mirror of
https://github.com/torvalds/linux.git
synced 2024-12-29 22:31:32 +00:00
d3575156f6
Tree manipulating operations like merging nodes often release once-allocated tree nodes. Such nodes are cleaned so that pages in the node are not uselessly written out. On zoned volumes, however, such optimization blocks the following IOs as the cancellation of the write out of the freed blocks breaks the sequential write sequence expected by the device. Introduce a list of clean and unwritten extent buffers that have been released in a transaction. Redirty the buffers so that btree_write_cache_pages() can send proper bios to the devices. Besides it clears the entire content of the extent buffer not to confuse raw block scanners e.g. 'btrfs check'. By clearing the content, csum_dirty_buffer() complains about bytenr mismatch, so avoid the checking and checksum using newly introduced buffer flag EXTENT_BUFFER_NO_CHECK. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2489 lines
70 KiB
C
2489 lines
70 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/uuid.h>
|
|
#include "misc.h"
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "locking.h"
|
|
#include "tree-log.h"
|
|
#include "volumes.h"
|
|
#include "dev-replace.h"
|
|
#include "qgroup.h"
|
|
#include "block-group.h"
|
|
#include "space-info.h"
|
|
#include "zoned.h"
|
|
|
|
#define BTRFS_ROOT_TRANS_TAG 0
|
|
|
|
/*
|
|
* Transaction states and transitions
|
|
*
|
|
* No running transaction (fs tree blocks are not modified)
|
|
* |
|
|
* | To next stage:
|
|
* | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
|
|
* V
|
|
* Transaction N [[TRANS_STATE_RUNNING]]
|
|
* |
|
|
* | New trans handles can be attached to transaction N by calling all
|
|
* | start_transaction() variants.
|
|
* |
|
|
* | To next stage:
|
|
* | Call btrfs_commit_transaction() on any trans handle attached to
|
|
* | transaction N
|
|
* V
|
|
* Transaction N [[TRANS_STATE_COMMIT_START]]
|
|
* |
|
|
* | Will wait for previous running transaction to completely finish if there
|
|
* | is one
|
|
* |
|
|
* | Then one of the following happes:
|
|
* | - Wait for all other trans handle holders to release.
|
|
* | The btrfs_commit_transaction() caller will do the commit work.
|
|
* | - Wait for current transaction to be committed by others.
|
|
* | Other btrfs_commit_transaction() caller will do the commit work.
|
|
* |
|
|
* | At this stage, only btrfs_join_transaction*() variants can attach
|
|
* | to this running transaction.
|
|
* | All other variants will wait for current one to finish and attach to
|
|
* | transaction N+1.
|
|
* |
|
|
* | To next stage:
|
|
* | Caller is chosen to commit transaction N, and all other trans handle
|
|
* | haven been released.
|
|
* V
|
|
* Transaction N [[TRANS_STATE_COMMIT_DOING]]
|
|
* |
|
|
* | The heavy lifting transaction work is started.
|
|
* | From running delayed refs (modifying extent tree) to creating pending
|
|
* | snapshots, running qgroups.
|
|
* | In short, modify supporting trees to reflect modifications of subvolume
|
|
* | trees.
|
|
* |
|
|
* | At this stage, all start_transaction() calls will wait for this
|
|
* | transaction to finish and attach to transaction N+1.
|
|
* |
|
|
* | To next stage:
|
|
* | Until all supporting trees are updated.
|
|
* V
|
|
* Transaction N [[TRANS_STATE_UNBLOCKED]]
|
|
* | Transaction N+1
|
|
* | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
|
|
* | need to write them back to disk and update |
|
|
* | super blocks. |
|
|
* | |
|
|
* | At this stage, new transaction is allowed to |
|
|
* | start. |
|
|
* | All new start_transaction() calls will be |
|
|
* | attached to transid N+1. |
|
|
* | |
|
|
* | To next stage: |
|
|
* | Until all tree blocks are super blocks are |
|
|
* | written to block devices |
|
|
* V |
|
|
* Transaction N [[TRANS_STATE_COMPLETED]] V
|
|
* All tree blocks and super blocks are written. Transaction N+1
|
|
* This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
|
|
* data structures will be cleaned up. | Life goes on
|
|
*/
|
|
static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
|
|
[TRANS_STATE_RUNNING] = 0U,
|
|
[TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
|
|
[TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
|
|
__TRANS_ATTACH |
|
|
__TRANS_JOIN |
|
|
__TRANS_JOIN_NOSTART),
|
|
[TRANS_STATE_UNBLOCKED] = (__TRANS_START |
|
|
__TRANS_ATTACH |
|
|
__TRANS_JOIN |
|
|
__TRANS_JOIN_NOLOCK |
|
|
__TRANS_JOIN_NOSTART),
|
|
[TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
|
|
__TRANS_ATTACH |
|
|
__TRANS_JOIN |
|
|
__TRANS_JOIN_NOLOCK |
|
|
__TRANS_JOIN_NOSTART),
|
|
[TRANS_STATE_COMPLETED] = (__TRANS_START |
|
|
__TRANS_ATTACH |
|
|
__TRANS_JOIN |
|
|
__TRANS_JOIN_NOLOCK |
|
|
__TRANS_JOIN_NOSTART),
|
|
};
|
|
|
|
void btrfs_put_transaction(struct btrfs_transaction *transaction)
|
|
{
|
|
WARN_ON(refcount_read(&transaction->use_count) == 0);
|
|
if (refcount_dec_and_test(&transaction->use_count)) {
|
|
BUG_ON(!list_empty(&transaction->list));
|
|
WARN_ON(!RB_EMPTY_ROOT(
|
|
&transaction->delayed_refs.href_root.rb_root));
|
|
WARN_ON(!RB_EMPTY_ROOT(
|
|
&transaction->delayed_refs.dirty_extent_root));
|
|
if (transaction->delayed_refs.pending_csums)
|
|
btrfs_err(transaction->fs_info,
|
|
"pending csums is %llu",
|
|
transaction->delayed_refs.pending_csums);
|
|
/*
|
|
* If any block groups are found in ->deleted_bgs then it's
|
|
* because the transaction was aborted and a commit did not
|
|
* happen (things failed before writing the new superblock
|
|
* and calling btrfs_finish_extent_commit()), so we can not
|
|
* discard the physical locations of the block groups.
|
|
*/
|
|
while (!list_empty(&transaction->deleted_bgs)) {
|
|
struct btrfs_block_group *cache;
|
|
|
|
cache = list_first_entry(&transaction->deleted_bgs,
|
|
struct btrfs_block_group,
|
|
bg_list);
|
|
list_del_init(&cache->bg_list);
|
|
btrfs_unfreeze_block_group(cache);
|
|
btrfs_put_block_group(cache);
|
|
}
|
|
WARN_ON(!list_empty(&transaction->dev_update_list));
|
|
kfree(transaction);
|
|
}
|
|
}
|
|
|
|
static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_root *root, *tmp;
|
|
struct btrfs_caching_control *caching_ctl, *next;
|
|
|
|
down_write(&fs_info->commit_root_sem);
|
|
list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
|
|
dirty_list) {
|
|
list_del_init(&root->dirty_list);
|
|
free_extent_buffer(root->commit_root);
|
|
root->commit_root = btrfs_root_node(root);
|
|
extent_io_tree_release(&root->dirty_log_pages);
|
|
btrfs_qgroup_clean_swapped_blocks(root);
|
|
}
|
|
|
|
/* We can free old roots now. */
|
|
spin_lock(&cur_trans->dropped_roots_lock);
|
|
while (!list_empty(&cur_trans->dropped_roots)) {
|
|
root = list_first_entry(&cur_trans->dropped_roots,
|
|
struct btrfs_root, root_list);
|
|
list_del_init(&root->root_list);
|
|
spin_unlock(&cur_trans->dropped_roots_lock);
|
|
btrfs_free_log(trans, root);
|
|
btrfs_drop_and_free_fs_root(fs_info, root);
|
|
spin_lock(&cur_trans->dropped_roots_lock);
|
|
}
|
|
spin_unlock(&cur_trans->dropped_roots_lock);
|
|
|
|
/*
|
|
* We have to update the last_byte_to_unpin under the commit_root_sem,
|
|
* at the same time we swap out the commit roots.
|
|
*
|
|
* This is because we must have a real view of the last spot the caching
|
|
* kthreads were while caching. Consider the following views of the
|
|
* extent tree for a block group
|
|
*
|
|
* commit root
|
|
* +----+----+----+----+----+----+----+
|
|
* |\\\\| |\\\\|\\\\| |\\\\|\\\\|
|
|
* +----+----+----+----+----+----+----+
|
|
* 0 1 2 3 4 5 6 7
|
|
*
|
|
* new commit root
|
|
* +----+----+----+----+----+----+----+
|
|
* | | | |\\\\| | |\\\\|
|
|
* +----+----+----+----+----+----+----+
|
|
* 0 1 2 3 4 5 6 7
|
|
*
|
|
* If the cache_ctl->progress was at 3, then we are only allowed to
|
|
* unpin [0,1) and [2,3], because the caching thread has already
|
|
* processed those extents. We are not allowed to unpin [5,6), because
|
|
* the caching thread will re-start it's search from 3, and thus find
|
|
* the hole from [4,6) to add to the free space cache.
|
|
*/
|
|
spin_lock(&fs_info->block_group_cache_lock);
|
|
list_for_each_entry_safe(caching_ctl, next,
|
|
&fs_info->caching_block_groups, list) {
|
|
struct btrfs_block_group *cache = caching_ctl->block_group;
|
|
|
|
if (btrfs_block_group_done(cache)) {
|
|
cache->last_byte_to_unpin = (u64)-1;
|
|
list_del_init(&caching_ctl->list);
|
|
btrfs_put_caching_control(caching_ctl);
|
|
} else {
|
|
cache->last_byte_to_unpin = caching_ctl->progress;
|
|
}
|
|
}
|
|
spin_unlock(&fs_info->block_group_cache_lock);
|
|
up_write(&fs_info->commit_root_sem);
|
|
}
|
|
|
|
static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
|
|
unsigned int type)
|
|
{
|
|
if (type & TRANS_EXTWRITERS)
|
|
atomic_inc(&trans->num_extwriters);
|
|
}
|
|
|
|
static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
|
|
unsigned int type)
|
|
{
|
|
if (type & TRANS_EXTWRITERS)
|
|
atomic_dec(&trans->num_extwriters);
|
|
}
|
|
|
|
static inline void extwriter_counter_init(struct btrfs_transaction *trans,
|
|
unsigned int type)
|
|
{
|
|
atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
|
|
}
|
|
|
|
static inline int extwriter_counter_read(struct btrfs_transaction *trans)
|
|
{
|
|
return atomic_read(&trans->num_extwriters);
|
|
}
|
|
|
|
/*
|
|
* To be called after all the new block groups attached to the transaction
|
|
* handle have been created (btrfs_create_pending_block_groups()).
|
|
*/
|
|
void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
|
|
if (!trans->chunk_bytes_reserved)
|
|
return;
|
|
|
|
WARN_ON_ONCE(!list_empty(&trans->new_bgs));
|
|
|
|
btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
|
|
trans->chunk_bytes_reserved, NULL);
|
|
trans->chunk_bytes_reserved = 0;
|
|
}
|
|
|
|
/*
|
|
* either allocate a new transaction or hop into the existing one
|
|
*/
|
|
static noinline int join_transaction(struct btrfs_fs_info *fs_info,
|
|
unsigned int type)
|
|
{
|
|
struct btrfs_transaction *cur_trans;
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
loop:
|
|
/* The file system has been taken offline. No new transactions. */
|
|
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
return -EROFS;
|
|
}
|
|
|
|
cur_trans = fs_info->running_transaction;
|
|
if (cur_trans) {
|
|
if (TRANS_ABORTED(cur_trans)) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
return cur_trans->aborted;
|
|
}
|
|
if (btrfs_blocked_trans_types[cur_trans->state] & type) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
return -EBUSY;
|
|
}
|
|
refcount_inc(&cur_trans->use_count);
|
|
atomic_inc(&cur_trans->num_writers);
|
|
extwriter_counter_inc(cur_trans, type);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
return 0;
|
|
}
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
/*
|
|
* If we are ATTACH, we just want to catch the current transaction,
|
|
* and commit it. If there is no transaction, just return ENOENT.
|
|
*/
|
|
if (type == TRANS_ATTACH)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* JOIN_NOLOCK only happens during the transaction commit, so
|
|
* it is impossible that ->running_transaction is NULL
|
|
*/
|
|
BUG_ON(type == TRANS_JOIN_NOLOCK);
|
|
|
|
cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
|
|
if (!cur_trans)
|
|
return -ENOMEM;
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
if (fs_info->running_transaction) {
|
|
/*
|
|
* someone started a transaction after we unlocked. Make sure
|
|
* to redo the checks above
|
|
*/
|
|
kfree(cur_trans);
|
|
goto loop;
|
|
} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
kfree(cur_trans);
|
|
return -EROFS;
|
|
}
|
|
|
|
cur_trans->fs_info = fs_info;
|
|
atomic_set(&cur_trans->pending_ordered, 0);
|
|
init_waitqueue_head(&cur_trans->pending_wait);
|
|
atomic_set(&cur_trans->num_writers, 1);
|
|
extwriter_counter_init(cur_trans, type);
|
|
init_waitqueue_head(&cur_trans->writer_wait);
|
|
init_waitqueue_head(&cur_trans->commit_wait);
|
|
cur_trans->state = TRANS_STATE_RUNNING;
|
|
/*
|
|
* One for this trans handle, one so it will live on until we
|
|
* commit the transaction.
|
|
*/
|
|
refcount_set(&cur_trans->use_count, 2);
|
|
cur_trans->flags = 0;
|
|
cur_trans->start_time = ktime_get_seconds();
|
|
|
|
memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
|
|
|
|
cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
|
|
cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
|
|
atomic_set(&cur_trans->delayed_refs.num_entries, 0);
|
|
|
|
/*
|
|
* although the tree mod log is per file system and not per transaction,
|
|
* the log must never go across transaction boundaries.
|
|
*/
|
|
smp_mb();
|
|
if (!list_empty(&fs_info->tree_mod_seq_list))
|
|
WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
|
|
if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
|
|
WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
|
|
atomic64_set(&fs_info->tree_mod_seq, 0);
|
|
|
|
spin_lock_init(&cur_trans->delayed_refs.lock);
|
|
|
|
INIT_LIST_HEAD(&cur_trans->pending_snapshots);
|
|
INIT_LIST_HEAD(&cur_trans->dev_update_list);
|
|
INIT_LIST_HEAD(&cur_trans->switch_commits);
|
|
INIT_LIST_HEAD(&cur_trans->dirty_bgs);
|
|
INIT_LIST_HEAD(&cur_trans->io_bgs);
|
|
INIT_LIST_HEAD(&cur_trans->dropped_roots);
|
|
mutex_init(&cur_trans->cache_write_mutex);
|
|
spin_lock_init(&cur_trans->dirty_bgs_lock);
|
|
INIT_LIST_HEAD(&cur_trans->deleted_bgs);
|
|
spin_lock_init(&cur_trans->dropped_roots_lock);
|
|
INIT_LIST_HEAD(&cur_trans->releasing_ebs);
|
|
spin_lock_init(&cur_trans->releasing_ebs_lock);
|
|
list_add_tail(&cur_trans->list, &fs_info->trans_list);
|
|
extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
|
|
IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
|
|
extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
|
|
IO_TREE_FS_PINNED_EXTENTS, NULL);
|
|
fs_info->generation++;
|
|
cur_trans->transid = fs_info->generation;
|
|
fs_info->running_transaction = cur_trans;
|
|
cur_trans->aborted = 0;
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This does all the record keeping required to make sure that a shareable root
|
|
* is properly recorded in a given transaction. This is required to make sure
|
|
* the old root from before we joined the transaction is deleted when the
|
|
* transaction commits.
|
|
*/
|
|
static int record_root_in_trans(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
int force)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
|
|
root->last_trans < trans->transid) || force) {
|
|
WARN_ON(root == fs_info->extent_root);
|
|
WARN_ON(!force && root->commit_root != root->node);
|
|
|
|
/*
|
|
* see below for IN_TRANS_SETUP usage rules
|
|
* we have the reloc mutex held now, so there
|
|
* is only one writer in this function
|
|
*/
|
|
set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
|
|
|
|
/* make sure readers find IN_TRANS_SETUP before
|
|
* they find our root->last_trans update
|
|
*/
|
|
smp_wmb();
|
|
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
if (root->last_trans == trans->transid && !force) {
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
return 0;
|
|
}
|
|
radix_tree_tag_set(&fs_info->fs_roots_radix,
|
|
(unsigned long)root->root_key.objectid,
|
|
BTRFS_ROOT_TRANS_TAG);
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
root->last_trans = trans->transid;
|
|
|
|
/* this is pretty tricky. We don't want to
|
|
* take the relocation lock in btrfs_record_root_in_trans
|
|
* unless we're really doing the first setup for this root in
|
|
* this transaction.
|
|
*
|
|
* Normally we'd use root->last_trans as a flag to decide
|
|
* if we want to take the expensive mutex.
|
|
*
|
|
* But, we have to set root->last_trans before we
|
|
* init the relocation root, otherwise, we trip over warnings
|
|
* in ctree.c. The solution used here is to flag ourselves
|
|
* with root IN_TRANS_SETUP. When this is 1, we're still
|
|
* fixing up the reloc trees and everyone must wait.
|
|
*
|
|
* When this is zero, they can trust root->last_trans and fly
|
|
* through btrfs_record_root_in_trans without having to take the
|
|
* lock. smp_wmb() makes sure that all the writes above are
|
|
* done before we pop in the zero below
|
|
*/
|
|
btrfs_init_reloc_root(trans, root);
|
|
smp_mb__before_atomic();
|
|
clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
|
|
/* Add ourselves to the transaction dropped list */
|
|
spin_lock(&cur_trans->dropped_roots_lock);
|
|
list_add_tail(&root->root_list, &cur_trans->dropped_roots);
|
|
spin_unlock(&cur_trans->dropped_roots_lock);
|
|
|
|
/* Make sure we don't try to update the root at commit time */
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
radix_tree_tag_clear(&fs_info->fs_roots_radix,
|
|
(unsigned long)root->root_key.objectid,
|
|
BTRFS_ROOT_TRANS_TAG);
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
}
|
|
|
|
int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
|
|
return 0;
|
|
|
|
/*
|
|
* see record_root_in_trans for comments about IN_TRANS_SETUP usage
|
|
* and barriers
|
|
*/
|
|
smp_rmb();
|
|
if (root->last_trans == trans->transid &&
|
|
!test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
|
|
return 0;
|
|
|
|
mutex_lock(&fs_info->reloc_mutex);
|
|
record_root_in_trans(trans, root, 0);
|
|
mutex_unlock(&fs_info->reloc_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int is_transaction_blocked(struct btrfs_transaction *trans)
|
|
{
|
|
return (trans->state >= TRANS_STATE_COMMIT_START &&
|
|
trans->state < TRANS_STATE_UNBLOCKED &&
|
|
!TRANS_ABORTED(trans));
|
|
}
|
|
|
|
/* wait for commit against the current transaction to become unblocked
|
|
* when this is done, it is safe to start a new transaction, but the current
|
|
* transaction might not be fully on disk.
|
|
*/
|
|
static void wait_current_trans(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_transaction *cur_trans;
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
cur_trans = fs_info->running_transaction;
|
|
if (cur_trans && is_transaction_blocked(cur_trans)) {
|
|
refcount_inc(&cur_trans->use_count);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
wait_event(fs_info->transaction_wait,
|
|
cur_trans->state >= TRANS_STATE_UNBLOCKED ||
|
|
TRANS_ABORTED(cur_trans));
|
|
btrfs_put_transaction(cur_trans);
|
|
} else {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
}
|
|
}
|
|
|
|
static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
|
|
{
|
|
if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
|
|
return 0;
|
|
|
|
if (type == TRANS_START)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool need_reserve_reloc_root(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
if (!fs_info->reloc_ctl ||
|
|
!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
|
|
root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
|
|
root->reloc_root)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct btrfs_trans_handle *
|
|
start_transaction(struct btrfs_root *root, unsigned int num_items,
|
|
unsigned int type, enum btrfs_reserve_flush_enum flush,
|
|
bool enforce_qgroups)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
|
|
struct btrfs_trans_handle *h;
|
|
struct btrfs_transaction *cur_trans;
|
|
u64 num_bytes = 0;
|
|
u64 qgroup_reserved = 0;
|
|
bool reloc_reserved = false;
|
|
bool do_chunk_alloc = false;
|
|
int ret;
|
|
|
|
/* Send isn't supposed to start transactions. */
|
|
ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
|
|
|
|
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
|
|
return ERR_PTR(-EROFS);
|
|
|
|
if (current->journal_info) {
|
|
WARN_ON(type & TRANS_EXTWRITERS);
|
|
h = current->journal_info;
|
|
refcount_inc(&h->use_count);
|
|
WARN_ON(refcount_read(&h->use_count) > 2);
|
|
h->orig_rsv = h->block_rsv;
|
|
h->block_rsv = NULL;
|
|
goto got_it;
|
|
}
|
|
|
|
/*
|
|
* Do the reservation before we join the transaction so we can do all
|
|
* the appropriate flushing if need be.
|
|
*/
|
|
if (num_items && root != fs_info->chunk_root) {
|
|
struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
|
|
u64 delayed_refs_bytes = 0;
|
|
|
|
qgroup_reserved = num_items * fs_info->nodesize;
|
|
ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
|
|
enforce_qgroups);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
/*
|
|
* We want to reserve all the bytes we may need all at once, so
|
|
* we only do 1 enospc flushing cycle per transaction start. We
|
|
* accomplish this by simply assuming we'll do 2 x num_items
|
|
* worth of delayed refs updates in this trans handle, and
|
|
* refill that amount for whatever is missing in the reserve.
|
|
*/
|
|
num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
|
|
if (flush == BTRFS_RESERVE_FLUSH_ALL &&
|
|
delayed_refs_rsv->full == 0) {
|
|
delayed_refs_bytes = num_bytes;
|
|
num_bytes <<= 1;
|
|
}
|
|
|
|
/*
|
|
* Do the reservation for the relocation root creation
|
|
*/
|
|
if (need_reserve_reloc_root(root)) {
|
|
num_bytes += fs_info->nodesize;
|
|
reloc_reserved = true;
|
|
}
|
|
|
|
ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
|
|
if (ret)
|
|
goto reserve_fail;
|
|
if (delayed_refs_bytes) {
|
|
btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
|
|
delayed_refs_bytes);
|
|
num_bytes -= delayed_refs_bytes;
|
|
}
|
|
|
|
if (rsv->space_info->force_alloc)
|
|
do_chunk_alloc = true;
|
|
} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
|
|
!delayed_refs_rsv->full) {
|
|
/*
|
|
* Some people call with btrfs_start_transaction(root, 0)
|
|
* because they can be throttled, but have some other mechanism
|
|
* for reserving space. We still want these guys to refill the
|
|
* delayed block_rsv so just add 1 items worth of reservation
|
|
* here.
|
|
*/
|
|
ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
|
|
if (ret)
|
|
goto reserve_fail;
|
|
}
|
|
again:
|
|
h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
|
|
if (!h) {
|
|
ret = -ENOMEM;
|
|
goto alloc_fail;
|
|
}
|
|
|
|
/*
|
|
* If we are JOIN_NOLOCK we're already committing a transaction and
|
|
* waiting on this guy, so we don't need to do the sb_start_intwrite
|
|
* because we're already holding a ref. We need this because we could
|
|
* have raced in and did an fsync() on a file which can kick a commit
|
|
* and then we deadlock with somebody doing a freeze.
|
|
*
|
|
* If we are ATTACH, it means we just want to catch the current
|
|
* transaction and commit it, so we needn't do sb_start_intwrite().
|
|
*/
|
|
if (type & __TRANS_FREEZABLE)
|
|
sb_start_intwrite(fs_info->sb);
|
|
|
|
if (may_wait_transaction(fs_info, type))
|
|
wait_current_trans(fs_info);
|
|
|
|
do {
|
|
ret = join_transaction(fs_info, type);
|
|
if (ret == -EBUSY) {
|
|
wait_current_trans(fs_info);
|
|
if (unlikely(type == TRANS_ATTACH ||
|
|
type == TRANS_JOIN_NOSTART))
|
|
ret = -ENOENT;
|
|
}
|
|
} while (ret == -EBUSY);
|
|
|
|
if (ret < 0)
|
|
goto join_fail;
|
|
|
|
cur_trans = fs_info->running_transaction;
|
|
|
|
h->transid = cur_trans->transid;
|
|
h->transaction = cur_trans;
|
|
h->root = root;
|
|
refcount_set(&h->use_count, 1);
|
|
h->fs_info = root->fs_info;
|
|
|
|
h->type = type;
|
|
h->can_flush_pending_bgs = true;
|
|
INIT_LIST_HEAD(&h->new_bgs);
|
|
|
|
smp_mb();
|
|
if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
|
|
may_wait_transaction(fs_info, type)) {
|
|
current->journal_info = h;
|
|
btrfs_commit_transaction(h);
|
|
goto again;
|
|
}
|
|
|
|
if (num_bytes) {
|
|
trace_btrfs_space_reservation(fs_info, "transaction",
|
|
h->transid, num_bytes, 1);
|
|
h->block_rsv = &fs_info->trans_block_rsv;
|
|
h->bytes_reserved = num_bytes;
|
|
h->reloc_reserved = reloc_reserved;
|
|
}
|
|
|
|
got_it:
|
|
if (!current->journal_info)
|
|
current->journal_info = h;
|
|
|
|
/*
|
|
* If the space_info is marked ALLOC_FORCE then we'll get upgraded to
|
|
* ALLOC_FORCE the first run through, and then we won't allocate for
|
|
* anybody else who races in later. We don't care about the return
|
|
* value here.
|
|
*/
|
|
if (do_chunk_alloc && num_bytes) {
|
|
u64 flags = h->block_rsv->space_info->flags;
|
|
|
|
btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
|
|
CHUNK_ALLOC_NO_FORCE);
|
|
}
|
|
|
|
/*
|
|
* btrfs_record_root_in_trans() needs to alloc new extents, and may
|
|
* call btrfs_join_transaction() while we're also starting a
|
|
* transaction.
|
|
*
|
|
* Thus it need to be called after current->journal_info initialized,
|
|
* or we can deadlock.
|
|
*/
|
|
btrfs_record_root_in_trans(h, root);
|
|
|
|
return h;
|
|
|
|
join_fail:
|
|
if (type & __TRANS_FREEZABLE)
|
|
sb_end_intwrite(fs_info->sb);
|
|
kmem_cache_free(btrfs_trans_handle_cachep, h);
|
|
alloc_fail:
|
|
if (num_bytes)
|
|
btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
|
|
num_bytes, NULL);
|
|
reserve_fail:
|
|
btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
|
|
unsigned int num_items)
|
|
{
|
|
return start_transaction(root, num_items, TRANS_START,
|
|
BTRFS_RESERVE_FLUSH_ALL, true);
|
|
}
|
|
|
|
struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
|
|
struct btrfs_root *root,
|
|
unsigned int num_items)
|
|
{
|
|
return start_transaction(root, num_items, TRANS_START,
|
|
BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
|
|
}
|
|
|
|
struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
|
|
{
|
|
return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
|
|
true);
|
|
}
|
|
|
|
struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
|
|
{
|
|
return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
|
|
BTRFS_RESERVE_NO_FLUSH, true);
|
|
}
|
|
|
|
/*
|
|
* Similar to regular join but it never starts a transaction when none is
|
|
* running or after waiting for the current one to finish.
|
|
*/
|
|
struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
|
|
{
|
|
return start_transaction(root, 0, TRANS_JOIN_NOSTART,
|
|
BTRFS_RESERVE_NO_FLUSH, true);
|
|
}
|
|
|
|
/*
|
|
* btrfs_attach_transaction() - catch the running transaction
|
|
*
|
|
* It is used when we want to commit the current the transaction, but
|
|
* don't want to start a new one.
|
|
*
|
|
* Note: If this function return -ENOENT, it just means there is no
|
|
* running transaction. But it is possible that the inactive transaction
|
|
* is still in the memory, not fully on disk. If you hope there is no
|
|
* inactive transaction in the fs when -ENOENT is returned, you should
|
|
* invoke
|
|
* btrfs_attach_transaction_barrier()
|
|
*/
|
|
struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
|
|
{
|
|
return start_transaction(root, 0, TRANS_ATTACH,
|
|
BTRFS_RESERVE_NO_FLUSH, true);
|
|
}
|
|
|
|
/*
|
|
* btrfs_attach_transaction_barrier() - catch the running transaction
|
|
*
|
|
* It is similar to the above function, the difference is this one
|
|
* will wait for all the inactive transactions until they fully
|
|
* complete.
|
|
*/
|
|
struct btrfs_trans_handle *
|
|
btrfs_attach_transaction_barrier(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
|
|
trans = start_transaction(root, 0, TRANS_ATTACH,
|
|
BTRFS_RESERVE_NO_FLUSH, true);
|
|
if (trans == ERR_PTR(-ENOENT))
|
|
btrfs_wait_for_commit(root->fs_info, 0);
|
|
|
|
return trans;
|
|
}
|
|
|
|
/* Wait for a transaction commit to reach at least the given state. */
|
|
static noinline void wait_for_commit(struct btrfs_transaction *commit,
|
|
const enum btrfs_trans_state min_state)
|
|
{
|
|
wait_event(commit->commit_wait, commit->state >= min_state);
|
|
}
|
|
|
|
int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
|
|
{
|
|
struct btrfs_transaction *cur_trans = NULL, *t;
|
|
int ret = 0;
|
|
|
|
if (transid) {
|
|
if (transid <= fs_info->last_trans_committed)
|
|
goto out;
|
|
|
|
/* find specified transaction */
|
|
spin_lock(&fs_info->trans_lock);
|
|
list_for_each_entry(t, &fs_info->trans_list, list) {
|
|
if (t->transid == transid) {
|
|
cur_trans = t;
|
|
refcount_inc(&cur_trans->use_count);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
if (t->transid > transid) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
/*
|
|
* The specified transaction doesn't exist, or we
|
|
* raced with btrfs_commit_transaction
|
|
*/
|
|
if (!cur_trans) {
|
|
if (transid > fs_info->last_trans_committed)
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
} else {
|
|
/* find newest transaction that is committing | committed */
|
|
spin_lock(&fs_info->trans_lock);
|
|
list_for_each_entry_reverse(t, &fs_info->trans_list,
|
|
list) {
|
|
if (t->state >= TRANS_STATE_COMMIT_START) {
|
|
if (t->state == TRANS_STATE_COMPLETED)
|
|
break;
|
|
cur_trans = t;
|
|
refcount_inc(&cur_trans->use_count);
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&fs_info->trans_lock);
|
|
if (!cur_trans)
|
|
goto out; /* nothing committing|committed */
|
|
}
|
|
|
|
wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
|
|
btrfs_put_transaction(cur_trans);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_throttle(struct btrfs_fs_info *fs_info)
|
|
{
|
|
wait_current_trans(fs_info);
|
|
}
|
|
|
|
static bool should_end_transaction(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
|
|
if (btrfs_check_space_for_delayed_refs(fs_info))
|
|
return true;
|
|
|
|
return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
|
|
}
|
|
|
|
bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
|
|
if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
|
|
test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
|
|
return true;
|
|
|
|
return should_end_transaction(trans);
|
|
}
|
|
|
|
static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
|
|
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
|
|
if (!trans->block_rsv) {
|
|
ASSERT(!trans->bytes_reserved);
|
|
return;
|
|
}
|
|
|
|
if (!trans->bytes_reserved)
|
|
return;
|
|
|
|
ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
|
|
trace_btrfs_space_reservation(fs_info, "transaction",
|
|
trans->transid, trans->bytes_reserved, 0);
|
|
btrfs_block_rsv_release(fs_info, trans->block_rsv,
|
|
trans->bytes_reserved, NULL);
|
|
trans->bytes_reserved = 0;
|
|
}
|
|
|
|
static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
|
|
int throttle)
|
|
{
|
|
struct btrfs_fs_info *info = trans->fs_info;
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
int err = 0;
|
|
|
|
if (refcount_read(&trans->use_count) > 1) {
|
|
refcount_dec(&trans->use_count);
|
|
trans->block_rsv = trans->orig_rsv;
|
|
return 0;
|
|
}
|
|
|
|
btrfs_trans_release_metadata(trans);
|
|
trans->block_rsv = NULL;
|
|
|
|
btrfs_create_pending_block_groups(trans);
|
|
|
|
btrfs_trans_release_chunk_metadata(trans);
|
|
|
|
if (trans->type & __TRANS_FREEZABLE)
|
|
sb_end_intwrite(info->sb);
|
|
|
|
WARN_ON(cur_trans != info->running_transaction);
|
|
WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
|
|
atomic_dec(&cur_trans->num_writers);
|
|
extwriter_counter_dec(cur_trans, trans->type);
|
|
|
|
cond_wake_up(&cur_trans->writer_wait);
|
|
btrfs_put_transaction(cur_trans);
|
|
|
|
if (current->journal_info == trans)
|
|
current->journal_info = NULL;
|
|
|
|
if (throttle)
|
|
btrfs_run_delayed_iputs(info);
|
|
|
|
if (TRANS_ABORTED(trans) ||
|
|
test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
|
|
wake_up_process(info->transaction_kthread);
|
|
if (TRANS_ABORTED(trans))
|
|
err = trans->aborted;
|
|
else
|
|
err = -EROFS;
|
|
}
|
|
|
|
kmem_cache_free(btrfs_trans_handle_cachep, trans);
|
|
return err;
|
|
}
|
|
|
|
int btrfs_end_transaction(struct btrfs_trans_handle *trans)
|
|
{
|
|
return __btrfs_end_transaction(trans, 0);
|
|
}
|
|
|
|
int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
|
|
{
|
|
return __btrfs_end_transaction(trans, 1);
|
|
}
|
|
|
|
/*
|
|
* when btree blocks are allocated, they have some corresponding bits set for
|
|
* them in one of two extent_io trees. This is used to make sure all of
|
|
* those extents are sent to disk but does not wait on them
|
|
*/
|
|
int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
|
|
struct extent_io_tree *dirty_pages, int mark)
|
|
{
|
|
int err = 0;
|
|
int werr = 0;
|
|
struct address_space *mapping = fs_info->btree_inode->i_mapping;
|
|
struct extent_state *cached_state = NULL;
|
|
u64 start = 0;
|
|
u64 end;
|
|
|
|
atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
|
|
while (!find_first_extent_bit(dirty_pages, start, &start, &end,
|
|
mark, &cached_state)) {
|
|
bool wait_writeback = false;
|
|
|
|
err = convert_extent_bit(dirty_pages, start, end,
|
|
EXTENT_NEED_WAIT,
|
|
mark, &cached_state);
|
|
/*
|
|
* convert_extent_bit can return -ENOMEM, which is most of the
|
|
* time a temporary error. So when it happens, ignore the error
|
|
* and wait for writeback of this range to finish - because we
|
|
* failed to set the bit EXTENT_NEED_WAIT for the range, a call
|
|
* to __btrfs_wait_marked_extents() would not know that
|
|
* writeback for this range started and therefore wouldn't
|
|
* wait for it to finish - we don't want to commit a
|
|
* superblock that points to btree nodes/leafs for which
|
|
* writeback hasn't finished yet (and without errors).
|
|
* We cleanup any entries left in the io tree when committing
|
|
* the transaction (through extent_io_tree_release()).
|
|
*/
|
|
if (err == -ENOMEM) {
|
|
err = 0;
|
|
wait_writeback = true;
|
|
}
|
|
if (!err)
|
|
err = filemap_fdatawrite_range(mapping, start, end);
|
|
if (err)
|
|
werr = err;
|
|
else if (wait_writeback)
|
|
werr = filemap_fdatawait_range(mapping, start, end);
|
|
free_extent_state(cached_state);
|
|
cached_state = NULL;
|
|
cond_resched();
|
|
start = end + 1;
|
|
}
|
|
atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
|
|
return werr;
|
|
}
|
|
|
|
/*
|
|
* when btree blocks are allocated, they have some corresponding bits set for
|
|
* them in one of two extent_io trees. This is used to make sure all of
|
|
* those extents are on disk for transaction or log commit. We wait
|
|
* on all the pages and clear them from the dirty pages state tree
|
|
*/
|
|
static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
|
|
struct extent_io_tree *dirty_pages)
|
|
{
|
|
int err = 0;
|
|
int werr = 0;
|
|
struct address_space *mapping = fs_info->btree_inode->i_mapping;
|
|
struct extent_state *cached_state = NULL;
|
|
u64 start = 0;
|
|
u64 end;
|
|
|
|
while (!find_first_extent_bit(dirty_pages, start, &start, &end,
|
|
EXTENT_NEED_WAIT, &cached_state)) {
|
|
/*
|
|
* Ignore -ENOMEM errors returned by clear_extent_bit().
|
|
* When committing the transaction, we'll remove any entries
|
|
* left in the io tree. For a log commit, we don't remove them
|
|
* after committing the log because the tree can be accessed
|
|
* concurrently - we do it only at transaction commit time when
|
|
* it's safe to do it (through extent_io_tree_release()).
|
|
*/
|
|
err = clear_extent_bit(dirty_pages, start, end,
|
|
EXTENT_NEED_WAIT, 0, 0, &cached_state);
|
|
if (err == -ENOMEM)
|
|
err = 0;
|
|
if (!err)
|
|
err = filemap_fdatawait_range(mapping, start, end);
|
|
if (err)
|
|
werr = err;
|
|
free_extent_state(cached_state);
|
|
cached_state = NULL;
|
|
cond_resched();
|
|
start = end + 1;
|
|
}
|
|
if (err)
|
|
werr = err;
|
|
return werr;
|
|
}
|
|
|
|
static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
|
|
struct extent_io_tree *dirty_pages)
|
|
{
|
|
bool errors = false;
|
|
int err;
|
|
|
|
err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
|
|
if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
|
|
errors = true;
|
|
|
|
if (errors && !err)
|
|
err = -EIO;
|
|
return err;
|
|
}
|
|
|
|
int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
|
|
{
|
|
struct btrfs_fs_info *fs_info = log_root->fs_info;
|
|
struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
|
|
bool errors = false;
|
|
int err;
|
|
|
|
ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
|
|
|
|
err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
|
|
if ((mark & EXTENT_DIRTY) &&
|
|
test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
|
|
errors = true;
|
|
|
|
if ((mark & EXTENT_NEW) &&
|
|
test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
|
|
errors = true;
|
|
|
|
if (errors && !err)
|
|
err = -EIO;
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* When btree blocks are allocated the corresponding extents are marked dirty.
|
|
* This function ensures such extents are persisted on disk for transaction or
|
|
* log commit.
|
|
*
|
|
* @trans: transaction whose dirty pages we'd like to write
|
|
*/
|
|
static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
|
|
{
|
|
int ret;
|
|
int ret2;
|
|
struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct blk_plug plug;
|
|
|
|
blk_start_plug(&plug);
|
|
ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
|
|
blk_finish_plug(&plug);
|
|
ret2 = btrfs_wait_extents(fs_info, dirty_pages);
|
|
|
|
extent_io_tree_release(&trans->transaction->dirty_pages);
|
|
|
|
if (ret)
|
|
return ret;
|
|
else if (ret2)
|
|
return ret2;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this is used to update the root pointer in the tree of tree roots.
|
|
*
|
|
* But, in the case of the extent allocation tree, updating the root
|
|
* pointer may allocate blocks which may change the root of the extent
|
|
* allocation tree.
|
|
*
|
|
* So, this loops and repeats and makes sure the cowonly root didn't
|
|
* change while the root pointer was being updated in the metadata.
|
|
*/
|
|
static int update_cowonly_root(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
int ret;
|
|
u64 old_root_bytenr;
|
|
u64 old_root_used;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_root *tree_root = fs_info->tree_root;
|
|
|
|
old_root_used = btrfs_root_used(&root->root_item);
|
|
|
|
while (1) {
|
|
old_root_bytenr = btrfs_root_bytenr(&root->root_item);
|
|
if (old_root_bytenr == root->node->start &&
|
|
old_root_used == btrfs_root_used(&root->root_item))
|
|
break;
|
|
|
|
btrfs_set_root_node(&root->root_item, root->node);
|
|
ret = btrfs_update_root(trans, tree_root,
|
|
&root->root_key,
|
|
&root->root_item);
|
|
if (ret)
|
|
return ret;
|
|
|
|
old_root_used = btrfs_root_used(&root->root_item);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* update all the cowonly tree roots on disk
|
|
*
|
|
* The error handling in this function may not be obvious. Any of the
|
|
* failures will cause the file system to go offline. We still need
|
|
* to clean up the delayed refs.
|
|
*/
|
|
static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
|
|
struct list_head *io_bgs = &trans->transaction->io_bgs;
|
|
struct list_head *next;
|
|
struct extent_buffer *eb;
|
|
int ret;
|
|
|
|
eb = btrfs_lock_root_node(fs_info->tree_root);
|
|
ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
|
|
0, &eb, BTRFS_NESTING_COW);
|
|
btrfs_tree_unlock(eb);
|
|
free_extent_buffer(eb);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = btrfs_run_dev_stats(trans);
|
|
if (ret)
|
|
return ret;
|
|
ret = btrfs_run_dev_replace(trans);
|
|
if (ret)
|
|
return ret;
|
|
ret = btrfs_run_qgroups(trans);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = btrfs_setup_space_cache(trans);
|
|
if (ret)
|
|
return ret;
|
|
|
|
again:
|
|
while (!list_empty(&fs_info->dirty_cowonly_roots)) {
|
|
struct btrfs_root *root;
|
|
next = fs_info->dirty_cowonly_roots.next;
|
|
list_del_init(next);
|
|
root = list_entry(next, struct btrfs_root, dirty_list);
|
|
clear_bit(BTRFS_ROOT_DIRTY, &root->state);
|
|
|
|
if (root != fs_info->extent_root)
|
|
list_add_tail(&root->dirty_list,
|
|
&trans->transaction->switch_commits);
|
|
ret = update_cowonly_root(trans, root);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Now flush any delayed refs generated by updating all of the roots */
|
|
ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
|
|
ret = btrfs_write_dirty_block_groups(trans);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* We're writing the dirty block groups, which could generate
|
|
* delayed refs, which could generate more dirty block groups,
|
|
* so we want to keep this flushing in this loop to make sure
|
|
* everything gets run.
|
|
*/
|
|
ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (!list_empty(&fs_info->dirty_cowonly_roots))
|
|
goto again;
|
|
|
|
list_add_tail(&fs_info->extent_root->dirty_list,
|
|
&trans->transaction->switch_commits);
|
|
|
|
/* Update dev-replace pointer once everything is committed */
|
|
fs_info->dev_replace.committed_cursor_left =
|
|
fs_info->dev_replace.cursor_left_last_write_of_item;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* dead roots are old snapshots that need to be deleted. This allocates
|
|
* a dirty root struct and adds it into the list of dead roots that need to
|
|
* be deleted
|
|
*/
|
|
void btrfs_add_dead_root(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
if (list_empty(&root->root_list)) {
|
|
btrfs_grab_root(root);
|
|
list_add_tail(&root->root_list, &fs_info->dead_roots);
|
|
}
|
|
spin_unlock(&fs_info->trans_lock);
|
|
}
|
|
|
|
/*
|
|
* update all the cowonly tree roots on disk
|
|
*/
|
|
static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_root *gang[8];
|
|
int i;
|
|
int ret;
|
|
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
while (1) {
|
|
ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
|
|
(void **)gang, 0,
|
|
ARRAY_SIZE(gang),
|
|
BTRFS_ROOT_TRANS_TAG);
|
|
if (ret == 0)
|
|
break;
|
|
for (i = 0; i < ret; i++) {
|
|
struct btrfs_root *root = gang[i];
|
|
int ret2;
|
|
|
|
radix_tree_tag_clear(&fs_info->fs_roots_radix,
|
|
(unsigned long)root->root_key.objectid,
|
|
BTRFS_ROOT_TRANS_TAG);
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
|
|
btrfs_free_log(trans, root);
|
|
btrfs_update_reloc_root(trans, root);
|
|
|
|
/* see comments in should_cow_block() */
|
|
clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
|
|
smp_mb__after_atomic();
|
|
|
|
if (root->commit_root != root->node) {
|
|
list_add_tail(&root->dirty_list,
|
|
&trans->transaction->switch_commits);
|
|
btrfs_set_root_node(&root->root_item,
|
|
root->node);
|
|
}
|
|
|
|
ret2 = btrfs_update_root(trans, fs_info->tree_root,
|
|
&root->root_key,
|
|
&root->root_item);
|
|
if (ret2)
|
|
return ret2;
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
btrfs_qgroup_free_meta_all_pertrans(root);
|
|
}
|
|
}
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* defrag a given btree.
|
|
* Every leaf in the btree is read and defragged.
|
|
*/
|
|
int btrfs_defrag_root(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
|
|
if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
|
|
return 0;
|
|
|
|
while (1) {
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
ret = btrfs_defrag_leaves(trans, root);
|
|
|
|
btrfs_end_transaction(trans);
|
|
btrfs_btree_balance_dirty(info);
|
|
cond_resched();
|
|
|
|
if (btrfs_fs_closing(info) || ret != -EAGAIN)
|
|
break;
|
|
|
|
if (btrfs_defrag_cancelled(info)) {
|
|
btrfs_debug(info, "defrag_root cancelled");
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
}
|
|
clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Do all special snapshot related qgroup dirty hack.
|
|
*
|
|
* Will do all needed qgroup inherit and dirty hack like switch commit
|
|
* roots inside one transaction and write all btree into disk, to make
|
|
* qgroup works.
|
|
*/
|
|
static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *src,
|
|
struct btrfs_root *parent,
|
|
struct btrfs_qgroup_inherit *inherit,
|
|
u64 dst_objectid)
|
|
{
|
|
struct btrfs_fs_info *fs_info = src->fs_info;
|
|
int ret;
|
|
|
|
/*
|
|
* Save some performance in the case that qgroups are not
|
|
* enabled. If this check races with the ioctl, rescan will
|
|
* kick in anyway.
|
|
*/
|
|
if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* Ensure dirty @src will be committed. Or, after coming
|
|
* commit_fs_roots() and switch_commit_roots(), any dirty but not
|
|
* recorded root will never be updated again, causing an outdated root
|
|
* item.
|
|
*/
|
|
record_root_in_trans(trans, src, 1);
|
|
|
|
/*
|
|
* btrfs_qgroup_inherit relies on a consistent view of the usage for the
|
|
* src root, so we must run the delayed refs here.
|
|
*
|
|
* However this isn't particularly fool proof, because there's no
|
|
* synchronization keeping us from changing the tree after this point
|
|
* before we do the qgroup_inherit, or even from making changes while
|
|
* we're doing the qgroup_inherit. But that's a problem for the future,
|
|
* for now flush the delayed refs to narrow the race window where the
|
|
* qgroup counters could end up wrong.
|
|
*/
|
|
ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* We are going to commit transaction, see btrfs_commit_transaction()
|
|
* comment for reason locking tree_log_mutex
|
|
*/
|
|
mutex_lock(&fs_info->tree_log_mutex);
|
|
|
|
ret = commit_fs_roots(trans);
|
|
if (ret)
|
|
goto out;
|
|
ret = btrfs_qgroup_account_extents(trans);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/* Now qgroup are all updated, we can inherit it to new qgroups */
|
|
ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
|
|
inherit);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Now we do a simplified commit transaction, which will:
|
|
* 1) commit all subvolume and extent tree
|
|
* To ensure all subvolume and extent tree have a valid
|
|
* commit_root to accounting later insert_dir_item()
|
|
* 2) write all btree blocks onto disk
|
|
* This is to make sure later btree modification will be cowed
|
|
* Or commit_root can be populated and cause wrong qgroup numbers
|
|
* In this simplified commit, we don't really care about other trees
|
|
* like chunk and root tree, as they won't affect qgroup.
|
|
* And we don't write super to avoid half committed status.
|
|
*/
|
|
ret = commit_cowonly_roots(trans);
|
|
if (ret)
|
|
goto out;
|
|
switch_commit_roots(trans);
|
|
ret = btrfs_write_and_wait_transaction(trans);
|
|
if (ret)
|
|
btrfs_handle_fs_error(fs_info, ret,
|
|
"Error while writing out transaction for qgroup");
|
|
|
|
out:
|
|
mutex_unlock(&fs_info->tree_log_mutex);
|
|
|
|
/*
|
|
* Force parent root to be updated, as we recorded it before so its
|
|
* last_trans == cur_transid.
|
|
* Or it won't be committed again onto disk after later
|
|
* insert_dir_item()
|
|
*/
|
|
if (!ret)
|
|
record_root_in_trans(trans, parent, 1);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* new snapshots need to be created at a very specific time in the
|
|
* transaction commit. This does the actual creation.
|
|
*
|
|
* Note:
|
|
* If the error which may affect the commitment of the current transaction
|
|
* happens, we should return the error number. If the error which just affect
|
|
* the creation of the pending snapshots, just return 0.
|
|
*/
|
|
static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
|
|
struct btrfs_pending_snapshot *pending)
|
|
{
|
|
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_key key;
|
|
struct btrfs_root_item *new_root_item;
|
|
struct btrfs_root *tree_root = fs_info->tree_root;
|
|
struct btrfs_root *root = pending->root;
|
|
struct btrfs_root *parent_root;
|
|
struct btrfs_block_rsv *rsv;
|
|
struct inode *parent_inode;
|
|
struct btrfs_path *path;
|
|
struct btrfs_dir_item *dir_item;
|
|
struct dentry *dentry;
|
|
struct extent_buffer *tmp;
|
|
struct extent_buffer *old;
|
|
struct timespec64 cur_time;
|
|
int ret = 0;
|
|
u64 to_reserve = 0;
|
|
u64 index = 0;
|
|
u64 objectid;
|
|
u64 root_flags;
|
|
|
|
ASSERT(pending->path);
|
|
path = pending->path;
|
|
|
|
ASSERT(pending->root_item);
|
|
new_root_item = pending->root_item;
|
|
|
|
pending->error = btrfs_get_free_objectid(tree_root, &objectid);
|
|
if (pending->error)
|
|
goto no_free_objectid;
|
|
|
|
/*
|
|
* Make qgroup to skip current new snapshot's qgroupid, as it is
|
|
* accounted by later btrfs_qgroup_inherit().
|
|
*/
|
|
btrfs_set_skip_qgroup(trans, objectid);
|
|
|
|
btrfs_reloc_pre_snapshot(pending, &to_reserve);
|
|
|
|
if (to_reserve > 0) {
|
|
pending->error = btrfs_block_rsv_add(root,
|
|
&pending->block_rsv,
|
|
to_reserve,
|
|
BTRFS_RESERVE_NO_FLUSH);
|
|
if (pending->error)
|
|
goto clear_skip_qgroup;
|
|
}
|
|
|
|
key.objectid = objectid;
|
|
key.offset = (u64)-1;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
|
|
rsv = trans->block_rsv;
|
|
trans->block_rsv = &pending->block_rsv;
|
|
trans->bytes_reserved = trans->block_rsv->reserved;
|
|
trace_btrfs_space_reservation(fs_info, "transaction",
|
|
trans->transid,
|
|
trans->bytes_reserved, 1);
|
|
dentry = pending->dentry;
|
|
parent_inode = pending->dir;
|
|
parent_root = BTRFS_I(parent_inode)->root;
|
|
record_root_in_trans(trans, parent_root, 0);
|
|
|
|
cur_time = current_time(parent_inode);
|
|
|
|
/*
|
|
* insert the directory item
|
|
*/
|
|
ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
|
|
/* check if there is a file/dir which has the same name. */
|
|
dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
|
|
btrfs_ino(BTRFS_I(parent_inode)),
|
|
dentry->d_name.name,
|
|
dentry->d_name.len, 0);
|
|
if (dir_item != NULL && !IS_ERR(dir_item)) {
|
|
pending->error = -EEXIST;
|
|
goto dir_item_existed;
|
|
} else if (IS_ERR(dir_item)) {
|
|
ret = PTR_ERR(dir_item);
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* pull in the delayed directory update
|
|
* and the delayed inode item
|
|
* otherwise we corrupt the FS during
|
|
* snapshot
|
|
*/
|
|
ret = btrfs_run_delayed_items(trans);
|
|
if (ret) { /* Transaction aborted */
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
|
|
record_root_in_trans(trans, root, 0);
|
|
btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
|
|
memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
|
|
btrfs_check_and_init_root_item(new_root_item);
|
|
|
|
root_flags = btrfs_root_flags(new_root_item);
|
|
if (pending->readonly)
|
|
root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
|
|
else
|
|
root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
|
|
btrfs_set_root_flags(new_root_item, root_flags);
|
|
|
|
btrfs_set_root_generation_v2(new_root_item,
|
|
trans->transid);
|
|
generate_random_guid(new_root_item->uuid);
|
|
memcpy(new_root_item->parent_uuid, root->root_item.uuid,
|
|
BTRFS_UUID_SIZE);
|
|
if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
|
|
memset(new_root_item->received_uuid, 0,
|
|
sizeof(new_root_item->received_uuid));
|
|
memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
|
|
memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
|
|
btrfs_set_root_stransid(new_root_item, 0);
|
|
btrfs_set_root_rtransid(new_root_item, 0);
|
|
}
|
|
btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
|
|
btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
|
|
btrfs_set_root_otransid(new_root_item, trans->transid);
|
|
|
|
old = btrfs_lock_root_node(root);
|
|
ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
|
|
BTRFS_NESTING_COW);
|
|
if (ret) {
|
|
btrfs_tree_unlock(old);
|
|
free_extent_buffer(old);
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
|
|
ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
|
|
/* clean up in any case */
|
|
btrfs_tree_unlock(old);
|
|
free_extent_buffer(old);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
/* see comments in should_cow_block() */
|
|
set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
|
|
smp_wmb();
|
|
|
|
btrfs_set_root_node(new_root_item, tmp);
|
|
/* record when the snapshot was created in key.offset */
|
|
key.offset = trans->transid;
|
|
ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
|
|
btrfs_tree_unlock(tmp);
|
|
free_extent_buffer(tmp);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* insert root back/forward references
|
|
*/
|
|
ret = btrfs_add_root_ref(trans, objectid,
|
|
parent_root->root_key.objectid,
|
|
btrfs_ino(BTRFS_I(parent_inode)), index,
|
|
dentry->d_name.name, dentry->d_name.len);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
|
|
key.offset = (u64)-1;
|
|
pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
|
|
if (IS_ERR(pending->snap)) {
|
|
ret = PTR_ERR(pending->snap);
|
|
pending->snap = NULL;
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
|
|
ret = btrfs_reloc_post_snapshot(trans, pending);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Do special qgroup accounting for snapshot, as we do some qgroup
|
|
* snapshot hack to do fast snapshot.
|
|
* To co-operate with that hack, we do hack again.
|
|
* Or snapshot will be greatly slowed down by a subtree qgroup rescan
|
|
*/
|
|
ret = qgroup_account_snapshot(trans, root, parent_root,
|
|
pending->inherit, objectid);
|
|
if (ret < 0)
|
|
goto fail;
|
|
|
|
ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
|
|
dentry->d_name.len, BTRFS_I(parent_inode),
|
|
&key, BTRFS_FT_DIR, index);
|
|
/* We have check then name at the beginning, so it is impossible. */
|
|
BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
|
|
btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
|
|
dentry->d_name.len * 2);
|
|
parent_inode->i_mtime = parent_inode->i_ctime =
|
|
current_time(parent_inode);
|
|
ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
|
|
BTRFS_UUID_KEY_SUBVOL,
|
|
objectid);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
|
|
ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
|
|
BTRFS_UUID_KEY_RECEIVED_SUBVOL,
|
|
objectid);
|
|
if (ret && ret != -EEXIST) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
fail:
|
|
pending->error = ret;
|
|
dir_item_existed:
|
|
trans->block_rsv = rsv;
|
|
trans->bytes_reserved = 0;
|
|
clear_skip_qgroup:
|
|
btrfs_clear_skip_qgroup(trans);
|
|
no_free_objectid:
|
|
kfree(new_root_item);
|
|
pending->root_item = NULL;
|
|
btrfs_free_path(path);
|
|
pending->path = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* create all the snapshots we've scheduled for creation
|
|
*/
|
|
static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_pending_snapshot *pending, *next;
|
|
struct list_head *head = &trans->transaction->pending_snapshots;
|
|
int ret = 0;
|
|
|
|
list_for_each_entry_safe(pending, next, head, list) {
|
|
list_del(&pending->list);
|
|
ret = create_pending_snapshot(trans, pending);
|
|
if (ret)
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void update_super_roots(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root_item *root_item;
|
|
struct btrfs_super_block *super;
|
|
|
|
super = fs_info->super_copy;
|
|
|
|
root_item = &fs_info->chunk_root->root_item;
|
|
super->chunk_root = root_item->bytenr;
|
|
super->chunk_root_generation = root_item->generation;
|
|
super->chunk_root_level = root_item->level;
|
|
|
|
root_item = &fs_info->tree_root->root_item;
|
|
super->root = root_item->bytenr;
|
|
super->generation = root_item->generation;
|
|
super->root_level = root_item->level;
|
|
if (btrfs_test_opt(fs_info, SPACE_CACHE))
|
|
super->cache_generation = root_item->generation;
|
|
else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
|
|
super->cache_generation = 0;
|
|
if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
|
|
super->uuid_tree_generation = root_item->generation;
|
|
}
|
|
|
|
int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
|
|
{
|
|
struct btrfs_transaction *trans;
|
|
int ret = 0;
|
|
|
|
spin_lock(&info->trans_lock);
|
|
trans = info->running_transaction;
|
|
if (trans)
|
|
ret = (trans->state >= TRANS_STATE_COMMIT_START);
|
|
spin_unlock(&info->trans_lock);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_transaction_blocked(struct btrfs_fs_info *info)
|
|
{
|
|
struct btrfs_transaction *trans;
|
|
int ret = 0;
|
|
|
|
spin_lock(&info->trans_lock);
|
|
trans = info->running_transaction;
|
|
if (trans)
|
|
ret = is_transaction_blocked(trans);
|
|
spin_unlock(&info->trans_lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* wait for the current transaction commit to start and block subsequent
|
|
* transaction joins
|
|
*/
|
|
static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_transaction *trans)
|
|
{
|
|
wait_event(fs_info->transaction_blocked_wait,
|
|
trans->state >= TRANS_STATE_COMMIT_START ||
|
|
TRANS_ABORTED(trans));
|
|
}
|
|
|
|
/*
|
|
* wait for the current transaction to start and then become unblocked.
|
|
* caller holds ref.
|
|
*/
|
|
static void wait_current_trans_commit_start_and_unblock(
|
|
struct btrfs_fs_info *fs_info,
|
|
struct btrfs_transaction *trans)
|
|
{
|
|
wait_event(fs_info->transaction_wait,
|
|
trans->state >= TRANS_STATE_UNBLOCKED ||
|
|
TRANS_ABORTED(trans));
|
|
}
|
|
|
|
/*
|
|
* commit transactions asynchronously. once btrfs_commit_transaction_async
|
|
* returns, any subsequent transaction will not be allowed to join.
|
|
*/
|
|
struct btrfs_async_commit {
|
|
struct btrfs_trans_handle *newtrans;
|
|
struct work_struct work;
|
|
};
|
|
|
|
static void do_async_commit(struct work_struct *work)
|
|
{
|
|
struct btrfs_async_commit *ac =
|
|
container_of(work, struct btrfs_async_commit, work);
|
|
|
|
/*
|
|
* We've got freeze protection passed with the transaction.
|
|
* Tell lockdep about it.
|
|
*/
|
|
if (ac->newtrans->type & __TRANS_FREEZABLE)
|
|
__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
|
|
|
|
current->journal_info = ac->newtrans;
|
|
|
|
btrfs_commit_transaction(ac->newtrans);
|
|
kfree(ac);
|
|
}
|
|
|
|
int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
|
|
int wait_for_unblock)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_async_commit *ac;
|
|
struct btrfs_transaction *cur_trans;
|
|
|
|
ac = kmalloc(sizeof(*ac), GFP_NOFS);
|
|
if (!ac)
|
|
return -ENOMEM;
|
|
|
|
INIT_WORK(&ac->work, do_async_commit);
|
|
ac->newtrans = btrfs_join_transaction(trans->root);
|
|
if (IS_ERR(ac->newtrans)) {
|
|
int err = PTR_ERR(ac->newtrans);
|
|
kfree(ac);
|
|
return err;
|
|
}
|
|
|
|
/* take transaction reference */
|
|
cur_trans = trans->transaction;
|
|
refcount_inc(&cur_trans->use_count);
|
|
|
|
btrfs_end_transaction(trans);
|
|
|
|
/*
|
|
* Tell lockdep we've released the freeze rwsem, since the
|
|
* async commit thread will be the one to unlock it.
|
|
*/
|
|
if (ac->newtrans->type & __TRANS_FREEZABLE)
|
|
__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
|
|
|
|
schedule_work(&ac->work);
|
|
|
|
/* wait for transaction to start and unblock */
|
|
if (wait_for_unblock)
|
|
wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
|
|
else
|
|
wait_current_trans_commit_start(fs_info, cur_trans);
|
|
|
|
if (current->journal_info == trans)
|
|
current->journal_info = NULL;
|
|
|
|
btrfs_put_transaction(cur_trans);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
|
|
WARN_ON(refcount_read(&trans->use_count) > 1);
|
|
|
|
btrfs_abort_transaction(trans, err);
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
|
|
/*
|
|
* If the transaction is removed from the list, it means this
|
|
* transaction has been committed successfully, so it is impossible
|
|
* to call the cleanup function.
|
|
*/
|
|
BUG_ON(list_empty(&cur_trans->list));
|
|
|
|
list_del_init(&cur_trans->list);
|
|
if (cur_trans == fs_info->running_transaction) {
|
|
cur_trans->state = TRANS_STATE_COMMIT_DOING;
|
|
spin_unlock(&fs_info->trans_lock);
|
|
wait_event(cur_trans->writer_wait,
|
|
atomic_read(&cur_trans->num_writers) == 1);
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
}
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
btrfs_cleanup_one_transaction(trans->transaction, fs_info);
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
if (cur_trans == fs_info->running_transaction)
|
|
fs_info->running_transaction = NULL;
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
if (trans->type & __TRANS_FREEZABLE)
|
|
sb_end_intwrite(fs_info->sb);
|
|
btrfs_put_transaction(cur_trans);
|
|
btrfs_put_transaction(cur_trans);
|
|
|
|
trace_btrfs_transaction_commit(trans->root);
|
|
|
|
if (current->journal_info == trans)
|
|
current->journal_info = NULL;
|
|
btrfs_scrub_cancel(fs_info);
|
|
|
|
kmem_cache_free(btrfs_trans_handle_cachep, trans);
|
|
}
|
|
|
|
/*
|
|
* Release reserved delayed ref space of all pending block groups of the
|
|
* transaction and remove them from the list
|
|
*/
|
|
static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_block_group *block_group, *tmp;
|
|
|
|
list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
|
|
btrfs_delayed_refs_rsv_release(fs_info, 1);
|
|
list_del_init(&block_group->bg_list);
|
|
}
|
|
}
|
|
|
|
static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
|
|
{
|
|
/*
|
|
* We use writeback_inodes_sb here because if we used
|
|
* btrfs_start_delalloc_roots we would deadlock with fs freeze.
|
|
* Currently are holding the fs freeze lock, if we do an async flush
|
|
* we'll do btrfs_join_transaction() and deadlock because we need to
|
|
* wait for the fs freeze lock. Using the direct flushing we benefit
|
|
* from already being in a transaction and our join_transaction doesn't
|
|
* have to re-take the fs freeze lock.
|
|
*/
|
|
if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
|
|
writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
|
|
return 0;
|
|
}
|
|
|
|
static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
|
|
{
|
|
if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
|
|
btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
|
|
}
|
|
|
|
int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
struct btrfs_transaction *prev_trans = NULL;
|
|
int ret;
|
|
|
|
ASSERT(refcount_read(&trans->use_count) == 1);
|
|
|
|
/*
|
|
* Some places just start a transaction to commit it. We need to make
|
|
* sure that if this commit fails that the abort code actually marks the
|
|
* transaction as failed, so set trans->dirty to make the abort code do
|
|
* the right thing.
|
|
*/
|
|
trans->dirty = true;
|
|
|
|
/* Stop the commit early if ->aborted is set */
|
|
if (TRANS_ABORTED(cur_trans)) {
|
|
ret = cur_trans->aborted;
|
|
btrfs_end_transaction(trans);
|
|
return ret;
|
|
}
|
|
|
|
btrfs_trans_release_metadata(trans);
|
|
trans->block_rsv = NULL;
|
|
|
|
/*
|
|
* We only want one transaction commit doing the flushing so we do not
|
|
* waste a bunch of time on lock contention on the extent root node.
|
|
*/
|
|
if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
|
|
&cur_trans->delayed_refs.flags)) {
|
|
/*
|
|
* Make a pass through all the delayed refs we have so far.
|
|
* Any running threads may add more while we are here.
|
|
*/
|
|
ret = btrfs_run_delayed_refs(trans, 0);
|
|
if (ret) {
|
|
btrfs_end_transaction(trans);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
btrfs_create_pending_block_groups(trans);
|
|
|
|
if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
|
|
int run_it = 0;
|
|
|
|
/* this mutex is also taken before trying to set
|
|
* block groups readonly. We need to make sure
|
|
* that nobody has set a block group readonly
|
|
* after a extents from that block group have been
|
|
* allocated for cache files. btrfs_set_block_group_ro
|
|
* will wait for the transaction to commit if it
|
|
* finds BTRFS_TRANS_DIRTY_BG_RUN set.
|
|
*
|
|
* The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
|
|
* only one process starts all the block group IO. It wouldn't
|
|
* hurt to have more than one go through, but there's no
|
|
* real advantage to it either.
|
|
*/
|
|
mutex_lock(&fs_info->ro_block_group_mutex);
|
|
if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
|
|
&cur_trans->flags))
|
|
run_it = 1;
|
|
mutex_unlock(&fs_info->ro_block_group_mutex);
|
|
|
|
if (run_it) {
|
|
ret = btrfs_start_dirty_block_groups(trans);
|
|
if (ret) {
|
|
btrfs_end_transaction(trans);
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
|
|
enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
|
|
|
|
spin_unlock(&fs_info->trans_lock);
|
|
refcount_inc(&cur_trans->use_count);
|
|
|
|
if (trans->in_fsync)
|
|
want_state = TRANS_STATE_SUPER_COMMITTED;
|
|
ret = btrfs_end_transaction(trans);
|
|
wait_for_commit(cur_trans, want_state);
|
|
|
|
if (TRANS_ABORTED(cur_trans))
|
|
ret = cur_trans->aborted;
|
|
|
|
btrfs_put_transaction(cur_trans);
|
|
|
|
return ret;
|
|
}
|
|
|
|
cur_trans->state = TRANS_STATE_COMMIT_START;
|
|
wake_up(&fs_info->transaction_blocked_wait);
|
|
|
|
if (cur_trans->list.prev != &fs_info->trans_list) {
|
|
enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
|
|
|
|
if (trans->in_fsync)
|
|
want_state = TRANS_STATE_SUPER_COMMITTED;
|
|
|
|
prev_trans = list_entry(cur_trans->list.prev,
|
|
struct btrfs_transaction, list);
|
|
if (prev_trans->state < want_state) {
|
|
refcount_inc(&prev_trans->use_count);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
wait_for_commit(prev_trans, want_state);
|
|
|
|
ret = READ_ONCE(prev_trans->aborted);
|
|
|
|
btrfs_put_transaction(prev_trans);
|
|
if (ret)
|
|
goto cleanup_transaction;
|
|
} else {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
}
|
|
} else {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
/*
|
|
* The previous transaction was aborted and was already removed
|
|
* from the list of transactions at fs_info->trans_list. So we
|
|
* abort to prevent writing a new superblock that reflects a
|
|
* corrupt state (pointing to trees with unwritten nodes/leafs).
|
|
*/
|
|
if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
|
|
ret = -EROFS;
|
|
goto cleanup_transaction;
|
|
}
|
|
}
|
|
|
|
extwriter_counter_dec(cur_trans, trans->type);
|
|
|
|
ret = btrfs_start_delalloc_flush(fs_info);
|
|
if (ret)
|
|
goto cleanup_transaction;
|
|
|
|
ret = btrfs_run_delayed_items(trans);
|
|
if (ret)
|
|
goto cleanup_transaction;
|
|
|
|
wait_event(cur_trans->writer_wait,
|
|
extwriter_counter_read(cur_trans) == 0);
|
|
|
|
/* some pending stuffs might be added after the previous flush. */
|
|
ret = btrfs_run_delayed_items(trans);
|
|
if (ret)
|
|
goto cleanup_transaction;
|
|
|
|
btrfs_wait_delalloc_flush(fs_info);
|
|
|
|
/*
|
|
* Wait for all ordered extents started by a fast fsync that joined this
|
|
* transaction. Otherwise if this transaction commits before the ordered
|
|
* extents complete we lose logged data after a power failure.
|
|
*/
|
|
wait_event(cur_trans->pending_wait,
|
|
atomic_read(&cur_trans->pending_ordered) == 0);
|
|
|
|
btrfs_scrub_pause(fs_info);
|
|
/*
|
|
* Ok now we need to make sure to block out any other joins while we
|
|
* commit the transaction. We could have started a join before setting
|
|
* COMMIT_DOING so make sure to wait for num_writers to == 1 again.
|
|
*/
|
|
spin_lock(&fs_info->trans_lock);
|
|
cur_trans->state = TRANS_STATE_COMMIT_DOING;
|
|
spin_unlock(&fs_info->trans_lock);
|
|
wait_event(cur_trans->writer_wait,
|
|
atomic_read(&cur_trans->num_writers) == 1);
|
|
|
|
if (TRANS_ABORTED(cur_trans)) {
|
|
ret = cur_trans->aborted;
|
|
goto scrub_continue;
|
|
}
|
|
/*
|
|
* the reloc mutex makes sure that we stop
|
|
* the balancing code from coming in and moving
|
|
* extents around in the middle of the commit
|
|
*/
|
|
mutex_lock(&fs_info->reloc_mutex);
|
|
|
|
/*
|
|
* We needn't worry about the delayed items because we will
|
|
* deal with them in create_pending_snapshot(), which is the
|
|
* core function of the snapshot creation.
|
|
*/
|
|
ret = create_pending_snapshots(trans);
|
|
if (ret)
|
|
goto unlock_reloc;
|
|
|
|
/*
|
|
* We insert the dir indexes of the snapshots and update the inode
|
|
* of the snapshots' parents after the snapshot creation, so there
|
|
* are some delayed items which are not dealt with. Now deal with
|
|
* them.
|
|
*
|
|
* We needn't worry that this operation will corrupt the snapshots,
|
|
* because all the tree which are snapshoted will be forced to COW
|
|
* the nodes and leaves.
|
|
*/
|
|
ret = btrfs_run_delayed_items(trans);
|
|
if (ret)
|
|
goto unlock_reloc;
|
|
|
|
ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
|
|
if (ret)
|
|
goto unlock_reloc;
|
|
|
|
/*
|
|
* make sure none of the code above managed to slip in a
|
|
* delayed item
|
|
*/
|
|
btrfs_assert_delayed_root_empty(fs_info);
|
|
|
|
WARN_ON(cur_trans != trans->transaction);
|
|
|
|
/* btrfs_commit_tree_roots is responsible for getting the
|
|
* various roots consistent with each other. Every pointer
|
|
* in the tree of tree roots has to point to the most up to date
|
|
* root for every subvolume and other tree. So, we have to keep
|
|
* the tree logging code from jumping in and changing any
|
|
* of the trees.
|
|
*
|
|
* At this point in the commit, there can't be any tree-log
|
|
* writers, but a little lower down we drop the trans mutex
|
|
* and let new people in. By holding the tree_log_mutex
|
|
* from now until after the super is written, we avoid races
|
|
* with the tree-log code.
|
|
*/
|
|
mutex_lock(&fs_info->tree_log_mutex);
|
|
|
|
ret = commit_fs_roots(trans);
|
|
if (ret)
|
|
goto unlock_tree_log;
|
|
|
|
/*
|
|
* Since the transaction is done, we can apply the pending changes
|
|
* before the next transaction.
|
|
*/
|
|
btrfs_apply_pending_changes(fs_info);
|
|
|
|
/* commit_fs_roots gets rid of all the tree log roots, it is now
|
|
* safe to free the root of tree log roots
|
|
*/
|
|
btrfs_free_log_root_tree(trans, fs_info);
|
|
|
|
/*
|
|
* Since fs roots are all committed, we can get a quite accurate
|
|
* new_roots. So let's do quota accounting.
|
|
*/
|
|
ret = btrfs_qgroup_account_extents(trans);
|
|
if (ret < 0)
|
|
goto unlock_tree_log;
|
|
|
|
ret = commit_cowonly_roots(trans);
|
|
if (ret)
|
|
goto unlock_tree_log;
|
|
|
|
/*
|
|
* The tasks which save the space cache and inode cache may also
|
|
* update ->aborted, check it.
|
|
*/
|
|
if (TRANS_ABORTED(cur_trans)) {
|
|
ret = cur_trans->aborted;
|
|
goto unlock_tree_log;
|
|
}
|
|
|
|
cur_trans = fs_info->running_transaction;
|
|
|
|
btrfs_set_root_node(&fs_info->tree_root->root_item,
|
|
fs_info->tree_root->node);
|
|
list_add_tail(&fs_info->tree_root->dirty_list,
|
|
&cur_trans->switch_commits);
|
|
|
|
btrfs_set_root_node(&fs_info->chunk_root->root_item,
|
|
fs_info->chunk_root->node);
|
|
list_add_tail(&fs_info->chunk_root->dirty_list,
|
|
&cur_trans->switch_commits);
|
|
|
|
switch_commit_roots(trans);
|
|
|
|
ASSERT(list_empty(&cur_trans->dirty_bgs));
|
|
ASSERT(list_empty(&cur_trans->io_bgs));
|
|
update_super_roots(fs_info);
|
|
|
|
btrfs_set_super_log_root(fs_info->super_copy, 0);
|
|
btrfs_set_super_log_root_level(fs_info->super_copy, 0);
|
|
memcpy(fs_info->super_for_commit, fs_info->super_copy,
|
|
sizeof(*fs_info->super_copy));
|
|
|
|
btrfs_commit_device_sizes(cur_trans);
|
|
|
|
clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
|
|
clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
|
|
|
|
btrfs_trans_release_chunk_metadata(trans);
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
cur_trans->state = TRANS_STATE_UNBLOCKED;
|
|
fs_info->running_transaction = NULL;
|
|
spin_unlock(&fs_info->trans_lock);
|
|
mutex_unlock(&fs_info->reloc_mutex);
|
|
|
|
wake_up(&fs_info->transaction_wait);
|
|
|
|
ret = btrfs_write_and_wait_transaction(trans);
|
|
if (ret) {
|
|
btrfs_handle_fs_error(fs_info, ret,
|
|
"Error while writing out transaction");
|
|
/*
|
|
* reloc_mutex has been unlocked, tree_log_mutex is still held
|
|
* but we can't jump to unlock_tree_log causing double unlock
|
|
*/
|
|
mutex_unlock(&fs_info->tree_log_mutex);
|
|
goto scrub_continue;
|
|
}
|
|
|
|
/*
|
|
* At this point, we should have written all the tree blocks allocated
|
|
* in this transaction. So it's now safe to free the redirtyied extent
|
|
* buffers.
|
|
*/
|
|
btrfs_free_redirty_list(cur_trans);
|
|
|
|
ret = write_all_supers(fs_info, 0);
|
|
/*
|
|
* the super is written, we can safely allow the tree-loggers
|
|
* to go about their business
|
|
*/
|
|
mutex_unlock(&fs_info->tree_log_mutex);
|
|
if (ret)
|
|
goto scrub_continue;
|
|
|
|
/*
|
|
* We needn't acquire the lock here because there is no other task
|
|
* which can change it.
|
|
*/
|
|
cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
|
|
wake_up(&cur_trans->commit_wait);
|
|
|
|
btrfs_finish_extent_commit(trans);
|
|
|
|
if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
|
|
btrfs_clear_space_info_full(fs_info);
|
|
|
|
fs_info->last_trans_committed = cur_trans->transid;
|
|
/*
|
|
* We needn't acquire the lock here because there is no other task
|
|
* which can change it.
|
|
*/
|
|
cur_trans->state = TRANS_STATE_COMPLETED;
|
|
wake_up(&cur_trans->commit_wait);
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
list_del_init(&cur_trans->list);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
btrfs_put_transaction(cur_trans);
|
|
btrfs_put_transaction(cur_trans);
|
|
|
|
if (trans->type & __TRANS_FREEZABLE)
|
|
sb_end_intwrite(fs_info->sb);
|
|
|
|
trace_btrfs_transaction_commit(trans->root);
|
|
|
|
btrfs_scrub_continue(fs_info);
|
|
|
|
if (current->journal_info == trans)
|
|
current->journal_info = NULL;
|
|
|
|
kmem_cache_free(btrfs_trans_handle_cachep, trans);
|
|
|
|
return ret;
|
|
|
|
unlock_tree_log:
|
|
mutex_unlock(&fs_info->tree_log_mutex);
|
|
unlock_reloc:
|
|
mutex_unlock(&fs_info->reloc_mutex);
|
|
scrub_continue:
|
|
btrfs_scrub_continue(fs_info);
|
|
cleanup_transaction:
|
|
btrfs_trans_release_metadata(trans);
|
|
btrfs_cleanup_pending_block_groups(trans);
|
|
btrfs_trans_release_chunk_metadata(trans);
|
|
trans->block_rsv = NULL;
|
|
btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
|
|
if (current->journal_info == trans)
|
|
current->journal_info = NULL;
|
|
cleanup_transaction(trans, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* return < 0 if error
|
|
* 0 if there are no more dead_roots at the time of call
|
|
* 1 there are more to be processed, call me again
|
|
*
|
|
* The return value indicates there are certainly more snapshots to delete, but
|
|
* if there comes a new one during processing, it may return 0. We don't mind,
|
|
* because btrfs_commit_super will poke cleaner thread and it will process it a
|
|
* few seconds later.
|
|
*/
|
|
int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
|
|
{
|
|
int ret;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
if (list_empty(&fs_info->dead_roots)) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
return 0;
|
|
}
|
|
root = list_first_entry(&fs_info->dead_roots,
|
|
struct btrfs_root, root_list);
|
|
list_del_init(&root->root_list);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
|
|
|
|
btrfs_kill_all_delayed_nodes(root);
|
|
|
|
if (btrfs_header_backref_rev(root->node) <
|
|
BTRFS_MIXED_BACKREF_REV)
|
|
ret = btrfs_drop_snapshot(root, 0, 0);
|
|
else
|
|
ret = btrfs_drop_snapshot(root, 1, 0);
|
|
|
|
btrfs_put_root(root);
|
|
return (ret < 0) ? 0 : 1;
|
|
}
|
|
|
|
void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
|
|
{
|
|
unsigned long prev;
|
|
unsigned long bit;
|
|
|
|
prev = xchg(&fs_info->pending_changes, 0);
|
|
if (!prev)
|
|
return;
|
|
|
|
bit = 1 << BTRFS_PENDING_COMMIT;
|
|
if (prev & bit)
|
|
btrfs_debug(fs_info, "pending commit done");
|
|
prev &= ~bit;
|
|
|
|
if (prev)
|
|
btrfs_warn(fs_info,
|
|
"unknown pending changes left 0x%lx, ignoring", prev);
|
|
}
|