mirror of
https://github.com/torvalds/linux.git
synced 2024-12-21 10:31:54 +00:00
c254ffdefc
Avoid need for forward declarations by rearranging code. No functional change. Signed-off-by: Guenter Roeck <linux@roeck-us.net>
675 lines
20 KiB
C
675 lines
20 KiB
C
/*
|
|
* lm80.c - From lm_sensors, Linux kernel modules for hardware
|
|
* monitoring
|
|
* Copyright (C) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
|
|
* and Philip Edelbrock <phil@netroedge.com>
|
|
*
|
|
* Ported to Linux 2.6 by Tiago Sousa <mirage@kaotik.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/hwmon.h>
|
|
#include <linux/hwmon-sysfs.h>
|
|
#include <linux/err.h>
|
|
#include <linux/mutex.h>
|
|
|
|
/* Addresses to scan */
|
|
static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d,
|
|
0x2e, 0x2f, I2C_CLIENT_END };
|
|
|
|
/* Many LM80 constants specified below */
|
|
|
|
/* The LM80 registers */
|
|
#define LM80_REG_IN_MAX(nr) (0x2a + (nr) * 2)
|
|
#define LM80_REG_IN_MIN(nr) (0x2b + (nr) * 2)
|
|
#define LM80_REG_IN(nr) (0x20 + (nr))
|
|
|
|
#define LM80_REG_FAN1 0x28
|
|
#define LM80_REG_FAN2 0x29
|
|
#define LM80_REG_FAN_MIN(nr) (0x3b + (nr))
|
|
|
|
#define LM80_REG_TEMP 0x27
|
|
#define LM80_REG_TEMP_HOT_MAX 0x38
|
|
#define LM80_REG_TEMP_HOT_HYST 0x39
|
|
#define LM80_REG_TEMP_OS_MAX 0x3a
|
|
#define LM80_REG_TEMP_OS_HYST 0x3b
|
|
|
|
#define LM80_REG_CONFIG 0x00
|
|
#define LM80_REG_ALARM1 0x01
|
|
#define LM80_REG_ALARM2 0x02
|
|
#define LM80_REG_MASK1 0x03
|
|
#define LM80_REG_MASK2 0x04
|
|
#define LM80_REG_FANDIV 0x05
|
|
#define LM80_REG_RES 0x06
|
|
|
|
#define LM96080_REG_CONV_RATE 0x07
|
|
#define LM96080_REG_MAN_ID 0x3e
|
|
#define LM96080_REG_DEV_ID 0x3f
|
|
|
|
|
|
/*
|
|
* Conversions. Rounding and limit checking is only done on the TO_REG
|
|
* variants. Note that you should be a bit careful with which arguments
|
|
* these macros are called: arguments may be evaluated more than once.
|
|
* Fixing this is just not worth it.
|
|
*/
|
|
|
|
#define IN_TO_REG(val) (clamp_val(((val) + 5) / 10, 0, 255))
|
|
#define IN_FROM_REG(val) ((val) * 10)
|
|
|
|
static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div)
|
|
{
|
|
if (rpm == 0)
|
|
return 255;
|
|
rpm = clamp_val(rpm, 1, 1000000);
|
|
return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
|
|
}
|
|
|
|
#define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \
|
|
(val) == 255 ? 0 : 1350000/((div) * (val)))
|
|
|
|
#define TEMP_FROM_REG(reg) ((reg) * 125 / 32)
|
|
#define TEMP_TO_REG(temp) (DIV_ROUND_CLOSEST(clamp_val((temp), \
|
|
-128000, 127000), 1000) << 8)
|
|
|
|
#define DIV_FROM_REG(val) (1 << (val))
|
|
|
|
enum temp_index {
|
|
t_input = 0,
|
|
t_hot_max,
|
|
t_hot_hyst,
|
|
t_os_max,
|
|
t_os_hyst,
|
|
t_num_temp
|
|
};
|
|
|
|
static const u8 temp_regs[t_num_temp] = {
|
|
[t_input] = LM80_REG_TEMP,
|
|
[t_hot_max] = LM80_REG_TEMP_HOT_MAX,
|
|
[t_hot_hyst] = LM80_REG_TEMP_HOT_HYST,
|
|
[t_os_max] = LM80_REG_TEMP_OS_MAX,
|
|
[t_os_hyst] = LM80_REG_TEMP_OS_HYST,
|
|
};
|
|
|
|
enum in_index {
|
|
i_input = 0,
|
|
i_max,
|
|
i_min,
|
|
i_num_in
|
|
};
|
|
|
|
enum fan_index {
|
|
f_input,
|
|
f_min,
|
|
f_num_fan
|
|
};
|
|
|
|
/*
|
|
* Client data (each client gets its own)
|
|
*/
|
|
|
|
struct lm80_data {
|
|
struct i2c_client *client;
|
|
struct mutex update_lock;
|
|
char error; /* !=0 if error occurred during last update */
|
|
char valid; /* !=0 if following fields are valid */
|
|
unsigned long last_updated; /* In jiffies */
|
|
|
|
u8 in[i_num_in][7]; /* Register value, 1st index is enum in_index */
|
|
u8 fan[f_num_fan][2]; /* Register value, 1st index enum fan_index */
|
|
u8 fan_div[2]; /* Register encoding, shifted right */
|
|
s16 temp[t_num_temp]; /* Register values, normalized to 16 bit */
|
|
u16 alarms; /* Register encoding, combined */
|
|
};
|
|
|
|
static int lm80_read_value(struct i2c_client *client, u8 reg)
|
|
{
|
|
return i2c_smbus_read_byte_data(client, reg);
|
|
}
|
|
|
|
static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value)
|
|
{
|
|
return i2c_smbus_write_byte_data(client, reg, value);
|
|
}
|
|
|
|
/* Called when we have found a new LM80 and after read errors */
|
|
static void lm80_init_client(struct i2c_client *client)
|
|
{
|
|
/*
|
|
* Reset all except Watchdog values and last conversion values
|
|
* This sets fan-divs to 2, among others. This makes most other
|
|
* initializations unnecessary
|
|
*/
|
|
lm80_write_value(client, LM80_REG_CONFIG, 0x80);
|
|
/* Set 11-bit temperature resolution */
|
|
lm80_write_value(client, LM80_REG_RES, 0x08);
|
|
|
|
/* Start monitoring */
|
|
lm80_write_value(client, LM80_REG_CONFIG, 0x01);
|
|
}
|
|
|
|
static struct lm80_data *lm80_update_device(struct device *dev)
|
|
{
|
|
struct lm80_data *data = dev_get_drvdata(dev);
|
|
struct i2c_client *client = data->client;
|
|
int i;
|
|
int rv;
|
|
int prev_rv;
|
|
struct lm80_data *ret = data;
|
|
|
|
mutex_lock(&data->update_lock);
|
|
|
|
if (data->error)
|
|
lm80_init_client(client);
|
|
|
|
if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
|
|
dev_dbg(dev, "Starting lm80 update\n");
|
|
for (i = 0; i <= 6; i++) {
|
|
rv = lm80_read_value(client, LM80_REG_IN(i));
|
|
if (rv < 0)
|
|
goto abort;
|
|
data->in[i_input][i] = rv;
|
|
|
|
rv = lm80_read_value(client, LM80_REG_IN_MIN(i));
|
|
if (rv < 0)
|
|
goto abort;
|
|
data->in[i_min][i] = rv;
|
|
|
|
rv = lm80_read_value(client, LM80_REG_IN_MAX(i));
|
|
if (rv < 0)
|
|
goto abort;
|
|
data->in[i_max][i] = rv;
|
|
}
|
|
|
|
rv = lm80_read_value(client, LM80_REG_FAN1);
|
|
if (rv < 0)
|
|
goto abort;
|
|
data->fan[f_input][0] = rv;
|
|
|
|
rv = lm80_read_value(client, LM80_REG_FAN_MIN(1));
|
|
if (rv < 0)
|
|
goto abort;
|
|
data->fan[f_min][0] = rv;
|
|
|
|
rv = lm80_read_value(client, LM80_REG_FAN2);
|
|
if (rv < 0)
|
|
goto abort;
|
|
data->fan[f_input][1] = rv;
|
|
|
|
rv = lm80_read_value(client, LM80_REG_FAN_MIN(2));
|
|
if (rv < 0)
|
|
goto abort;
|
|
data->fan[f_min][1] = rv;
|
|
|
|
prev_rv = rv = lm80_read_value(client, LM80_REG_TEMP);
|
|
if (rv < 0)
|
|
goto abort;
|
|
rv = lm80_read_value(client, LM80_REG_RES);
|
|
if (rv < 0)
|
|
goto abort;
|
|
data->temp[t_input] = (prev_rv << 8) | (rv & 0xf0);
|
|
|
|
for (i = t_input + 1; i < t_num_temp; i++) {
|
|
rv = lm80_read_value(client, temp_regs[i]);
|
|
if (rv < 0)
|
|
goto abort;
|
|
data->temp[i] = rv << 8;
|
|
}
|
|
|
|
rv = lm80_read_value(client, LM80_REG_FANDIV);
|
|
if (rv < 0)
|
|
goto abort;
|
|
data->fan_div[0] = (rv >> 2) & 0x03;
|
|
data->fan_div[1] = (rv >> 4) & 0x03;
|
|
|
|
prev_rv = rv = lm80_read_value(client, LM80_REG_ALARM1);
|
|
if (rv < 0)
|
|
goto abort;
|
|
rv = lm80_read_value(client, LM80_REG_ALARM2);
|
|
if (rv < 0)
|
|
goto abort;
|
|
data->alarms = prev_rv + (rv << 8);
|
|
|
|
data->last_updated = jiffies;
|
|
data->valid = 1;
|
|
data->error = 0;
|
|
}
|
|
goto done;
|
|
|
|
abort:
|
|
ret = ERR_PTR(rv);
|
|
data->valid = 0;
|
|
data->error = 1;
|
|
|
|
done:
|
|
mutex_unlock(&data->update_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Sysfs stuff
|
|
*/
|
|
|
|
static ssize_t show_in(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct lm80_data *data = lm80_update_device(dev);
|
|
int index = to_sensor_dev_attr_2(attr)->index;
|
|
int nr = to_sensor_dev_attr_2(attr)->nr;
|
|
|
|
if (IS_ERR(data))
|
|
return PTR_ERR(data);
|
|
return sprintf(buf, "%d\n", IN_FROM_REG(data->in[nr][index]));
|
|
}
|
|
|
|
static ssize_t set_in(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct lm80_data *data = dev_get_drvdata(dev);
|
|
struct i2c_client *client = data->client;
|
|
int index = to_sensor_dev_attr_2(attr)->index;
|
|
int nr = to_sensor_dev_attr_2(attr)->nr;
|
|
long val;
|
|
u8 reg;
|
|
int err = kstrtol(buf, 10, &val);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
reg = nr == i_min ? LM80_REG_IN_MIN(index) : LM80_REG_IN_MAX(index);
|
|
|
|
mutex_lock(&data->update_lock);
|
|
data->in[nr][index] = IN_TO_REG(val);
|
|
lm80_write_value(client, reg, data->in[nr][index]);
|
|
mutex_unlock(&data->update_lock);
|
|
return count;
|
|
}
|
|
|
|
static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
int index = to_sensor_dev_attr_2(attr)->index;
|
|
int nr = to_sensor_dev_attr_2(attr)->nr;
|
|
struct lm80_data *data = lm80_update_device(dev);
|
|
if (IS_ERR(data))
|
|
return PTR_ERR(data);
|
|
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr][index],
|
|
DIV_FROM_REG(data->fan_div[index])));
|
|
}
|
|
|
|
static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
int nr = to_sensor_dev_attr(attr)->index;
|
|
struct lm80_data *data = lm80_update_device(dev);
|
|
if (IS_ERR(data))
|
|
return PTR_ERR(data);
|
|
return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
|
|
}
|
|
|
|
static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int index = to_sensor_dev_attr_2(attr)->index;
|
|
int nr = to_sensor_dev_attr_2(attr)->nr;
|
|
struct lm80_data *data = dev_get_drvdata(dev);
|
|
struct i2c_client *client = data->client;
|
|
unsigned long val;
|
|
int err = kstrtoul(buf, 10, &val);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
mutex_lock(&data->update_lock);
|
|
data->fan[nr][index] = FAN_TO_REG(val,
|
|
DIV_FROM_REG(data->fan_div[index]));
|
|
lm80_write_value(client, LM80_REG_FAN_MIN(index + 1),
|
|
data->fan[nr][index]);
|
|
mutex_unlock(&data->update_lock);
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Note: we save and restore the fan minimum here, because its value is
|
|
* determined in part by the fan divisor. This follows the principle of
|
|
* least surprise; the user doesn't expect the fan minimum to change just
|
|
* because the divisor changed.
|
|
*/
|
|
static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int nr = to_sensor_dev_attr(attr)->index;
|
|
struct lm80_data *data = dev_get_drvdata(dev);
|
|
struct i2c_client *client = data->client;
|
|
unsigned long min, val;
|
|
u8 reg;
|
|
int err = kstrtoul(buf, 10, &val);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
/* Save fan_min */
|
|
mutex_lock(&data->update_lock);
|
|
min = FAN_FROM_REG(data->fan[f_min][nr],
|
|
DIV_FROM_REG(data->fan_div[nr]));
|
|
|
|
switch (val) {
|
|
case 1:
|
|
data->fan_div[nr] = 0;
|
|
break;
|
|
case 2:
|
|
data->fan_div[nr] = 1;
|
|
break;
|
|
case 4:
|
|
data->fan_div[nr] = 2;
|
|
break;
|
|
case 8:
|
|
data->fan_div[nr] = 3;
|
|
break;
|
|
default:
|
|
dev_err(dev,
|
|
"fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n",
|
|
val);
|
|
mutex_unlock(&data->update_lock);
|
|
return -EINVAL;
|
|
}
|
|
|
|
reg = (lm80_read_value(client, LM80_REG_FANDIV) &
|
|
~(3 << (2 * (nr + 1)))) | (data->fan_div[nr] << (2 * (nr + 1)));
|
|
lm80_write_value(client, LM80_REG_FANDIV, reg);
|
|
|
|
/* Restore fan_min */
|
|
data->fan[f_min][nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
|
|
lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1),
|
|
data->fan[f_min][nr]);
|
|
mutex_unlock(&data->update_lock);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t show_temp(struct device *dev, struct device_attribute *devattr,
|
|
char *buf)
|
|
{
|
|
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
|
|
struct lm80_data *data = lm80_update_device(dev);
|
|
if (IS_ERR(data))
|
|
return PTR_ERR(data);
|
|
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[attr->index]));
|
|
}
|
|
|
|
static ssize_t set_temp(struct device *dev, struct device_attribute *devattr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
|
|
struct lm80_data *data = dev_get_drvdata(dev);
|
|
struct i2c_client *client = data->client;
|
|
int nr = attr->index;
|
|
long val;
|
|
int err = kstrtol(buf, 10, &val);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
mutex_lock(&data->update_lock);
|
|
data->temp[nr] = TEMP_TO_REG(val);
|
|
lm80_write_value(client, temp_regs[nr], data->temp[nr] >> 8);
|
|
mutex_unlock(&data->update_lock);
|
|
return count;
|
|
}
|
|
|
|
static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct lm80_data *data = lm80_update_device(dev);
|
|
if (IS_ERR(data))
|
|
return PTR_ERR(data);
|
|
return sprintf(buf, "%u\n", data->alarms);
|
|
}
|
|
|
|
static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
int bitnr = to_sensor_dev_attr(attr)->index;
|
|
struct lm80_data *data = lm80_update_device(dev);
|
|
if (IS_ERR(data))
|
|
return PTR_ERR(data);
|
|
return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
|
|
}
|
|
|
|
static SENSOR_DEVICE_ATTR_2(in0_min, S_IWUSR | S_IRUGO,
|
|
show_in, set_in, i_min, 0);
|
|
static SENSOR_DEVICE_ATTR_2(in1_min, S_IWUSR | S_IRUGO,
|
|
show_in, set_in, i_min, 1);
|
|
static SENSOR_DEVICE_ATTR_2(in2_min, S_IWUSR | S_IRUGO,
|
|
show_in, set_in, i_min, 2);
|
|
static SENSOR_DEVICE_ATTR_2(in3_min, S_IWUSR | S_IRUGO,
|
|
show_in, set_in, i_min, 3);
|
|
static SENSOR_DEVICE_ATTR_2(in4_min, S_IWUSR | S_IRUGO,
|
|
show_in, set_in, i_min, 4);
|
|
static SENSOR_DEVICE_ATTR_2(in5_min, S_IWUSR | S_IRUGO,
|
|
show_in, set_in, i_min, 5);
|
|
static SENSOR_DEVICE_ATTR_2(in6_min, S_IWUSR | S_IRUGO,
|
|
show_in, set_in, i_min, 6);
|
|
static SENSOR_DEVICE_ATTR_2(in0_max, S_IWUSR | S_IRUGO,
|
|
show_in, set_in, i_max, 0);
|
|
static SENSOR_DEVICE_ATTR_2(in1_max, S_IWUSR | S_IRUGO,
|
|
show_in, set_in, i_max, 1);
|
|
static SENSOR_DEVICE_ATTR_2(in2_max, S_IWUSR | S_IRUGO,
|
|
show_in, set_in, i_max, 2);
|
|
static SENSOR_DEVICE_ATTR_2(in3_max, S_IWUSR | S_IRUGO,
|
|
show_in, set_in, i_max, 3);
|
|
static SENSOR_DEVICE_ATTR_2(in4_max, S_IWUSR | S_IRUGO,
|
|
show_in, set_in, i_max, 4);
|
|
static SENSOR_DEVICE_ATTR_2(in5_max, S_IWUSR | S_IRUGO,
|
|
show_in, set_in, i_max, 5);
|
|
static SENSOR_DEVICE_ATTR_2(in6_max, S_IWUSR | S_IRUGO,
|
|
show_in, set_in, i_max, 6);
|
|
static SENSOR_DEVICE_ATTR_2(in0_input, S_IRUGO, show_in, NULL, i_input, 0);
|
|
static SENSOR_DEVICE_ATTR_2(in1_input, S_IRUGO, show_in, NULL, i_input, 1);
|
|
static SENSOR_DEVICE_ATTR_2(in2_input, S_IRUGO, show_in, NULL, i_input, 2);
|
|
static SENSOR_DEVICE_ATTR_2(in3_input, S_IRUGO, show_in, NULL, i_input, 3);
|
|
static SENSOR_DEVICE_ATTR_2(in4_input, S_IRUGO, show_in, NULL, i_input, 4);
|
|
static SENSOR_DEVICE_ATTR_2(in5_input, S_IRUGO, show_in, NULL, i_input, 5);
|
|
static SENSOR_DEVICE_ATTR_2(in6_input, S_IRUGO, show_in, NULL, i_input, 6);
|
|
static SENSOR_DEVICE_ATTR_2(fan1_min, S_IWUSR | S_IRUGO,
|
|
show_fan, set_fan_min, f_min, 0);
|
|
static SENSOR_DEVICE_ATTR_2(fan2_min, S_IWUSR | S_IRUGO,
|
|
show_fan, set_fan_min, f_min, 1);
|
|
static SENSOR_DEVICE_ATTR_2(fan1_input, S_IRUGO, show_fan, NULL, f_input, 0);
|
|
static SENSOR_DEVICE_ATTR_2(fan2_input, S_IRUGO, show_fan, NULL, f_input, 1);
|
|
static SENSOR_DEVICE_ATTR(fan1_div, S_IWUSR | S_IRUGO,
|
|
show_fan_div, set_fan_div, 0);
|
|
static SENSOR_DEVICE_ATTR(fan2_div, S_IWUSR | S_IRUGO,
|
|
show_fan_div, set_fan_div, 1);
|
|
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, t_input);
|
|
static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp,
|
|
set_temp, t_hot_max);
|
|
static SENSOR_DEVICE_ATTR(temp1_max_hyst, S_IWUSR | S_IRUGO, show_temp,
|
|
set_temp, t_hot_hyst);
|
|
static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp,
|
|
set_temp, t_os_max);
|
|
static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temp,
|
|
set_temp, t_os_hyst);
|
|
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
|
|
static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
|
|
static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
|
|
static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
|
|
static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
|
|
static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 4);
|
|
static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 5);
|
|
static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 6);
|
|
static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
|
|
static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
|
|
static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 8);
|
|
static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 13);
|
|
|
|
/*
|
|
* Real code
|
|
*/
|
|
|
|
static struct attribute *lm80_attrs[] = {
|
|
&sensor_dev_attr_in0_min.dev_attr.attr,
|
|
&sensor_dev_attr_in1_min.dev_attr.attr,
|
|
&sensor_dev_attr_in2_min.dev_attr.attr,
|
|
&sensor_dev_attr_in3_min.dev_attr.attr,
|
|
&sensor_dev_attr_in4_min.dev_attr.attr,
|
|
&sensor_dev_attr_in5_min.dev_attr.attr,
|
|
&sensor_dev_attr_in6_min.dev_attr.attr,
|
|
&sensor_dev_attr_in0_max.dev_attr.attr,
|
|
&sensor_dev_attr_in1_max.dev_attr.attr,
|
|
&sensor_dev_attr_in2_max.dev_attr.attr,
|
|
&sensor_dev_attr_in3_max.dev_attr.attr,
|
|
&sensor_dev_attr_in4_max.dev_attr.attr,
|
|
&sensor_dev_attr_in5_max.dev_attr.attr,
|
|
&sensor_dev_attr_in6_max.dev_attr.attr,
|
|
&sensor_dev_attr_in0_input.dev_attr.attr,
|
|
&sensor_dev_attr_in1_input.dev_attr.attr,
|
|
&sensor_dev_attr_in2_input.dev_attr.attr,
|
|
&sensor_dev_attr_in3_input.dev_attr.attr,
|
|
&sensor_dev_attr_in4_input.dev_attr.attr,
|
|
&sensor_dev_attr_in5_input.dev_attr.attr,
|
|
&sensor_dev_attr_in6_input.dev_attr.attr,
|
|
&sensor_dev_attr_fan1_min.dev_attr.attr,
|
|
&sensor_dev_attr_fan2_min.dev_attr.attr,
|
|
&sensor_dev_attr_fan1_input.dev_attr.attr,
|
|
&sensor_dev_attr_fan2_input.dev_attr.attr,
|
|
&sensor_dev_attr_fan1_div.dev_attr.attr,
|
|
&sensor_dev_attr_fan2_div.dev_attr.attr,
|
|
&sensor_dev_attr_temp1_input.dev_attr.attr,
|
|
&sensor_dev_attr_temp1_max.dev_attr.attr,
|
|
&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
|
|
&sensor_dev_attr_temp1_crit.dev_attr.attr,
|
|
&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
|
|
&dev_attr_alarms.attr,
|
|
&sensor_dev_attr_in0_alarm.dev_attr.attr,
|
|
&sensor_dev_attr_in1_alarm.dev_attr.attr,
|
|
&sensor_dev_attr_in2_alarm.dev_attr.attr,
|
|
&sensor_dev_attr_in3_alarm.dev_attr.attr,
|
|
&sensor_dev_attr_in4_alarm.dev_attr.attr,
|
|
&sensor_dev_attr_in5_alarm.dev_attr.attr,
|
|
&sensor_dev_attr_in6_alarm.dev_attr.attr,
|
|
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
|
|
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
|
|
&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
|
|
&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
|
|
NULL
|
|
};
|
|
ATTRIBUTE_GROUPS(lm80);
|
|
|
|
/* Return 0 if detection is successful, -ENODEV otherwise */
|
|
static int lm80_detect(struct i2c_client *client, struct i2c_board_info *info)
|
|
{
|
|
struct i2c_adapter *adapter = client->adapter;
|
|
int i, cur, man_id, dev_id;
|
|
const char *name = NULL;
|
|
|
|
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
|
|
return -ENODEV;
|
|
|
|
/* First check for unused bits, common to both chip types */
|
|
if ((lm80_read_value(client, LM80_REG_ALARM2) & 0xc0)
|
|
|| (lm80_read_value(client, LM80_REG_CONFIG) & 0x80))
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* The LM96080 has manufacturer and stepping/die rev registers so we
|
|
* can just check that. The LM80 does not have such registers so we
|
|
* have to use a more expensive trick.
|
|
*/
|
|
man_id = lm80_read_value(client, LM96080_REG_MAN_ID);
|
|
dev_id = lm80_read_value(client, LM96080_REG_DEV_ID);
|
|
if (man_id == 0x01 && dev_id == 0x08) {
|
|
/* Check more unused bits for confirmation */
|
|
if (lm80_read_value(client, LM96080_REG_CONV_RATE) & 0xfe)
|
|
return -ENODEV;
|
|
|
|
name = "lm96080";
|
|
} else {
|
|
/* Check 6-bit addressing */
|
|
for (i = 0x2a; i <= 0x3d; i++) {
|
|
cur = i2c_smbus_read_byte_data(client, i);
|
|
if ((i2c_smbus_read_byte_data(client, i + 0x40) != cur)
|
|
|| (i2c_smbus_read_byte_data(client, i + 0x80) != cur)
|
|
|| (i2c_smbus_read_byte_data(client, i + 0xc0) != cur))
|
|
return -ENODEV;
|
|
}
|
|
|
|
name = "lm80";
|
|
}
|
|
|
|
strlcpy(info->type, name, I2C_NAME_SIZE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int lm80_probe(struct i2c_client *client,
|
|
const struct i2c_device_id *id)
|
|
{
|
|
struct device *dev = &client->dev;
|
|
struct device *hwmon_dev;
|
|
struct lm80_data *data;
|
|
|
|
data = devm_kzalloc(dev, sizeof(struct lm80_data), GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
data->client = client;
|
|
mutex_init(&data->update_lock);
|
|
|
|
/* Initialize the LM80 chip */
|
|
lm80_init_client(client);
|
|
|
|
/* A few vars need to be filled upon startup */
|
|
data->fan[f_min][0] = lm80_read_value(client, LM80_REG_FAN_MIN(1));
|
|
data->fan[f_min][1] = lm80_read_value(client, LM80_REG_FAN_MIN(2));
|
|
|
|
hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
|
|
data, lm80_groups);
|
|
|
|
return PTR_ERR_OR_ZERO(hwmon_dev);
|
|
}
|
|
|
|
/*
|
|
* Driver data (common to all clients)
|
|
*/
|
|
|
|
static const struct i2c_device_id lm80_id[] = {
|
|
{ "lm80", 0 },
|
|
{ "lm96080", 1 },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(i2c, lm80_id);
|
|
|
|
static struct i2c_driver lm80_driver = {
|
|
.class = I2C_CLASS_HWMON,
|
|
.driver = {
|
|
.name = "lm80",
|
|
},
|
|
.probe = lm80_probe,
|
|
.id_table = lm80_id,
|
|
.detect = lm80_detect,
|
|
.address_list = normal_i2c,
|
|
};
|
|
|
|
module_i2c_driver(lm80_driver);
|
|
|
|
MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and "
|
|
"Philip Edelbrock <phil@netroedge.com>");
|
|
MODULE_DESCRIPTION("LM80 driver");
|
|
MODULE_LICENSE("GPL");
|