mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 04:31:50 +00:00
df57721f9a
Convert IBT selftest to asm to fix objtool warning -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmTv1QQACgkQaDWVMHDJ krAUwhAAn6TOwHJK8BSkHeiQhON1nrlP3c5cv0AyZ2NP8RYDrZrSZvhpYBJ6wgKC Cx5CGq5nn9twYsYS3KsktLKDfR3lRdsQ7K9qtyFtYiaeaVKo+7gEKl/K+klwai8/ gninQWHk0zmSCja8Vi77q52WOMkQKapT8+vaON9EVDO8dVEi+CvhAIfPwMafuiwO Rk4X86SzoZu9FP79LcCg9XyGC/XbM2OG9eNUTSCKT40qTTKm5y4gix687NvAlaHR ko5MTsdl0Wfp6Qk0ohT74LnoA2c1g/FluvZIM33ci/2rFpkf9Hw7ip3lUXqn6CPx rKiZ+pVRc0xikVWkraMfIGMJfUd2rhelp8OyoozD7DB7UZw40Q4RW4N5tgq9Fhe9 MQs3p1v9N8xHdRKl365UcOczUxNAmv4u0nV5gY/4FMC6VjldCl2V9fmqYXyzFS4/ Ogg4FSd7c2JyGFKPs+5uXyi+RY2qOX4+nzHOoKD7SY616IYqtgKoz5usxETLwZ6s VtJOmJL0h//z0A7tBliB0zd+SQ5UQQBDC2XouQH2fNX2isJMn0UDmWJGjaHgK6Hh 8jVp6LNqf+CEQS387UxckOyj7fu438hDky1Ggaw4YqowEOhQeqLVO4++x+HITrbp AupXfbJw9h9cMN63Yc0gVxXQ9IMZ+M7UxLtZ3Cd8/PVztNy/clA= =3UUm -----END PGP SIGNATURE----- Merge tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 shadow stack support from Dave Hansen: "This is the long awaited x86 shadow stack support, part of Intel's Control-flow Enforcement Technology (CET). CET consists of two related security features: shadow stacks and indirect branch tracking. This series implements just the shadow stack part of this feature, and just for userspace. The main use case for shadow stack is providing protection against return oriented programming attacks. It works by maintaining a secondary (shadow) stack using a special memory type that has protections against modification. When executing a CALL instruction, the processor pushes the return address to both the normal stack and to the special permission shadow stack. Upon RET, the processor pops the shadow stack copy and compares it to the normal stack copy. For more information, refer to the links below for the earlier versions of this patch set" Link: https://lore.kernel.org/lkml/20220130211838.8382-1-rick.p.edgecombe@intel.com/ Link: https://lore.kernel.org/lkml/20230613001108.3040476-1-rick.p.edgecombe@intel.com/ * tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (47 commits) x86/shstk: Change order of __user in type x86/ibt: Convert IBT selftest to asm x86/shstk: Don't retry vm_munmap() on -EINTR x86/kbuild: Fix Documentation/ reference x86/shstk: Move arch detail comment out of core mm x86/shstk: Add ARCH_SHSTK_STATUS x86/shstk: Add ARCH_SHSTK_UNLOCK x86: Add PTRACE interface for shadow stack selftests/x86: Add shadow stack test x86/cpufeatures: Enable CET CR4 bit for shadow stack x86/shstk: Wire in shadow stack interface x86: Expose thread features in /proc/$PID/status x86/shstk: Support WRSS for userspace x86/shstk: Introduce map_shadow_stack syscall x86/shstk: Check that signal frame is shadow stack mem x86/shstk: Check that SSP is aligned on sigreturn x86/shstk: Handle signals for shadow stack x86/shstk: Introduce routines modifying shstk x86/shstk: Handle thread shadow stack x86/shstk: Add user-mode shadow stack support ...
1873 lines
56 KiB
C
1873 lines
56 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* S390 version
|
|
* Copyright IBM Corp. 1999, 2000
|
|
* Author(s): Hartmut Penner (hp@de.ibm.com)
|
|
* Ulrich Weigand (weigand@de.ibm.com)
|
|
* Martin Schwidefsky (schwidefsky@de.ibm.com)
|
|
*
|
|
* Derived from "include/asm-i386/pgtable.h"
|
|
*/
|
|
|
|
#ifndef _ASM_S390_PGTABLE_H
|
|
#define _ASM_S390_PGTABLE_H
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/radix-tree.h>
|
|
#include <linux/atomic.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/bug.h>
|
|
#include <asm/page.h>
|
|
#include <asm/uv.h>
|
|
|
|
extern pgd_t swapper_pg_dir[];
|
|
extern pgd_t invalid_pg_dir[];
|
|
extern void paging_init(void);
|
|
extern unsigned long s390_invalid_asce;
|
|
|
|
enum {
|
|
PG_DIRECT_MAP_4K = 0,
|
|
PG_DIRECT_MAP_1M,
|
|
PG_DIRECT_MAP_2G,
|
|
PG_DIRECT_MAP_MAX
|
|
};
|
|
|
|
extern atomic_long_t __bootdata_preserved(direct_pages_count[PG_DIRECT_MAP_MAX]);
|
|
|
|
static inline void update_page_count(int level, long count)
|
|
{
|
|
if (IS_ENABLED(CONFIG_PROC_FS))
|
|
atomic_long_add(count, &direct_pages_count[level]);
|
|
}
|
|
|
|
/*
|
|
* The S390 doesn't have any external MMU info: the kernel page
|
|
* tables contain all the necessary information.
|
|
*/
|
|
#define update_mmu_cache(vma, address, ptep) do { } while (0)
|
|
#define update_mmu_cache_range(vmf, vma, addr, ptep, nr) do { } while (0)
|
|
#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
|
|
|
|
/*
|
|
* ZERO_PAGE is a global shared page that is always zero; used
|
|
* for zero-mapped memory areas etc..
|
|
*/
|
|
|
|
extern unsigned long empty_zero_page;
|
|
extern unsigned long zero_page_mask;
|
|
|
|
#define ZERO_PAGE(vaddr) \
|
|
(virt_to_page((void *)(empty_zero_page + \
|
|
(((unsigned long)(vaddr)) &zero_page_mask))))
|
|
#define __HAVE_COLOR_ZERO_PAGE
|
|
|
|
/* TODO: s390 cannot support io_remap_pfn_range... */
|
|
|
|
#define pte_ERROR(e) \
|
|
pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
|
|
#define pmd_ERROR(e) \
|
|
pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
|
|
#define pud_ERROR(e) \
|
|
pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
|
|
#define p4d_ERROR(e) \
|
|
pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
|
|
#define pgd_ERROR(e) \
|
|
pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
|
|
|
|
/*
|
|
* The vmalloc and module area will always be on the topmost area of the
|
|
* kernel mapping. 512GB are reserved for vmalloc by default.
|
|
* At the top of the vmalloc area a 2GB area is reserved where modules
|
|
* will reside. That makes sure that inter module branches always
|
|
* happen without trampolines and in addition the placement within a
|
|
* 2GB frame is branch prediction unit friendly.
|
|
*/
|
|
extern unsigned long __bootdata_preserved(VMALLOC_START);
|
|
extern unsigned long __bootdata_preserved(VMALLOC_END);
|
|
#define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN)
|
|
extern struct page *__bootdata_preserved(vmemmap);
|
|
extern unsigned long __bootdata_preserved(vmemmap_size);
|
|
|
|
extern unsigned long __bootdata_preserved(MODULES_VADDR);
|
|
extern unsigned long __bootdata_preserved(MODULES_END);
|
|
#define MODULES_VADDR MODULES_VADDR
|
|
#define MODULES_END MODULES_END
|
|
#define MODULES_LEN (1UL << 31)
|
|
|
|
static inline int is_module_addr(void *addr)
|
|
{
|
|
BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
|
|
if (addr < (void *)MODULES_VADDR)
|
|
return 0;
|
|
if (addr > (void *)MODULES_END)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* A 64 bit pagetable entry of S390 has following format:
|
|
* | PFRA |0IPC| OS |
|
|
* 0000000000111111111122222222223333333333444444444455555555556666
|
|
* 0123456789012345678901234567890123456789012345678901234567890123
|
|
*
|
|
* I Page-Invalid Bit: Page is not available for address-translation
|
|
* P Page-Protection Bit: Store access not possible for page
|
|
* C Change-bit override: HW is not required to set change bit
|
|
*
|
|
* A 64 bit segmenttable entry of S390 has following format:
|
|
* | P-table origin | TT
|
|
* 0000000000111111111122222222223333333333444444444455555555556666
|
|
* 0123456789012345678901234567890123456789012345678901234567890123
|
|
*
|
|
* I Segment-Invalid Bit: Segment is not available for address-translation
|
|
* C Common-Segment Bit: Segment is not private (PoP 3-30)
|
|
* P Page-Protection Bit: Store access not possible for page
|
|
* TT Type 00
|
|
*
|
|
* A 64 bit region table entry of S390 has following format:
|
|
* | S-table origin | TF TTTL
|
|
* 0000000000111111111122222222223333333333444444444455555555556666
|
|
* 0123456789012345678901234567890123456789012345678901234567890123
|
|
*
|
|
* I Segment-Invalid Bit: Segment is not available for address-translation
|
|
* TT Type 01
|
|
* TF
|
|
* TL Table length
|
|
*
|
|
* The 64 bit regiontable origin of S390 has following format:
|
|
* | region table origon | DTTL
|
|
* 0000000000111111111122222222223333333333444444444455555555556666
|
|
* 0123456789012345678901234567890123456789012345678901234567890123
|
|
*
|
|
* X Space-Switch event:
|
|
* G Segment-Invalid Bit:
|
|
* P Private-Space Bit:
|
|
* S Storage-Alteration:
|
|
* R Real space
|
|
* TL Table-Length:
|
|
*
|
|
* A storage key has the following format:
|
|
* | ACC |F|R|C|0|
|
|
* 0 3 4 5 6 7
|
|
* ACC: access key
|
|
* F : fetch protection bit
|
|
* R : referenced bit
|
|
* C : changed bit
|
|
*/
|
|
|
|
/* Hardware bits in the page table entry */
|
|
#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
|
|
#define _PAGE_PROTECT 0x200 /* HW read-only bit */
|
|
#define _PAGE_INVALID 0x400 /* HW invalid bit */
|
|
#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
|
|
|
|
/* Software bits in the page table entry */
|
|
#define _PAGE_PRESENT 0x001 /* SW pte present bit */
|
|
#define _PAGE_YOUNG 0x004 /* SW pte young bit */
|
|
#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
|
|
#define _PAGE_READ 0x010 /* SW pte read bit */
|
|
#define _PAGE_WRITE 0x020 /* SW pte write bit */
|
|
#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
|
|
#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
|
|
|
|
#ifdef CONFIG_MEM_SOFT_DIRTY
|
|
#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
|
|
#else
|
|
#define _PAGE_SOFT_DIRTY 0x000
|
|
#endif
|
|
|
|
#define _PAGE_SW_BITS 0xffUL /* All SW bits */
|
|
|
|
#define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE /* SW pte exclusive swap bit */
|
|
|
|
/* Set of bits not changed in pte_modify */
|
|
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
|
|
_PAGE_YOUNG | _PAGE_SOFT_DIRTY)
|
|
|
|
/*
|
|
* Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT
|
|
* HW bit and all SW bits.
|
|
*/
|
|
#define _PAGE_RDP_MASK ~(_PAGE_PROTECT | _PAGE_SW_BITS)
|
|
|
|
/*
|
|
* handle_pte_fault uses pte_present and pte_none to find out the pte type
|
|
* WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
|
|
* distinguish present from not-present ptes. It is changed only with the page
|
|
* table lock held.
|
|
*
|
|
* The following table gives the different possible bit combinations for
|
|
* the pte hardware and software bits in the last 12 bits of a pte
|
|
* (. unassigned bit, x don't care, t swap type):
|
|
*
|
|
* 842100000000
|
|
* 000084210000
|
|
* 000000008421
|
|
* .IR.uswrdy.p
|
|
* empty .10.00000000
|
|
* swap .11..ttttt.0
|
|
* prot-none, clean, old .11.xx0000.1
|
|
* prot-none, clean, young .11.xx0001.1
|
|
* prot-none, dirty, old .11.xx0010.1
|
|
* prot-none, dirty, young .11.xx0011.1
|
|
* read-only, clean, old .11.xx0100.1
|
|
* read-only, clean, young .01.xx0101.1
|
|
* read-only, dirty, old .11.xx0110.1
|
|
* read-only, dirty, young .01.xx0111.1
|
|
* read-write, clean, old .11.xx1100.1
|
|
* read-write, clean, young .01.xx1101.1
|
|
* read-write, dirty, old .10.xx1110.1
|
|
* read-write, dirty, young .00.xx1111.1
|
|
* HW-bits: R read-only, I invalid
|
|
* SW-bits: p present, y young, d dirty, r read, w write, s special,
|
|
* u unused, l large
|
|
*
|
|
* pte_none is true for the bit pattern .10.00000000, pte == 0x400
|
|
* pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
|
|
* pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
|
|
*/
|
|
|
|
/* Bits in the segment/region table address-space-control-element */
|
|
#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
|
|
#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
|
|
#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
|
|
#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
|
|
#define _ASCE_REAL_SPACE 0x20 /* real space control */
|
|
#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
|
|
#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
|
|
#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
|
|
#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
|
|
#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
|
|
#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
|
|
|
|
/* Bits in the region table entry */
|
|
#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
|
|
#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
|
|
#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
|
|
#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
|
|
#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
|
|
#define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
|
|
#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
|
|
#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
|
|
#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
|
|
#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
|
|
|
|
#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
|
|
#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
|
|
#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
|
|
#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
|
|
#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
|
|
#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
|
|
|
|
#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
|
|
#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
|
|
#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
|
|
#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
|
|
#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
|
|
#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
|
|
|
|
#ifdef CONFIG_MEM_SOFT_DIRTY
|
|
#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
|
|
#else
|
|
#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
|
|
#endif
|
|
|
|
#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
|
|
|
|
/* Bits in the segment table entry */
|
|
#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
|
|
#define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
|
|
#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
|
|
#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
|
|
#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
|
|
#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
|
|
#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
|
|
#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
|
|
#define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
|
|
|
|
#define _SEGMENT_ENTRY (0)
|
|
#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
|
|
|
|
#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
|
|
#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
|
|
#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
|
|
#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
|
|
#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
|
|
|
|
#ifdef CONFIG_MEM_SOFT_DIRTY
|
|
#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
|
|
#else
|
|
#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
|
|
#endif
|
|
|
|
#define _CRST_ENTRIES 2048 /* number of region/segment table entries */
|
|
#define _PAGE_ENTRIES 256 /* number of page table entries */
|
|
|
|
#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
|
|
#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
|
|
|
|
#define _REGION1_SHIFT 53
|
|
#define _REGION2_SHIFT 42
|
|
#define _REGION3_SHIFT 31
|
|
#define _SEGMENT_SHIFT 20
|
|
|
|
#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
|
|
#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
|
|
#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
|
|
#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
|
|
#define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
|
|
|
|
#define _REGION1_SIZE (1UL << _REGION1_SHIFT)
|
|
#define _REGION2_SIZE (1UL << _REGION2_SHIFT)
|
|
#define _REGION3_SIZE (1UL << _REGION3_SHIFT)
|
|
#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
|
|
|
|
#define _REGION1_MASK (~(_REGION1_SIZE - 1))
|
|
#define _REGION2_MASK (~(_REGION2_SIZE - 1))
|
|
#define _REGION3_MASK (~(_REGION3_SIZE - 1))
|
|
#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
|
|
|
|
#define PMD_SHIFT _SEGMENT_SHIFT
|
|
#define PUD_SHIFT _REGION3_SHIFT
|
|
#define P4D_SHIFT _REGION2_SHIFT
|
|
#define PGDIR_SHIFT _REGION1_SHIFT
|
|
|
|
#define PMD_SIZE _SEGMENT_SIZE
|
|
#define PUD_SIZE _REGION3_SIZE
|
|
#define P4D_SIZE _REGION2_SIZE
|
|
#define PGDIR_SIZE _REGION1_SIZE
|
|
|
|
#define PMD_MASK _SEGMENT_MASK
|
|
#define PUD_MASK _REGION3_MASK
|
|
#define P4D_MASK _REGION2_MASK
|
|
#define PGDIR_MASK _REGION1_MASK
|
|
|
|
#define PTRS_PER_PTE _PAGE_ENTRIES
|
|
#define PTRS_PER_PMD _CRST_ENTRIES
|
|
#define PTRS_PER_PUD _CRST_ENTRIES
|
|
#define PTRS_PER_P4D _CRST_ENTRIES
|
|
#define PTRS_PER_PGD _CRST_ENTRIES
|
|
|
|
/*
|
|
* Segment table and region3 table entry encoding
|
|
* (R = read-only, I = invalid, y = young bit):
|
|
* dy..R...I...wr
|
|
* prot-none, clean, old 00..1...1...00
|
|
* prot-none, clean, young 01..1...1...00
|
|
* prot-none, dirty, old 10..1...1...00
|
|
* prot-none, dirty, young 11..1...1...00
|
|
* read-only, clean, old 00..1...1...01
|
|
* read-only, clean, young 01..1...0...01
|
|
* read-only, dirty, old 10..1...1...01
|
|
* read-only, dirty, young 11..1...0...01
|
|
* read-write, clean, old 00..1...1...11
|
|
* read-write, clean, young 01..1...0...11
|
|
* read-write, dirty, old 10..0...1...11
|
|
* read-write, dirty, young 11..0...0...11
|
|
* The segment table origin is used to distinguish empty (origin==0) from
|
|
* read-write, old segment table entries (origin!=0)
|
|
* HW-bits: R read-only, I invalid
|
|
* SW-bits: y young, d dirty, r read, w write
|
|
*/
|
|
|
|
/* Page status table bits for virtualization */
|
|
#define PGSTE_ACC_BITS 0xf000000000000000UL
|
|
#define PGSTE_FP_BIT 0x0800000000000000UL
|
|
#define PGSTE_PCL_BIT 0x0080000000000000UL
|
|
#define PGSTE_HR_BIT 0x0040000000000000UL
|
|
#define PGSTE_HC_BIT 0x0020000000000000UL
|
|
#define PGSTE_GR_BIT 0x0004000000000000UL
|
|
#define PGSTE_GC_BIT 0x0002000000000000UL
|
|
#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
|
|
#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
|
|
#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
|
|
|
|
/* Guest Page State used for virtualization */
|
|
#define _PGSTE_GPS_ZERO 0x0000000080000000UL
|
|
#define _PGSTE_GPS_NODAT 0x0000000040000000UL
|
|
#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
|
|
#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
|
|
#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
|
|
#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
|
|
#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
|
|
|
|
/*
|
|
* A user page table pointer has the space-switch-event bit, the
|
|
* private-space-control bit and the storage-alteration-event-control
|
|
* bit set. A kernel page table pointer doesn't need them.
|
|
*/
|
|
#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
|
|
_ASCE_ALT_EVENT)
|
|
|
|
/*
|
|
* Page protection definitions.
|
|
*/
|
|
#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
|
|
#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
|
|
_PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
|
|
#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
|
|
_PAGE_INVALID | _PAGE_PROTECT)
|
|
#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
|
|
_PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
|
|
#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
|
|
_PAGE_INVALID | _PAGE_PROTECT)
|
|
|
|
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
|
|
_PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
|
|
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
|
|
_PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
|
|
#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
|
|
_PAGE_PROTECT | _PAGE_NOEXEC)
|
|
#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
|
|
_PAGE_YOUNG | _PAGE_DIRTY)
|
|
|
|
/*
|
|
* On s390 the page table entry has an invalid bit and a read-only bit.
|
|
* Read permission implies execute permission and write permission
|
|
* implies read permission.
|
|
*/
|
|
/*xwr*/
|
|
|
|
/*
|
|
* Segment entry (large page) protection definitions.
|
|
*/
|
|
#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
|
|
_SEGMENT_ENTRY_PROTECT)
|
|
#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
|
|
_SEGMENT_ENTRY_READ | \
|
|
_SEGMENT_ENTRY_NOEXEC)
|
|
#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
|
|
_SEGMENT_ENTRY_READ)
|
|
#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
|
|
_SEGMENT_ENTRY_WRITE | \
|
|
_SEGMENT_ENTRY_NOEXEC)
|
|
#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
|
|
_SEGMENT_ENTRY_WRITE)
|
|
#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
|
|
_SEGMENT_ENTRY_LARGE | \
|
|
_SEGMENT_ENTRY_READ | \
|
|
_SEGMENT_ENTRY_WRITE | \
|
|
_SEGMENT_ENTRY_YOUNG | \
|
|
_SEGMENT_ENTRY_DIRTY | \
|
|
_SEGMENT_ENTRY_NOEXEC)
|
|
#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
|
|
_SEGMENT_ENTRY_LARGE | \
|
|
_SEGMENT_ENTRY_READ | \
|
|
_SEGMENT_ENTRY_YOUNG | \
|
|
_SEGMENT_ENTRY_PROTECT | \
|
|
_SEGMENT_ENTRY_NOEXEC)
|
|
#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
|
|
_SEGMENT_ENTRY_LARGE | \
|
|
_SEGMENT_ENTRY_READ | \
|
|
_SEGMENT_ENTRY_WRITE | \
|
|
_SEGMENT_ENTRY_YOUNG | \
|
|
_SEGMENT_ENTRY_DIRTY)
|
|
|
|
/*
|
|
* Region3 entry (large page) protection definitions.
|
|
*/
|
|
|
|
#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
|
|
_REGION3_ENTRY_LARGE | \
|
|
_REGION3_ENTRY_READ | \
|
|
_REGION3_ENTRY_WRITE | \
|
|
_REGION3_ENTRY_YOUNG | \
|
|
_REGION3_ENTRY_DIRTY | \
|
|
_REGION_ENTRY_NOEXEC)
|
|
#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
|
|
_REGION3_ENTRY_LARGE | \
|
|
_REGION3_ENTRY_READ | \
|
|
_REGION3_ENTRY_YOUNG | \
|
|
_REGION_ENTRY_PROTECT | \
|
|
_REGION_ENTRY_NOEXEC)
|
|
#define REGION3_KERNEL_EXEC __pgprot(_REGION_ENTRY_TYPE_R3 | \
|
|
_REGION3_ENTRY_LARGE | \
|
|
_REGION3_ENTRY_READ | \
|
|
_REGION3_ENTRY_WRITE | \
|
|
_REGION3_ENTRY_YOUNG | \
|
|
_REGION3_ENTRY_DIRTY)
|
|
|
|
static inline bool mm_p4d_folded(struct mm_struct *mm)
|
|
{
|
|
return mm->context.asce_limit <= _REGION1_SIZE;
|
|
}
|
|
#define mm_p4d_folded(mm) mm_p4d_folded(mm)
|
|
|
|
static inline bool mm_pud_folded(struct mm_struct *mm)
|
|
{
|
|
return mm->context.asce_limit <= _REGION2_SIZE;
|
|
}
|
|
#define mm_pud_folded(mm) mm_pud_folded(mm)
|
|
|
|
static inline bool mm_pmd_folded(struct mm_struct *mm)
|
|
{
|
|
return mm->context.asce_limit <= _REGION3_SIZE;
|
|
}
|
|
#define mm_pmd_folded(mm) mm_pmd_folded(mm)
|
|
|
|
static inline int mm_has_pgste(struct mm_struct *mm)
|
|
{
|
|
#ifdef CONFIG_PGSTE
|
|
if (unlikely(mm->context.has_pgste))
|
|
return 1;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static inline int mm_is_protected(struct mm_struct *mm)
|
|
{
|
|
#ifdef CONFIG_PGSTE
|
|
if (unlikely(atomic_read(&mm->context.protected_count)))
|
|
return 1;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static inline int mm_alloc_pgste(struct mm_struct *mm)
|
|
{
|
|
#ifdef CONFIG_PGSTE
|
|
if (unlikely(mm->context.alloc_pgste))
|
|
return 1;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
|
|
{
|
|
return __pte(pte_val(pte) & ~pgprot_val(prot));
|
|
}
|
|
|
|
static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
|
|
{
|
|
return __pte(pte_val(pte) | pgprot_val(prot));
|
|
}
|
|
|
|
static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
|
|
{
|
|
return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
|
|
}
|
|
|
|
static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
|
|
{
|
|
return __pmd(pmd_val(pmd) | pgprot_val(prot));
|
|
}
|
|
|
|
static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
|
|
{
|
|
return __pud(pud_val(pud) & ~pgprot_val(prot));
|
|
}
|
|
|
|
static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
|
|
{
|
|
return __pud(pud_val(pud) | pgprot_val(prot));
|
|
}
|
|
|
|
/*
|
|
* In the case that a guest uses storage keys
|
|
* faults should no longer be backed by zero pages
|
|
*/
|
|
#define mm_forbids_zeropage mm_has_pgste
|
|
static inline int mm_uses_skeys(struct mm_struct *mm)
|
|
{
|
|
#ifdef CONFIG_PGSTE
|
|
if (mm->context.uses_skeys)
|
|
return 1;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
|
|
{
|
|
union register_pair r1 = { .even = old, .odd = new, };
|
|
unsigned long address = (unsigned long)ptr | 1;
|
|
|
|
asm volatile(
|
|
" csp %[r1],%[address]"
|
|
: [r1] "+&d" (r1.pair), "+m" (*ptr)
|
|
: [address] "d" (address)
|
|
: "cc");
|
|
}
|
|
|
|
static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
|
|
{
|
|
union register_pair r1 = { .even = old, .odd = new, };
|
|
unsigned long address = (unsigned long)ptr | 1;
|
|
|
|
asm volatile(
|
|
" cspg %[r1],%[address]"
|
|
: [r1] "+&d" (r1.pair), "+m" (*ptr)
|
|
: [address] "d" (address)
|
|
: "cc");
|
|
}
|
|
|
|
#define CRDTE_DTT_PAGE 0x00UL
|
|
#define CRDTE_DTT_SEGMENT 0x10UL
|
|
#define CRDTE_DTT_REGION3 0x14UL
|
|
#define CRDTE_DTT_REGION2 0x18UL
|
|
#define CRDTE_DTT_REGION1 0x1cUL
|
|
|
|
static inline void crdte(unsigned long old, unsigned long new,
|
|
unsigned long *table, unsigned long dtt,
|
|
unsigned long address, unsigned long asce)
|
|
{
|
|
union register_pair r1 = { .even = old, .odd = new, };
|
|
union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
|
|
|
|
asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
|
|
: [r1] "+&d" (r1.pair)
|
|
: [r2] "d" (r2.pair), [asce] "a" (asce)
|
|
: "memory", "cc");
|
|
}
|
|
|
|
/*
|
|
* pgd/p4d/pud/pmd/pte query functions
|
|
*/
|
|
static inline int pgd_folded(pgd_t pgd)
|
|
{
|
|
return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
|
|
}
|
|
|
|
static inline int pgd_present(pgd_t pgd)
|
|
{
|
|
if (pgd_folded(pgd))
|
|
return 1;
|
|
return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
|
|
}
|
|
|
|
static inline int pgd_none(pgd_t pgd)
|
|
{
|
|
if (pgd_folded(pgd))
|
|
return 0;
|
|
return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
|
|
}
|
|
|
|
static inline int pgd_bad(pgd_t pgd)
|
|
{
|
|
if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
|
|
return 0;
|
|
return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
|
|
}
|
|
|
|
static inline unsigned long pgd_pfn(pgd_t pgd)
|
|
{
|
|
unsigned long origin_mask;
|
|
|
|
origin_mask = _REGION_ENTRY_ORIGIN;
|
|
return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
|
|
}
|
|
|
|
static inline int p4d_folded(p4d_t p4d)
|
|
{
|
|
return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
|
|
}
|
|
|
|
static inline int p4d_present(p4d_t p4d)
|
|
{
|
|
if (p4d_folded(p4d))
|
|
return 1;
|
|
return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
|
|
}
|
|
|
|
static inline int p4d_none(p4d_t p4d)
|
|
{
|
|
if (p4d_folded(p4d))
|
|
return 0;
|
|
return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
|
|
}
|
|
|
|
static inline unsigned long p4d_pfn(p4d_t p4d)
|
|
{
|
|
unsigned long origin_mask;
|
|
|
|
origin_mask = _REGION_ENTRY_ORIGIN;
|
|
return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
|
|
}
|
|
|
|
static inline int pud_folded(pud_t pud)
|
|
{
|
|
return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
|
|
}
|
|
|
|
static inline int pud_present(pud_t pud)
|
|
{
|
|
if (pud_folded(pud))
|
|
return 1;
|
|
return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
|
|
}
|
|
|
|
static inline int pud_none(pud_t pud)
|
|
{
|
|
if (pud_folded(pud))
|
|
return 0;
|
|
return pud_val(pud) == _REGION3_ENTRY_EMPTY;
|
|
}
|
|
|
|
#define pud_leaf pud_large
|
|
static inline int pud_large(pud_t pud)
|
|
{
|
|
if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
|
|
return 0;
|
|
return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
|
|
}
|
|
|
|
#define pmd_leaf pmd_large
|
|
static inline int pmd_large(pmd_t pmd)
|
|
{
|
|
return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
|
|
}
|
|
|
|
static inline int pmd_bad(pmd_t pmd)
|
|
{
|
|
if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
|
|
return 1;
|
|
return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
|
|
}
|
|
|
|
static inline int pud_bad(pud_t pud)
|
|
{
|
|
unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
|
|
|
|
if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
|
|
return 1;
|
|
if (type < _REGION_ENTRY_TYPE_R3)
|
|
return 0;
|
|
return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
|
|
}
|
|
|
|
static inline int p4d_bad(p4d_t p4d)
|
|
{
|
|
unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
|
|
|
|
if (type > _REGION_ENTRY_TYPE_R2)
|
|
return 1;
|
|
if (type < _REGION_ENTRY_TYPE_R2)
|
|
return 0;
|
|
return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
|
|
}
|
|
|
|
static inline int pmd_present(pmd_t pmd)
|
|
{
|
|
return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
|
|
}
|
|
|
|
static inline int pmd_none(pmd_t pmd)
|
|
{
|
|
return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
|
|
}
|
|
|
|
#define pmd_write pmd_write
|
|
static inline int pmd_write(pmd_t pmd)
|
|
{
|
|
return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
|
|
}
|
|
|
|
#define pud_write pud_write
|
|
static inline int pud_write(pud_t pud)
|
|
{
|
|
return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
|
|
}
|
|
|
|
static inline int pmd_dirty(pmd_t pmd)
|
|
{
|
|
return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
|
|
}
|
|
|
|
#define pmd_young pmd_young
|
|
static inline int pmd_young(pmd_t pmd)
|
|
{
|
|
return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
|
|
}
|
|
|
|
static inline int pte_present(pte_t pte)
|
|
{
|
|
/* Bit pattern: (pte & 0x001) == 0x001 */
|
|
return (pte_val(pte) & _PAGE_PRESENT) != 0;
|
|
}
|
|
|
|
static inline int pte_none(pte_t pte)
|
|
{
|
|
/* Bit pattern: pte == 0x400 */
|
|
return pte_val(pte) == _PAGE_INVALID;
|
|
}
|
|
|
|
static inline int pte_swap(pte_t pte)
|
|
{
|
|
/* Bit pattern: (pte & 0x201) == 0x200 */
|
|
return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
|
|
== _PAGE_PROTECT;
|
|
}
|
|
|
|
static inline int pte_special(pte_t pte)
|
|
{
|
|
return (pte_val(pte) & _PAGE_SPECIAL);
|
|
}
|
|
|
|
#define __HAVE_ARCH_PTE_SAME
|
|
static inline int pte_same(pte_t a, pte_t b)
|
|
{
|
|
return pte_val(a) == pte_val(b);
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
static inline int pte_protnone(pte_t pte)
|
|
{
|
|
return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
|
|
}
|
|
|
|
static inline int pmd_protnone(pmd_t pmd)
|
|
{
|
|
/* pmd_large(pmd) implies pmd_present(pmd) */
|
|
return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
|
|
}
|
|
#endif
|
|
|
|
static inline int pte_swp_exclusive(pte_t pte)
|
|
{
|
|
return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
|
|
}
|
|
|
|
static inline pte_t pte_swp_mkexclusive(pte_t pte)
|
|
{
|
|
return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
|
|
}
|
|
|
|
static inline pte_t pte_swp_clear_exclusive(pte_t pte)
|
|
{
|
|
return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
|
|
}
|
|
|
|
static inline int pte_soft_dirty(pte_t pte)
|
|
{
|
|
return pte_val(pte) & _PAGE_SOFT_DIRTY;
|
|
}
|
|
#define pte_swp_soft_dirty pte_soft_dirty
|
|
|
|
static inline pte_t pte_mksoft_dirty(pte_t pte)
|
|
{
|
|
return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
|
|
}
|
|
#define pte_swp_mksoft_dirty pte_mksoft_dirty
|
|
|
|
static inline pte_t pte_clear_soft_dirty(pte_t pte)
|
|
{
|
|
return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
|
|
}
|
|
#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
|
|
|
|
static inline int pmd_soft_dirty(pmd_t pmd)
|
|
{
|
|
return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
|
|
}
|
|
|
|
static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
|
|
{
|
|
return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
|
|
}
|
|
|
|
static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
|
|
{
|
|
return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
|
|
}
|
|
|
|
/*
|
|
* query functions pte_write/pte_dirty/pte_young only work if
|
|
* pte_present() is true. Undefined behaviour if not..
|
|
*/
|
|
static inline int pte_write(pte_t pte)
|
|
{
|
|
return (pte_val(pte) & _PAGE_WRITE) != 0;
|
|
}
|
|
|
|
static inline int pte_dirty(pte_t pte)
|
|
{
|
|
return (pte_val(pte) & _PAGE_DIRTY) != 0;
|
|
}
|
|
|
|
static inline int pte_young(pte_t pte)
|
|
{
|
|
return (pte_val(pte) & _PAGE_YOUNG) != 0;
|
|
}
|
|
|
|
#define __HAVE_ARCH_PTE_UNUSED
|
|
static inline int pte_unused(pte_t pte)
|
|
{
|
|
return pte_val(pte) & _PAGE_UNUSED;
|
|
}
|
|
|
|
/*
|
|
* Extract the pgprot value from the given pte while at the same time making it
|
|
* usable for kernel address space mappings where fault driven dirty and
|
|
* young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
|
|
* must not be set.
|
|
*/
|
|
static inline pgprot_t pte_pgprot(pte_t pte)
|
|
{
|
|
unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
|
|
|
|
if (pte_write(pte))
|
|
pte_flags |= pgprot_val(PAGE_KERNEL);
|
|
else
|
|
pte_flags |= pgprot_val(PAGE_KERNEL_RO);
|
|
pte_flags |= pte_val(pte) & mio_wb_bit_mask;
|
|
|
|
return __pgprot(pte_flags);
|
|
}
|
|
|
|
/*
|
|
* pgd/pmd/pte modification functions
|
|
*/
|
|
|
|
static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
|
|
{
|
|
WRITE_ONCE(*pgdp, pgd);
|
|
}
|
|
|
|
static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
|
|
{
|
|
WRITE_ONCE(*p4dp, p4d);
|
|
}
|
|
|
|
static inline void set_pud(pud_t *pudp, pud_t pud)
|
|
{
|
|
WRITE_ONCE(*pudp, pud);
|
|
}
|
|
|
|
static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
|
|
{
|
|
WRITE_ONCE(*pmdp, pmd);
|
|
}
|
|
|
|
static inline void set_pte(pte_t *ptep, pte_t pte)
|
|
{
|
|
WRITE_ONCE(*ptep, pte);
|
|
}
|
|
|
|
static inline void pgd_clear(pgd_t *pgd)
|
|
{
|
|
if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
|
|
set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
|
|
}
|
|
|
|
static inline void p4d_clear(p4d_t *p4d)
|
|
{
|
|
if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
|
|
set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
|
|
}
|
|
|
|
static inline void pud_clear(pud_t *pud)
|
|
{
|
|
if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
|
|
set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
|
|
}
|
|
|
|
static inline void pmd_clear(pmd_t *pmdp)
|
|
{
|
|
set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
|
|
}
|
|
|
|
static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
|
|
{
|
|
set_pte(ptep, __pte(_PAGE_INVALID));
|
|
}
|
|
|
|
/*
|
|
* The following pte modification functions only work if
|
|
* pte_present() is true. Undefined behaviour if not..
|
|
*/
|
|
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
|
{
|
|
pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
|
|
pte = set_pte_bit(pte, newprot);
|
|
/*
|
|
* newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
|
|
* has the invalid bit set, clear it again for readable, young pages
|
|
*/
|
|
if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
|
|
pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
|
|
/*
|
|
* newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
|
|
* protection bit set, clear it again for writable, dirty pages
|
|
*/
|
|
if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
|
|
pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
|
|
return pte;
|
|
}
|
|
|
|
static inline pte_t pte_wrprotect(pte_t pte)
|
|
{
|
|
pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
|
|
return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
|
|
}
|
|
|
|
static inline pte_t pte_mkwrite_novma(pte_t pte)
|
|
{
|
|
pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
|
|
if (pte_val(pte) & _PAGE_DIRTY)
|
|
pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
|
|
return pte;
|
|
}
|
|
|
|
static inline pte_t pte_mkclean(pte_t pte)
|
|
{
|
|
pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
|
|
return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
|
|
}
|
|
|
|
static inline pte_t pte_mkdirty(pte_t pte)
|
|
{
|
|
pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
|
|
if (pte_val(pte) & _PAGE_WRITE)
|
|
pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
|
|
return pte;
|
|
}
|
|
|
|
static inline pte_t pte_mkold(pte_t pte)
|
|
{
|
|
pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
|
|
return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
|
|
}
|
|
|
|
static inline pte_t pte_mkyoung(pte_t pte)
|
|
{
|
|
pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
|
|
if (pte_val(pte) & _PAGE_READ)
|
|
pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
|
|
return pte;
|
|
}
|
|
|
|
static inline pte_t pte_mkspecial(pte_t pte)
|
|
{
|
|
return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
|
|
}
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
static inline pte_t pte_mkhuge(pte_t pte)
|
|
{
|
|
return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
|
|
}
|
|
#endif
|
|
|
|
#define IPTE_GLOBAL 0
|
|
#define IPTE_LOCAL 1
|
|
|
|
#define IPTE_NODAT 0x400
|
|
#define IPTE_GUEST_ASCE 0x800
|
|
|
|
static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep,
|
|
unsigned long opt, unsigned long asce,
|
|
int local)
|
|
{
|
|
unsigned long pto;
|
|
|
|
pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1);
|
|
asm volatile(".insn rrf,0xb98b0000,%[r1],%[r2],%[asce],%[m4]"
|
|
: "+m" (*ptep)
|
|
: [r1] "a" (pto), [r2] "a" ((addr & PAGE_MASK) | opt),
|
|
[asce] "a" (asce), [m4] "i" (local));
|
|
}
|
|
|
|
static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
|
|
unsigned long opt, unsigned long asce,
|
|
int local)
|
|
{
|
|
unsigned long pto = __pa(ptep);
|
|
|
|
if (__builtin_constant_p(opt) && opt == 0) {
|
|
/* Invalidation + TLB flush for the pte */
|
|
asm volatile(
|
|
" ipte %[r1],%[r2],0,%[m4]"
|
|
: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
|
|
[m4] "i" (local));
|
|
return;
|
|
}
|
|
|
|
/* Invalidate ptes with options + TLB flush of the ptes */
|
|
opt = opt | (asce & _ASCE_ORIGIN);
|
|
asm volatile(
|
|
" ipte %[r1],%[r2],%[r3],%[m4]"
|
|
: [r2] "+a" (address), [r3] "+a" (opt)
|
|
: [r1] "a" (pto), [m4] "i" (local) : "memory");
|
|
}
|
|
|
|
static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
|
|
pte_t *ptep, int local)
|
|
{
|
|
unsigned long pto = __pa(ptep);
|
|
|
|
/* Invalidate a range of ptes + TLB flush of the ptes */
|
|
do {
|
|
asm volatile(
|
|
" ipte %[r1],%[r2],%[r3],%[m4]"
|
|
: [r2] "+a" (address), [r3] "+a" (nr)
|
|
: [r1] "a" (pto), [m4] "i" (local) : "memory");
|
|
} while (nr != 255);
|
|
}
|
|
|
|
/*
|
|
* This is hard to understand. ptep_get_and_clear and ptep_clear_flush
|
|
* both clear the TLB for the unmapped pte. The reason is that
|
|
* ptep_get_and_clear is used in common code (e.g. change_pte_range)
|
|
* to modify an active pte. The sequence is
|
|
* 1) ptep_get_and_clear
|
|
* 2) set_pte_at
|
|
* 3) flush_tlb_range
|
|
* On s390 the tlb needs to get flushed with the modification of the pte
|
|
* if the pte is active. The only way how this can be implemented is to
|
|
* have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
|
|
* is a nop.
|
|
*/
|
|
pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
|
|
pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
|
|
|
|
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
|
|
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep)
|
|
{
|
|
pte_t pte = *ptep;
|
|
|
|
pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
|
|
return pte_young(pte);
|
|
}
|
|
|
|
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
|
|
static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep)
|
|
{
|
|
return ptep_test_and_clear_young(vma, address, ptep);
|
|
}
|
|
|
|
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
|
|
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
|
|
unsigned long addr, pte_t *ptep)
|
|
{
|
|
pte_t res;
|
|
|
|
res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
|
|
/* At this point the reference through the mapping is still present */
|
|
if (mm_is_protected(mm) && pte_present(res))
|
|
uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
|
|
return res;
|
|
}
|
|
|
|
#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
|
|
pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
|
|
void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
|
|
pte_t *, pte_t, pte_t);
|
|
|
|
#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
|
|
static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep)
|
|
{
|
|
pte_t res;
|
|
|
|
res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
|
|
/* At this point the reference through the mapping is still present */
|
|
if (mm_is_protected(vma->vm_mm) && pte_present(res))
|
|
uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* The batched pte unmap code uses ptep_get_and_clear_full to clear the
|
|
* ptes. Here an optimization is possible. tlb_gather_mmu flushes all
|
|
* tlbs of an mm if it can guarantee that the ptes of the mm_struct
|
|
* cannot be accessed while the batched unmap is running. In this case
|
|
* full==1 and a simple pte_clear is enough. See tlb.h.
|
|
*/
|
|
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
|
|
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
|
|
unsigned long addr,
|
|
pte_t *ptep, int full)
|
|
{
|
|
pte_t res;
|
|
|
|
if (full) {
|
|
res = *ptep;
|
|
set_pte(ptep, __pte(_PAGE_INVALID));
|
|
} else {
|
|
res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
|
|
}
|
|
/* Nothing to do */
|
|
if (!mm_is_protected(mm) || !pte_present(res))
|
|
return res;
|
|
/*
|
|
* At this point the reference through the mapping is still present.
|
|
* The notifier should have destroyed all protected vCPUs at this
|
|
* point, so the destroy should be successful.
|
|
*/
|
|
if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK))
|
|
return res;
|
|
/*
|
|
* If something went wrong and the page could not be destroyed, or
|
|
* if this is not a mm teardown, the slower export is used as
|
|
* fallback instead.
|
|
*/
|
|
uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
|
|
return res;
|
|
}
|
|
|
|
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
|
|
static inline void ptep_set_wrprotect(struct mm_struct *mm,
|
|
unsigned long addr, pte_t *ptep)
|
|
{
|
|
pte_t pte = *ptep;
|
|
|
|
if (pte_write(pte))
|
|
ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
|
|
}
|
|
|
|
/*
|
|
* Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE
|
|
* bits in the comparison. Those might change e.g. because of dirty and young
|
|
* tracking.
|
|
*/
|
|
static inline int pte_allow_rdp(pte_t old, pte_t new)
|
|
{
|
|
/*
|
|
* Only allow changes from RO to RW
|
|
*/
|
|
if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT)
|
|
return 0;
|
|
|
|
return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK);
|
|
}
|
|
|
|
static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pte_t *ptep)
|
|
{
|
|
/*
|
|
* RDP might not have propagated the PTE protection reset to all CPUs,
|
|
* so there could be spurious TLB protection faults.
|
|
* NOTE: This will also be called when a racing pagetable update on
|
|
* another thread already installed the correct PTE. Both cases cannot
|
|
* really be distinguished.
|
|
* Therefore, only do the local TLB flush when RDP can be used, and the
|
|
* PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead.
|
|
* A local RDP can be used to do the flush.
|
|
*/
|
|
if (MACHINE_HAS_RDP && !(pte_val(*ptep) & _PAGE_PROTECT))
|
|
__ptep_rdp(address, ptep, 0, 0, 1);
|
|
}
|
|
#define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault
|
|
|
|
void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
|
|
pte_t new);
|
|
|
|
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
|
|
static inline int ptep_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep,
|
|
pte_t entry, int dirty)
|
|
{
|
|
if (pte_same(*ptep, entry))
|
|
return 0;
|
|
if (MACHINE_HAS_RDP && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry))
|
|
ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry);
|
|
else
|
|
ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Additional functions to handle KVM guest page tables
|
|
*/
|
|
void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep, pte_t entry);
|
|
void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
|
|
void ptep_notify(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep, unsigned long bits);
|
|
int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
|
|
pte_t *ptep, int prot, unsigned long bit);
|
|
void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep , int reset);
|
|
void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
|
|
int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
|
|
pte_t *sptep, pte_t *tptep, pte_t pte);
|
|
void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
|
|
|
|
bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
|
|
pte_t *ptep);
|
|
int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
|
|
unsigned char key, bool nq);
|
|
int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
|
|
unsigned char key, unsigned char *oldkey,
|
|
bool nq, bool mr, bool mc);
|
|
int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
|
|
int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
|
|
unsigned char *key);
|
|
|
|
int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
|
|
unsigned long bits, unsigned long value);
|
|
int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
|
|
int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
|
|
unsigned long *oldpte, unsigned long *oldpgste);
|
|
void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
|
|
void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
|
|
void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
|
|
void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
|
|
|
|
#define pgprot_writecombine pgprot_writecombine
|
|
pgprot_t pgprot_writecombine(pgprot_t prot);
|
|
|
|
#define pgprot_writethrough pgprot_writethrough
|
|
pgprot_t pgprot_writethrough(pgprot_t prot);
|
|
|
|
/*
|
|
* Set multiple PTEs to consecutive pages with a single call. All PTEs
|
|
* are within the same folio, PMD and VMA.
|
|
*/
|
|
static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep, pte_t entry, unsigned int nr)
|
|
{
|
|
if (pte_present(entry))
|
|
entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
|
|
if (mm_has_pgste(mm)) {
|
|
for (;;) {
|
|
ptep_set_pte_at(mm, addr, ptep, entry);
|
|
if (--nr == 0)
|
|
break;
|
|
ptep++;
|
|
entry = __pte(pte_val(entry) + PAGE_SIZE);
|
|
addr += PAGE_SIZE;
|
|
}
|
|
} else {
|
|
for (;;) {
|
|
set_pte(ptep, entry);
|
|
if (--nr == 0)
|
|
break;
|
|
ptep++;
|
|
entry = __pte(pte_val(entry) + PAGE_SIZE);
|
|
}
|
|
}
|
|
}
|
|
#define set_ptes set_ptes
|
|
|
|
/*
|
|
* Conversion functions: convert a page and protection to a page entry,
|
|
* and a page entry and page directory to the page they refer to.
|
|
*/
|
|
static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
|
|
{
|
|
pte_t __pte;
|
|
|
|
__pte = __pte(physpage | pgprot_val(pgprot));
|
|
if (!MACHINE_HAS_NX)
|
|
__pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC));
|
|
return pte_mkyoung(__pte);
|
|
}
|
|
|
|
static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
|
|
{
|
|
unsigned long physpage = page_to_phys(page);
|
|
pte_t __pte = mk_pte_phys(physpage, pgprot);
|
|
|
|
if (pte_write(__pte) && PageDirty(page))
|
|
__pte = pte_mkdirty(__pte);
|
|
return __pte;
|
|
}
|
|
|
|
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
|
|
#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
|
|
#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
|
|
#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
|
|
|
|
#define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
|
|
#define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
|
|
|
|
static inline unsigned long pmd_deref(pmd_t pmd)
|
|
{
|
|
unsigned long origin_mask;
|
|
|
|
origin_mask = _SEGMENT_ENTRY_ORIGIN;
|
|
if (pmd_large(pmd))
|
|
origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
|
|
return (unsigned long)__va(pmd_val(pmd) & origin_mask);
|
|
}
|
|
|
|
static inline unsigned long pmd_pfn(pmd_t pmd)
|
|
{
|
|
return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
|
|
}
|
|
|
|
static inline unsigned long pud_deref(pud_t pud)
|
|
{
|
|
unsigned long origin_mask;
|
|
|
|
origin_mask = _REGION_ENTRY_ORIGIN;
|
|
if (pud_large(pud))
|
|
origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
|
|
return (unsigned long)__va(pud_val(pud) & origin_mask);
|
|
}
|
|
|
|
static inline unsigned long pud_pfn(pud_t pud)
|
|
{
|
|
return __pa(pud_deref(pud)) >> PAGE_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* The pgd_offset function *always* adds the index for the top-level
|
|
* region/segment table. This is done to get a sequence like the
|
|
* following to work:
|
|
* pgdp = pgd_offset(current->mm, addr);
|
|
* pgd = READ_ONCE(*pgdp);
|
|
* p4dp = p4d_offset(&pgd, addr);
|
|
* ...
|
|
* The subsequent p4d_offset, pud_offset and pmd_offset functions
|
|
* only add an index if they dereferenced the pointer.
|
|
*/
|
|
static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
|
|
{
|
|
unsigned long rste;
|
|
unsigned int shift;
|
|
|
|
/* Get the first entry of the top level table */
|
|
rste = pgd_val(*pgd);
|
|
/* Pick up the shift from the table type of the first entry */
|
|
shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
|
|
return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
|
|
}
|
|
|
|
#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
|
|
|
|
static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
|
|
{
|
|
if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
|
|
return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
|
|
return (p4d_t *) pgdp;
|
|
}
|
|
#define p4d_offset_lockless p4d_offset_lockless
|
|
|
|
static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
|
|
{
|
|
return p4d_offset_lockless(pgdp, *pgdp, address);
|
|
}
|
|
|
|
static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
|
|
{
|
|
if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
|
|
return (pud_t *) p4d_deref(p4d) + pud_index(address);
|
|
return (pud_t *) p4dp;
|
|
}
|
|
#define pud_offset_lockless pud_offset_lockless
|
|
|
|
static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
|
|
{
|
|
return pud_offset_lockless(p4dp, *p4dp, address);
|
|
}
|
|
#define pud_offset pud_offset
|
|
|
|
static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
|
|
{
|
|
if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
|
|
return (pmd_t *) pud_deref(pud) + pmd_index(address);
|
|
return (pmd_t *) pudp;
|
|
}
|
|
#define pmd_offset_lockless pmd_offset_lockless
|
|
|
|
static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
|
|
{
|
|
return pmd_offset_lockless(pudp, *pudp, address);
|
|
}
|
|
#define pmd_offset pmd_offset
|
|
|
|
static inline unsigned long pmd_page_vaddr(pmd_t pmd)
|
|
{
|
|
return (unsigned long) pmd_deref(pmd);
|
|
}
|
|
|
|
static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
|
|
{
|
|
return end <= current->mm->context.asce_limit;
|
|
}
|
|
#define gup_fast_permitted gup_fast_permitted
|
|
|
|
#define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
|
|
#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
|
|
#define pte_page(x) pfn_to_page(pte_pfn(x))
|
|
|
|
#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
|
|
#define pud_page(pud) pfn_to_page(pud_pfn(pud))
|
|
#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
|
|
#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
|
|
|
|
static inline pmd_t pmd_wrprotect(pmd_t pmd)
|
|
{
|
|
pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
|
|
return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
|
|
}
|
|
|
|
static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
|
|
{
|
|
pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
|
|
if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
|
|
pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
|
|
return pmd;
|
|
}
|
|
|
|
static inline pmd_t pmd_mkclean(pmd_t pmd)
|
|
{
|
|
pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
|
|
return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
|
|
}
|
|
|
|
static inline pmd_t pmd_mkdirty(pmd_t pmd)
|
|
{
|
|
pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
|
|
if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
|
|
pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
|
|
return pmd;
|
|
}
|
|
|
|
static inline pud_t pud_wrprotect(pud_t pud)
|
|
{
|
|
pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
|
|
return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
|
|
}
|
|
|
|
static inline pud_t pud_mkwrite(pud_t pud)
|
|
{
|
|
pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
|
|
if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
|
|
pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
|
|
return pud;
|
|
}
|
|
|
|
static inline pud_t pud_mkclean(pud_t pud)
|
|
{
|
|
pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
|
|
return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
|
|
}
|
|
|
|
static inline pud_t pud_mkdirty(pud_t pud)
|
|
{
|
|
pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
|
|
if (pud_val(pud) & _REGION3_ENTRY_WRITE)
|
|
pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
|
|
return pud;
|
|
}
|
|
|
|
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
|
|
static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
|
|
{
|
|
/*
|
|
* pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
|
|
* (see __Pxxx / __Sxxx). Convert to segment table entry format.
|
|
*/
|
|
if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
|
|
return pgprot_val(SEGMENT_NONE);
|
|
if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
|
|
return pgprot_val(SEGMENT_RO);
|
|
if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
|
|
return pgprot_val(SEGMENT_RX);
|
|
if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
|
|
return pgprot_val(SEGMENT_RW);
|
|
return pgprot_val(SEGMENT_RWX);
|
|
}
|
|
|
|
static inline pmd_t pmd_mkyoung(pmd_t pmd)
|
|
{
|
|
pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
|
|
if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
|
|
pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
|
|
return pmd;
|
|
}
|
|
|
|
static inline pmd_t pmd_mkold(pmd_t pmd)
|
|
{
|
|
pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
|
|
return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
|
|
}
|
|
|
|
static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
|
|
{
|
|
unsigned long mask;
|
|
|
|
mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
|
|
mask |= _SEGMENT_ENTRY_DIRTY;
|
|
mask |= _SEGMENT_ENTRY_YOUNG;
|
|
mask |= _SEGMENT_ENTRY_LARGE;
|
|
mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
|
|
pmd = __pmd(pmd_val(pmd) & mask);
|
|
pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
|
|
if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
|
|
pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
|
|
if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
|
|
pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
|
|
return pmd;
|
|
}
|
|
|
|
static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
|
|
{
|
|
return __pmd(physpage + massage_pgprot_pmd(pgprot));
|
|
}
|
|
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
|
|
|
|
static inline void __pmdp_csp(pmd_t *pmdp)
|
|
{
|
|
csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
|
|
pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
|
|
}
|
|
|
|
#define IDTE_GLOBAL 0
|
|
#define IDTE_LOCAL 1
|
|
|
|
#define IDTE_PTOA 0x0800
|
|
#define IDTE_NODAT 0x1000
|
|
#define IDTE_GUEST_ASCE 0x2000
|
|
|
|
static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
|
|
unsigned long opt, unsigned long asce,
|
|
int local)
|
|
{
|
|
unsigned long sto;
|
|
|
|
sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
|
|
if (__builtin_constant_p(opt) && opt == 0) {
|
|
/* flush without guest asce */
|
|
asm volatile(
|
|
" idte %[r1],0,%[r2],%[m4]"
|
|
: "+m" (*pmdp)
|
|
: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
|
|
[m4] "i" (local)
|
|
: "cc" );
|
|
} else {
|
|
/* flush with guest asce */
|
|
asm volatile(
|
|
" idte %[r1],%[r3],%[r2],%[m4]"
|
|
: "+m" (*pmdp)
|
|
: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
|
|
[r3] "a" (asce), [m4] "i" (local)
|
|
: "cc" );
|
|
}
|
|
}
|
|
|
|
static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
|
|
unsigned long opt, unsigned long asce,
|
|
int local)
|
|
{
|
|
unsigned long r3o;
|
|
|
|
r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
|
|
r3o |= _ASCE_TYPE_REGION3;
|
|
if (__builtin_constant_p(opt) && opt == 0) {
|
|
/* flush without guest asce */
|
|
asm volatile(
|
|
" idte %[r1],0,%[r2],%[m4]"
|
|
: "+m" (*pudp)
|
|
: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
|
|
[m4] "i" (local)
|
|
: "cc");
|
|
} else {
|
|
/* flush with guest asce */
|
|
asm volatile(
|
|
" idte %[r1],%[r3],%[r2],%[m4]"
|
|
: "+m" (*pudp)
|
|
: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
|
|
[r3] "a" (asce), [m4] "i" (local)
|
|
: "cc" );
|
|
}
|
|
}
|
|
|
|
pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
|
|
pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
|
|
pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
#define __HAVE_ARCH_PGTABLE_DEPOSIT
|
|
void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
|
|
pgtable_t pgtable);
|
|
|
|
#define __HAVE_ARCH_PGTABLE_WITHDRAW
|
|
pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
|
|
|
|
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
|
|
static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long addr, pmd_t *pmdp,
|
|
pmd_t entry, int dirty)
|
|
{
|
|
VM_BUG_ON(addr & ~HPAGE_MASK);
|
|
|
|
entry = pmd_mkyoung(entry);
|
|
if (dirty)
|
|
entry = pmd_mkdirty(entry);
|
|
if (pmd_val(*pmdp) == pmd_val(entry))
|
|
return 0;
|
|
pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
|
|
return 1;
|
|
}
|
|
|
|
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
|
|
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long addr, pmd_t *pmdp)
|
|
{
|
|
pmd_t pmd = *pmdp;
|
|
|
|
pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
|
|
return pmd_young(pmd);
|
|
}
|
|
|
|
#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
|
|
static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
|
|
unsigned long addr, pmd_t *pmdp)
|
|
{
|
|
VM_BUG_ON(addr & ~HPAGE_MASK);
|
|
return pmdp_test_and_clear_young(vma, addr, pmdp);
|
|
}
|
|
|
|
static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
|
|
pmd_t *pmdp, pmd_t entry)
|
|
{
|
|
if (!MACHINE_HAS_NX)
|
|
entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC));
|
|
set_pmd(pmdp, entry);
|
|
}
|
|
|
|
static inline pmd_t pmd_mkhuge(pmd_t pmd)
|
|
{
|
|
pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
|
|
pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
|
|
return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
|
|
}
|
|
|
|
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
|
|
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
|
|
unsigned long addr, pmd_t *pmdp)
|
|
{
|
|
return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
|
|
}
|
|
|
|
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
|
|
static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
|
|
unsigned long addr,
|
|
pmd_t *pmdp, int full)
|
|
{
|
|
if (full) {
|
|
pmd_t pmd = *pmdp;
|
|
set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
|
|
return pmd;
|
|
}
|
|
return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
|
|
}
|
|
|
|
#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
|
|
static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
|
|
unsigned long addr, pmd_t *pmdp)
|
|
{
|
|
return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
|
|
}
|
|
|
|
#define __HAVE_ARCH_PMDP_INVALIDATE
|
|
static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
|
|
unsigned long addr, pmd_t *pmdp)
|
|
{
|
|
pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
|
|
|
|
return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
|
|
}
|
|
|
|
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
|
|
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
|
|
unsigned long addr, pmd_t *pmdp)
|
|
{
|
|
pmd_t pmd = *pmdp;
|
|
|
|
if (pmd_write(pmd))
|
|
pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
|
|
}
|
|
|
|
static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pmd_t *pmdp)
|
|
{
|
|
return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
|
|
}
|
|
#define pmdp_collapse_flush pmdp_collapse_flush
|
|
|
|
#define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
|
|
#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
|
|
|
|
static inline int pmd_trans_huge(pmd_t pmd)
|
|
{
|
|
return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
|
|
}
|
|
|
|
#define has_transparent_hugepage has_transparent_hugepage
|
|
static inline int has_transparent_hugepage(void)
|
|
{
|
|
return MACHINE_HAS_EDAT1 ? 1 : 0;
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
/*
|
|
* 64 bit swap entry format:
|
|
* A page-table entry has some bits we have to treat in a special way.
|
|
* Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
|
|
* as invalid.
|
|
* A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
|
|
* | offset |E11XX|type |S0|
|
|
* |0000000000111111111122222222223333333333444444444455|55555|55566|66|
|
|
* |0123456789012345678901234567890123456789012345678901|23456|78901|23|
|
|
*
|
|
* Bits 0-51 store the offset.
|
|
* Bit 52 (E) is used to remember PG_anon_exclusive.
|
|
* Bits 57-61 store the type.
|
|
* Bit 62 (S) is used for softdirty tracking.
|
|
* Bits 55 and 56 (X) are unused.
|
|
*/
|
|
|
|
#define __SWP_OFFSET_MASK ((1UL << 52) - 1)
|
|
#define __SWP_OFFSET_SHIFT 12
|
|
#define __SWP_TYPE_MASK ((1UL << 5) - 1)
|
|
#define __SWP_TYPE_SHIFT 2
|
|
|
|
static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
|
|
{
|
|
unsigned long pteval;
|
|
|
|
pteval = _PAGE_INVALID | _PAGE_PROTECT;
|
|
pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
|
|
pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
|
|
return __pte(pteval);
|
|
}
|
|
|
|
static inline unsigned long __swp_type(swp_entry_t entry)
|
|
{
|
|
return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
|
|
}
|
|
|
|
static inline unsigned long __swp_offset(swp_entry_t entry)
|
|
{
|
|
return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
|
|
}
|
|
|
|
static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
|
|
{
|
|
return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
|
|
}
|
|
|
|
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
|
|
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
|
|
|
|
extern int vmem_add_mapping(unsigned long start, unsigned long size);
|
|
extern void vmem_remove_mapping(unsigned long start, unsigned long size);
|
|
extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
|
|
extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
|
|
extern void vmem_unmap_4k_page(unsigned long addr);
|
|
extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
|
|
extern int s390_enable_sie(void);
|
|
extern int s390_enable_skey(void);
|
|
extern void s390_reset_cmma(struct mm_struct *mm);
|
|
|
|
/* s390 has a private copy of get unmapped area to deal with cache synonyms */
|
|
#define HAVE_ARCH_UNMAPPED_AREA
|
|
#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
|
|
|
|
#define pmd_pgtable(pmd) \
|
|
((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
|
|
|
|
#endif /* _S390_PAGE_H */
|