mirror of
https://github.com/torvalds/linux.git
synced 2024-12-22 10:56:40 +00:00
0b3f9c757c
If the PCI channel has gone down, don't attempt to poke the hardware. We need to guard every time cxl_whatever_(read|write) is called. This is because a call to those functions will dereference an offset into an mmio register, and the mmio mappings get invalidated in the EEH teardown. Check in the read/write functions in the header. We give them the same semantics as usual PCI operations: - a write to a channel that is down is ignored. - a read from a channel that is down returns all fs. Also, we try to access the MMIO space of a vPHB device as part of the PCI disable path. Because that's a read that bypasses most of our usual checks, we handle it explicitly. As far as user visible warnings go: - Check link state in file ops, return -EIO if down. - Be reasonably quiet if there's an error in a teardown path, or when we already know the hardware is going down. - Throw a big WARN if someone tries to start a CXL operation while the card is down. This gives a useful stacktrace for debugging whatever is doing that. Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
272 lines
6.9 KiB
C
272 lines
6.9 KiB
C
/*
|
|
* Copyright 2014 IBM Corp.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/pid.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/idr.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/current.h>
|
|
#include <asm/copro.h>
|
|
|
|
#include "cxl.h"
|
|
|
|
/*
|
|
* Allocates space for a CXL context.
|
|
*/
|
|
struct cxl_context *cxl_context_alloc(void)
|
|
{
|
|
return kzalloc(sizeof(struct cxl_context), GFP_KERNEL);
|
|
}
|
|
|
|
/*
|
|
* Initialises a CXL context.
|
|
*/
|
|
int cxl_context_init(struct cxl_context *ctx, struct cxl_afu *afu, bool master,
|
|
struct address_space *mapping)
|
|
{
|
|
int i;
|
|
|
|
spin_lock_init(&ctx->sste_lock);
|
|
ctx->afu = afu;
|
|
ctx->master = master;
|
|
ctx->pid = NULL; /* Set in start work ioctl */
|
|
mutex_init(&ctx->mapping_lock);
|
|
ctx->mapping = mapping;
|
|
|
|
/*
|
|
* Allocate the segment table before we put it in the IDR so that we
|
|
* can always access it when dereferenced from IDR. For the same
|
|
* reason, the segment table is only destroyed after the context is
|
|
* removed from the IDR. Access to this in the IOCTL is protected by
|
|
* Linux filesytem symantics (can't IOCTL until open is complete).
|
|
*/
|
|
i = cxl_alloc_sst(ctx);
|
|
if (i)
|
|
return i;
|
|
|
|
INIT_WORK(&ctx->fault_work, cxl_handle_fault);
|
|
|
|
init_waitqueue_head(&ctx->wq);
|
|
spin_lock_init(&ctx->lock);
|
|
|
|
ctx->irq_bitmap = NULL;
|
|
ctx->pending_irq = false;
|
|
ctx->pending_fault = false;
|
|
ctx->pending_afu_err = false;
|
|
|
|
/*
|
|
* When we have to destroy all contexts in cxl_context_detach_all() we
|
|
* end up with afu_release_irqs() called from inside a
|
|
* idr_for_each_entry(). Hence we need to make sure that anything
|
|
* dereferenced from this IDR is ok before we allocate the IDR here.
|
|
* This clears out the IRQ ranges to ensure this.
|
|
*/
|
|
for (i = 0; i < CXL_IRQ_RANGES; i++)
|
|
ctx->irqs.range[i] = 0;
|
|
|
|
mutex_init(&ctx->status_mutex);
|
|
|
|
ctx->status = OPENED;
|
|
|
|
/*
|
|
* Allocating IDR! We better make sure everything's setup that
|
|
* dereferences from it.
|
|
*/
|
|
mutex_lock(&afu->contexts_lock);
|
|
idr_preload(GFP_KERNEL);
|
|
i = idr_alloc(&ctx->afu->contexts_idr, ctx, 0,
|
|
ctx->afu->num_procs, GFP_NOWAIT);
|
|
idr_preload_end();
|
|
mutex_unlock(&afu->contexts_lock);
|
|
if (i < 0)
|
|
return i;
|
|
|
|
ctx->pe = i;
|
|
ctx->elem = &ctx->afu->spa[i];
|
|
ctx->pe_inserted = false;
|
|
return 0;
|
|
}
|
|
|
|
static int cxl_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct cxl_context *ctx = vma->vm_file->private_data;
|
|
unsigned long address = (unsigned long)vmf->virtual_address;
|
|
u64 area, offset;
|
|
|
|
offset = vmf->pgoff << PAGE_SHIFT;
|
|
|
|
pr_devel("%s: pe: %i address: 0x%lx offset: 0x%llx\n",
|
|
__func__, ctx->pe, address, offset);
|
|
|
|
if (ctx->afu->current_mode == CXL_MODE_DEDICATED) {
|
|
area = ctx->afu->psn_phys;
|
|
if (offset >= ctx->afu->adapter->ps_size)
|
|
return VM_FAULT_SIGBUS;
|
|
} else {
|
|
area = ctx->psn_phys;
|
|
if (offset >= ctx->psn_size)
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
mutex_lock(&ctx->status_mutex);
|
|
|
|
if (ctx->status != STARTED) {
|
|
mutex_unlock(&ctx->status_mutex);
|
|
pr_devel("%s: Context not started, failing problem state access\n", __func__);
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
|
|
|
|
mutex_unlock(&ctx->status_mutex);
|
|
|
|
return VM_FAULT_NOPAGE;
|
|
}
|
|
|
|
static const struct vm_operations_struct cxl_mmap_vmops = {
|
|
.fault = cxl_mmap_fault,
|
|
};
|
|
|
|
/*
|
|
* Map a per-context mmio space into the given vma.
|
|
*/
|
|
int cxl_context_iomap(struct cxl_context *ctx, struct vm_area_struct *vma)
|
|
{
|
|
u64 start = vma->vm_pgoff << PAGE_SHIFT;
|
|
u64 len = vma->vm_end - vma->vm_start;
|
|
|
|
if (ctx->afu->current_mode == CXL_MODE_DEDICATED) {
|
|
if (start + len > ctx->afu->adapter->ps_size)
|
|
return -EINVAL;
|
|
} else {
|
|
if (start + len > ctx->psn_size)
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ctx->afu->current_mode != CXL_MODE_DEDICATED) {
|
|
/* make sure there is a valid per process space for this AFU */
|
|
if ((ctx->master && !ctx->afu->psa) || (!ctx->afu->pp_psa)) {
|
|
pr_devel("AFU doesn't support mmio space\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Can't mmap until the AFU is enabled */
|
|
if (!ctx->afu->enabled)
|
|
return -EBUSY;
|
|
}
|
|
|
|
pr_devel("%s: mmio physical: %llx pe: %i master:%i\n", __func__,
|
|
ctx->psn_phys, ctx->pe , ctx->master);
|
|
|
|
vma->vm_flags |= VM_IO | VM_PFNMAP;
|
|
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
|
vma->vm_ops = &cxl_mmap_vmops;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Detach a context from the hardware. This disables interrupts and doesn't
|
|
* return until all outstanding interrupts for this context have completed. The
|
|
* hardware should no longer access *ctx after this has returned.
|
|
*/
|
|
int __detach_context(struct cxl_context *ctx)
|
|
{
|
|
enum cxl_context_status status;
|
|
|
|
mutex_lock(&ctx->status_mutex);
|
|
status = ctx->status;
|
|
ctx->status = CLOSED;
|
|
mutex_unlock(&ctx->status_mutex);
|
|
if (status != STARTED)
|
|
return -EBUSY;
|
|
|
|
/* Only warn if we detached while the link was OK.
|
|
* If detach fails when hw is down, we don't care.
|
|
*/
|
|
WARN_ON(cxl_detach_process(ctx) &&
|
|
cxl_adapter_link_ok(ctx->afu->adapter));
|
|
flush_work(&ctx->fault_work); /* Only needed for dedicated process */
|
|
put_pid(ctx->pid);
|
|
cxl_ctx_put();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Detach the given context from the AFU. This doesn't actually
|
|
* free the context but it should stop the context running in hardware
|
|
* (ie. prevent this context from generating any further interrupts
|
|
* so that it can be freed).
|
|
*/
|
|
void cxl_context_detach(struct cxl_context *ctx)
|
|
{
|
|
int rc;
|
|
|
|
rc = __detach_context(ctx);
|
|
if (rc)
|
|
return;
|
|
|
|
afu_release_irqs(ctx, ctx);
|
|
wake_up_all(&ctx->wq);
|
|
}
|
|
|
|
/*
|
|
* Detach all contexts on the given AFU.
|
|
*/
|
|
void cxl_context_detach_all(struct cxl_afu *afu)
|
|
{
|
|
struct cxl_context *ctx;
|
|
int tmp;
|
|
|
|
mutex_lock(&afu->contexts_lock);
|
|
idr_for_each_entry(&afu->contexts_idr, ctx, tmp) {
|
|
/*
|
|
* Anything done in here needs to be setup before the IDR is
|
|
* created and torn down after the IDR removed
|
|
*/
|
|
cxl_context_detach(ctx);
|
|
|
|
/*
|
|
* We are force detaching - remove any active PSA mappings so
|
|
* userspace cannot interfere with the card if it comes back.
|
|
* Easiest way to exercise this is to unbind and rebind the
|
|
* driver via sysfs while it is in use.
|
|
*/
|
|
mutex_lock(&ctx->mapping_lock);
|
|
if (ctx->mapping)
|
|
unmap_mapping_range(ctx->mapping, 0, 0, 1);
|
|
mutex_unlock(&ctx->mapping_lock);
|
|
}
|
|
mutex_unlock(&afu->contexts_lock);
|
|
}
|
|
|
|
static void reclaim_ctx(struct rcu_head *rcu)
|
|
{
|
|
struct cxl_context *ctx = container_of(rcu, struct cxl_context, rcu);
|
|
|
|
free_page((u64)ctx->sstp);
|
|
ctx->sstp = NULL;
|
|
|
|
kfree(ctx);
|
|
}
|
|
|
|
void cxl_context_free(struct cxl_context *ctx)
|
|
{
|
|
mutex_lock(&ctx->afu->contexts_lock);
|
|
idr_remove(&ctx->afu->contexts_idr, ctx->pe);
|
|
mutex_unlock(&ctx->afu->contexts_lock);
|
|
call_rcu(&ctx->rcu, reclaim_ctx);
|
|
}
|