}
|
||
|
||
/// The allocator for unique pointers.
|
||
#[cfg(all(not(no_global_oom_handling), not(test)))]
|
||
#[lang = "exchange_malloc"]
|
||
#[inline]
|
||
unsafe fn exchange_malloc(size: usize, align: usize) -> *mut u8 {
|
||
let layout = unsafe { Layout::from_size_align_unchecked(size, align) };
|
||
match Global.allocate(layout) {
|
||
Ok(ptr) => ptr.as_mut_ptr(),
|
||
Err(_) => handle_alloc_error(layout),
|
||
}
|
||
}
|
||
|
||
// # Allocation error handler
|
||
|
||
#[cfg(not(no_global_oom_handling))]
|
||
extern "Rust" {
|
||
// This is the magic symbol to call the global alloc error handler. rustc generates
|
||
// it to call `__rg_oom` if there is a `#[alloc_error_handler]`, or to call the
|
||
// default implementations below (`__rdl_oom`) otherwise.
|
||
fn __rust_alloc_error_handler(size: usize, align: usize) -> !;
|
||
}
|
||
|
||
/// Signal a memory allocation error.
|
||
///
|
||
/// Callers of memory allocation APIs wishing to cease execution
|
||
/// in response to an allocation error are encouraged to call this function,
|
||
/// rather than directly invoking [`panic!`] or similar.
|
||
///
|
||
/// This function is guaranteed to diverge (not return normally with a value), but depending on
|
||
/// global configuration, it may either panic (resulting in unwinding or aborting as per
|
||
/// configuration for all panics), or abort the process (with no unwinding).
|
||
///
|
||
/// The default behavior is:
|
||
///
|
||
/// * If the binary links against `std` (typically the case), then
|
||
/// print a message to standard error and abort the process.
|
||
/// This behavior can be replaced with [`set_alloc_error_hook`] and [`take_alloc_error_hook`].
|
||
/// Future versions of Rust may panic by default instead.
|
||
///
|
||
/// * If the binary does not link against `std` (all of its crates are marked
|
||
/// [`#![no_std]`][no_std]), then call [`panic!`] with a message.
|
||
/// [The panic handler] applies as to any panic.
|
||
///
|
||
/// [`set_alloc_error_hook`]: ../../std/alloc/fn.set_alloc_error_hook.html
|
||
/// [`take_alloc_error_hook`]: ../../std/alloc/fn.take_alloc_error_hook.html
|
||
/// [The panic handler]: https://doc.rust-lang.org/reference/runtime.html#the-panic_handler-attribute
|
||
/// [no_std]: https://doc.rust-lang.org/reference/names/preludes.html#the-no_std-attribute
|
||
#[stable(feature = "global_alloc", since = "1.28.0")]
|
||
#[rustc_const_unstable(feature = "const_alloc_error", issue = "92523")]
|
||
#[cfg(all(not(no_global_oom_handling), not(test)))]
|
||
#[cold]
|
||
pub const fn handle_alloc_error(layout: Layout) -> ! {
|
||
const fn ct_error(_: Layout) -> ! {
|
||
panic!("allocation failed");
|
||
}
|
||
|
||
fn rt_error(layout: Layout) -> ! {
|
||
unsafe {
|
||
__rust_alloc_error_handler(layout.size(), layout.align());
|
||
}
|
||
}
|
||
|
||
unsafe { core::intrinsics::const_eval_select((layout,), ct_error, rt_error) }
|
||
}
|
||
|
||
// For alloc test `std::alloc::handle_alloc_error` can be used directly.
|
||
#[cfg(all(not(no_global_oom_handling), test))]
|
||
pub use std::alloc::handle_alloc_error;
|
||
|
||
#[cfg(all(not(no_global_oom_handling), not(test)))]
|
||
#[doc(hidden)]
|
||
#[allow(unused_attributes)]
|
||
#[unstable(feature = "alloc_internals", issue = "none")]
|
||
pub mod __alloc_error_handler {
|
||
// called via generated `__rust_alloc_error_handler` if there is no
|
||
// `#[alloc_error_handler]`.
|
||
#[rustc_std_internal_symbol]
|
||
pub unsafe fn __rdl_oom(size: usize, _align: usize) -> ! {
|
||
extern "Rust" {
|
||
// This symbol is emitted by rustc next to __rust_alloc_error_handler.
|
||
// Its value depends on the -Zoom={panic,abort} compiler option.
|
||
static __rust_alloc_error_handler_should_panic: u8;
|
||
}
|
||
|
||
if unsafe { __rust_alloc_error_handler_should_panic != 0 } {
|
||
panic!("memory allocation of {size} bytes failed")
|
||
} else {
|
||
core::panicking::panic_nounwind_fmt(
|
||
format_args!("memory allocation of {size} bytes failed"),
|
||
/* force_no_backtrace */ false,
|
||
)
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Specialize clones into pre-allocated, uninitialized memory.
|
||
/// Used by `Box::clone` and `Rc`/`Arc::make_mut`.
|
||
pub(crate) trait WriteCloneIntoRaw: Sized {
|
||
unsafe fn write_clone_into_raw(&self, target: *mut Self);
|
||
}
|
||
|
||
impl<T: Clone> WriteCloneIntoRaw for T {
|
||
#[inline]
|
||
default unsafe fn write_clone_into_raw(&self, target: *mut Self) {
|
||
// Having allocated *first* may allow the optimizer to create
|
||
// the cloned value in-place, skipping the local and move.
|
||
unsafe { target.write(self.clone()) };
|
||
}
|
||
}
|
||
|
||
impl<T: Copy> WriteCloneIntoRaw for T {
|
||
#[inline]
|
||
unsafe fn write_clone_into_raw(&self, target: *mut Self) {
|
||
// We can always copy in-place, without ever involving a local value.
|
||
unsafe { target.copy_from_nonoverlapping(self, 1) };
|
||
}
|
||
}
|