mirror of
https://github.com/torvalds/linux.git
synced 2024-12-01 08:31:37 +00:00
60115fa54a
Yongqiang reports a kmemleak panic when module insmod/rmmod with KASAN enabled(without KASAN_VMALLOC) on x86[1]. When the module area allocates memory, it's kmemleak_object is created successfully, but the KASAN shadow memory of module allocation is not ready, so when kmemleak scan the module's pointer, it will panic due to no shadow memory with KASAN check. module_alloc __vmalloc_node_range kmemleak_vmalloc kmemleak_scan update_checksum kasan_module_alloc kmemleak_ignore Note, there is no problem if KASAN_VMALLOC enabled, the modules area entire shadow memory is preallocated. Thus, the bug only exits on ARCH which supports dynamic allocation of module area per module load, for now, only x86/arm64/s390 are involved. Add a VM_DEFER_KMEMLEAK flags, defer vmalloc'ed object register of kmemleak in module_alloc() to fix this issue. [1] https://lore.kernel.org/all/6d41e2b9-4692-5ec4-b1cd-cbe29ae89739@huawei.com/ [wangkefeng.wang@huawei.com: fix build] Link: https://lkml.kernel.org/r/20211125080307.27225-1-wangkefeng.wang@huawei.com [akpm@linux-foundation.org: simplify ifdefs, per Andrey] Link: https://lkml.kernel.org/r/CA+fCnZcnwJHUQq34VuRxpdoY6_XbJCDJ-jopksS5Eia4PijPzw@mail.gmail.com Link: https://lkml.kernel.org/r/20211124142034.192078-1-wangkefeng.wang@huawei.com Fixes:793213a82d
("s390/kasan: dynamic shadow mem allocation for modules") Fixes:39d114ddc6
("arm64: add KASAN support") Fixes:bebf56a1b1
("kasan: enable instrumentation of global variables") Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Reported-by: Yongqiang Liu <liuyongqiang13@huawei.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Alexander Potapenko <glider@google.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
544 lines
16 KiB
C
544 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* This file contains KASAN runtime code that manages shadow memory for
|
|
* generic and software tag-based KASAN modes.
|
|
*
|
|
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
|
|
* Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
|
|
*
|
|
* Some code borrowed from https://github.com/xairy/kasan-prototype by
|
|
* Andrey Konovalov <andreyknvl@gmail.com>
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kfence.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
#include "kasan.h"
|
|
|
|
bool __kasan_check_read(const volatile void *p, unsigned int size)
|
|
{
|
|
return kasan_check_range((unsigned long)p, size, false, _RET_IP_);
|
|
}
|
|
EXPORT_SYMBOL(__kasan_check_read);
|
|
|
|
bool __kasan_check_write(const volatile void *p, unsigned int size)
|
|
{
|
|
return kasan_check_range((unsigned long)p, size, true, _RET_IP_);
|
|
}
|
|
EXPORT_SYMBOL(__kasan_check_write);
|
|
|
|
#undef memset
|
|
void *memset(void *addr, int c, size_t len)
|
|
{
|
|
if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_))
|
|
return NULL;
|
|
|
|
return __memset(addr, c, len);
|
|
}
|
|
|
|
#ifdef __HAVE_ARCH_MEMMOVE
|
|
#undef memmove
|
|
void *memmove(void *dest, const void *src, size_t len)
|
|
{
|
|
if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
|
|
!kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
|
|
return NULL;
|
|
|
|
return __memmove(dest, src, len);
|
|
}
|
|
#endif
|
|
|
|
#undef memcpy
|
|
void *memcpy(void *dest, const void *src, size_t len)
|
|
{
|
|
if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
|
|
!kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
|
|
return NULL;
|
|
|
|
return __memcpy(dest, src, len);
|
|
}
|
|
|
|
void kasan_poison(const void *addr, size_t size, u8 value, bool init)
|
|
{
|
|
void *shadow_start, *shadow_end;
|
|
|
|
if (!kasan_arch_is_ready())
|
|
return;
|
|
|
|
/*
|
|
* Perform shadow offset calculation based on untagged address, as
|
|
* some of the callers (e.g. kasan_poison_object_data) pass tagged
|
|
* addresses to this function.
|
|
*/
|
|
addr = kasan_reset_tag(addr);
|
|
|
|
/* Skip KFENCE memory if called explicitly outside of sl*b. */
|
|
if (is_kfence_address(addr))
|
|
return;
|
|
|
|
if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
|
|
return;
|
|
if (WARN_ON(size & KASAN_GRANULE_MASK))
|
|
return;
|
|
|
|
shadow_start = kasan_mem_to_shadow(addr);
|
|
shadow_end = kasan_mem_to_shadow(addr + size);
|
|
|
|
__memset(shadow_start, value, shadow_end - shadow_start);
|
|
}
|
|
EXPORT_SYMBOL(kasan_poison);
|
|
|
|
#ifdef CONFIG_KASAN_GENERIC
|
|
void kasan_poison_last_granule(const void *addr, size_t size)
|
|
{
|
|
if (!kasan_arch_is_ready())
|
|
return;
|
|
|
|
if (size & KASAN_GRANULE_MASK) {
|
|
u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
|
|
*shadow = size & KASAN_GRANULE_MASK;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void kasan_unpoison(const void *addr, size_t size, bool init)
|
|
{
|
|
u8 tag = get_tag(addr);
|
|
|
|
/*
|
|
* Perform shadow offset calculation based on untagged address, as
|
|
* some of the callers (e.g. kasan_unpoison_object_data) pass tagged
|
|
* addresses to this function.
|
|
*/
|
|
addr = kasan_reset_tag(addr);
|
|
|
|
/*
|
|
* Skip KFENCE memory if called explicitly outside of sl*b. Also note
|
|
* that calls to ksize(), where size is not a multiple of machine-word
|
|
* size, would otherwise poison the invalid portion of the word.
|
|
*/
|
|
if (is_kfence_address(addr))
|
|
return;
|
|
|
|
if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
|
|
return;
|
|
|
|
/* Unpoison all granules that cover the object. */
|
|
kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
|
|
|
|
/* Partially poison the last granule for the generic mode. */
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
|
|
kasan_poison_last_granule(addr, size);
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
static bool shadow_mapped(unsigned long addr)
|
|
{
|
|
pgd_t *pgd = pgd_offset_k(addr);
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
if (pgd_none(*pgd))
|
|
return false;
|
|
p4d = p4d_offset(pgd, addr);
|
|
if (p4d_none(*p4d))
|
|
return false;
|
|
pud = pud_offset(p4d, addr);
|
|
if (pud_none(*pud))
|
|
return false;
|
|
|
|
/*
|
|
* We can't use pud_large() or pud_huge(), the first one is
|
|
* arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
|
|
* pud_bad(), if pud is bad then it's bad because it's huge.
|
|
*/
|
|
if (pud_bad(*pud))
|
|
return true;
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd))
|
|
return false;
|
|
|
|
if (pmd_bad(*pmd))
|
|
return true;
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
return !pte_none(*pte);
|
|
}
|
|
|
|
static int __meminit kasan_mem_notifier(struct notifier_block *nb,
|
|
unsigned long action, void *data)
|
|
{
|
|
struct memory_notify *mem_data = data;
|
|
unsigned long nr_shadow_pages, start_kaddr, shadow_start;
|
|
unsigned long shadow_end, shadow_size;
|
|
|
|
nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
|
|
start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
|
|
shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
|
|
shadow_size = nr_shadow_pages << PAGE_SHIFT;
|
|
shadow_end = shadow_start + shadow_size;
|
|
|
|
if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
|
|
WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
|
|
return NOTIFY_BAD;
|
|
|
|
switch (action) {
|
|
case MEM_GOING_ONLINE: {
|
|
void *ret;
|
|
|
|
/*
|
|
* If shadow is mapped already than it must have been mapped
|
|
* during the boot. This could happen if we onlining previously
|
|
* offlined memory.
|
|
*/
|
|
if (shadow_mapped(shadow_start))
|
|
return NOTIFY_OK;
|
|
|
|
ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
|
|
shadow_end, GFP_KERNEL,
|
|
PAGE_KERNEL, VM_NO_GUARD,
|
|
pfn_to_nid(mem_data->start_pfn),
|
|
__builtin_return_address(0));
|
|
if (!ret)
|
|
return NOTIFY_BAD;
|
|
|
|
kmemleak_ignore(ret);
|
|
return NOTIFY_OK;
|
|
}
|
|
case MEM_CANCEL_ONLINE:
|
|
case MEM_OFFLINE: {
|
|
struct vm_struct *vm;
|
|
|
|
/*
|
|
* shadow_start was either mapped during boot by kasan_init()
|
|
* or during memory online by __vmalloc_node_range().
|
|
* In the latter case we can use vfree() to free shadow.
|
|
* Non-NULL result of the find_vm_area() will tell us if
|
|
* that was the second case.
|
|
*
|
|
* Currently it's not possible to free shadow mapped
|
|
* during boot by kasan_init(). It's because the code
|
|
* to do that hasn't been written yet. So we'll just
|
|
* leak the memory.
|
|
*/
|
|
vm = find_vm_area((void *)shadow_start);
|
|
if (vm)
|
|
vfree((void *)shadow_start);
|
|
}
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static int __init kasan_memhotplug_init(void)
|
|
{
|
|
hotplug_memory_notifier(kasan_mem_notifier, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
core_initcall(kasan_memhotplug_init);
|
|
#endif
|
|
|
|
#ifdef CONFIG_KASAN_VMALLOC
|
|
|
|
void __init __weak kasan_populate_early_vm_area_shadow(void *start,
|
|
unsigned long size)
|
|
{
|
|
}
|
|
|
|
static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
|
|
void *unused)
|
|
{
|
|
unsigned long page;
|
|
pte_t pte;
|
|
|
|
if (likely(!pte_none(*ptep)))
|
|
return 0;
|
|
|
|
page = __get_free_page(GFP_KERNEL);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
|
|
pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
if (likely(pte_none(*ptep))) {
|
|
set_pte_at(&init_mm, addr, ptep, pte);
|
|
page = 0;
|
|
}
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
if (page)
|
|
free_page(page);
|
|
return 0;
|
|
}
|
|
|
|
int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
|
|
{
|
|
unsigned long shadow_start, shadow_end;
|
|
int ret;
|
|
|
|
if (!is_vmalloc_or_module_addr((void *)addr))
|
|
return 0;
|
|
|
|
shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
|
|
shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
|
|
shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
|
|
shadow_end = ALIGN(shadow_end, PAGE_SIZE);
|
|
|
|
ret = apply_to_page_range(&init_mm, shadow_start,
|
|
shadow_end - shadow_start,
|
|
kasan_populate_vmalloc_pte, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
flush_cache_vmap(shadow_start, shadow_end);
|
|
|
|
/*
|
|
* We need to be careful about inter-cpu effects here. Consider:
|
|
*
|
|
* CPU#0 CPU#1
|
|
* WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
|
|
* p[99] = 1;
|
|
*
|
|
* With compiler instrumentation, that ends up looking like this:
|
|
*
|
|
* CPU#0 CPU#1
|
|
* // vmalloc() allocates memory
|
|
* // let a = area->addr
|
|
* // we reach kasan_populate_vmalloc
|
|
* // and call kasan_unpoison:
|
|
* STORE shadow(a), unpoison_val
|
|
* ...
|
|
* STORE shadow(a+99), unpoison_val x = LOAD p
|
|
* // rest of vmalloc process <data dependency>
|
|
* STORE p, a LOAD shadow(x+99)
|
|
*
|
|
* If there is no barrier between the end of unpoisoning the shadow
|
|
* and the store of the result to p, the stores could be committed
|
|
* in a different order by CPU#0, and CPU#1 could erroneously observe
|
|
* poison in the shadow.
|
|
*
|
|
* We need some sort of barrier between the stores.
|
|
*
|
|
* In the vmalloc() case, this is provided by a smp_wmb() in
|
|
* clear_vm_uninitialized_flag(). In the per-cpu allocator and in
|
|
* get_vm_area() and friends, the caller gets shadow allocated but
|
|
* doesn't have any pages mapped into the virtual address space that
|
|
* has been reserved. Mapping those pages in will involve taking and
|
|
* releasing a page-table lock, which will provide the barrier.
|
|
*/
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Poison the shadow for a vmalloc region. Called as part of the
|
|
* freeing process at the time the region is freed.
|
|
*/
|
|
void kasan_poison_vmalloc(const void *start, unsigned long size)
|
|
{
|
|
if (!is_vmalloc_or_module_addr(start))
|
|
return;
|
|
|
|
size = round_up(size, KASAN_GRANULE_SIZE);
|
|
kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
|
|
}
|
|
|
|
void kasan_unpoison_vmalloc(const void *start, unsigned long size)
|
|
{
|
|
if (!is_vmalloc_or_module_addr(start))
|
|
return;
|
|
|
|
kasan_unpoison(start, size, false);
|
|
}
|
|
|
|
static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
|
|
void *unused)
|
|
{
|
|
unsigned long page;
|
|
|
|
page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
|
|
if (likely(!pte_none(*ptep))) {
|
|
pte_clear(&init_mm, addr, ptep);
|
|
free_page(page);
|
|
}
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Release the backing for the vmalloc region [start, end), which
|
|
* lies within the free region [free_region_start, free_region_end).
|
|
*
|
|
* This can be run lazily, long after the region was freed. It runs
|
|
* under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
|
|
* infrastructure.
|
|
*
|
|
* How does this work?
|
|
* -------------------
|
|
*
|
|
* We have a region that is page aligned, labeled as A.
|
|
* That might not map onto the shadow in a way that is page-aligned:
|
|
*
|
|
* start end
|
|
* v v
|
|
* |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
|
|
* -------- -------- -------- -------- --------
|
|
* | | | | |
|
|
* | | | /-------/ |
|
|
* \-------\|/------/ |/---------------/
|
|
* ||| ||
|
|
* |??AAAAAA|AAAAAAAA|AA??????| < shadow
|
|
* (1) (2) (3)
|
|
*
|
|
* First we align the start upwards and the end downwards, so that the
|
|
* shadow of the region aligns with shadow page boundaries. In the
|
|
* example, this gives us the shadow page (2). This is the shadow entirely
|
|
* covered by this allocation.
|
|
*
|
|
* Then we have the tricky bits. We want to know if we can free the
|
|
* partially covered shadow pages - (1) and (3) in the example. For this,
|
|
* we are given the start and end of the free region that contains this
|
|
* allocation. Extending our previous example, we could have:
|
|
*
|
|
* free_region_start free_region_end
|
|
* | start end |
|
|
* v v v v
|
|
* |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
|
|
* -------- -------- -------- -------- --------
|
|
* | | | | |
|
|
* | | | /-------/ |
|
|
* \-------\|/------/ |/---------------/
|
|
* ||| ||
|
|
* |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
|
|
* (1) (2) (3)
|
|
*
|
|
* Once again, we align the start of the free region up, and the end of
|
|
* the free region down so that the shadow is page aligned. So we can free
|
|
* page (1) - we know no allocation currently uses anything in that page,
|
|
* because all of it is in the vmalloc free region. But we cannot free
|
|
* page (3), because we can't be sure that the rest of it is unused.
|
|
*
|
|
* We only consider pages that contain part of the original region for
|
|
* freeing: we don't try to free other pages from the free region or we'd
|
|
* end up trying to free huge chunks of virtual address space.
|
|
*
|
|
* Concurrency
|
|
* -----------
|
|
*
|
|
* How do we know that we're not freeing a page that is simultaneously
|
|
* being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
|
|
*
|
|
* We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
|
|
* at the same time. While we run under free_vmap_area_lock, the population
|
|
* code does not.
|
|
*
|
|
* free_vmap_area_lock instead operates to ensure that the larger range
|
|
* [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
|
|
* the per-cpu region-finding algorithm both run under free_vmap_area_lock,
|
|
* no space identified as free will become used while we are running. This
|
|
* means that so long as we are careful with alignment and only free shadow
|
|
* pages entirely covered by the free region, we will not run in to any
|
|
* trouble - any simultaneous allocations will be for disjoint regions.
|
|
*/
|
|
void kasan_release_vmalloc(unsigned long start, unsigned long end,
|
|
unsigned long free_region_start,
|
|
unsigned long free_region_end)
|
|
{
|
|
void *shadow_start, *shadow_end;
|
|
unsigned long region_start, region_end;
|
|
unsigned long size;
|
|
|
|
region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
|
|
region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
|
|
|
|
free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
|
|
|
|
if (start != region_start &&
|
|
free_region_start < region_start)
|
|
region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
|
|
|
|
free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
|
|
|
|
if (end != region_end &&
|
|
free_region_end > region_end)
|
|
region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
|
|
|
|
shadow_start = kasan_mem_to_shadow((void *)region_start);
|
|
shadow_end = kasan_mem_to_shadow((void *)region_end);
|
|
|
|
if (shadow_end > shadow_start) {
|
|
size = shadow_end - shadow_start;
|
|
apply_to_existing_page_range(&init_mm,
|
|
(unsigned long)shadow_start,
|
|
size, kasan_depopulate_vmalloc_pte,
|
|
NULL);
|
|
flush_tlb_kernel_range((unsigned long)shadow_start,
|
|
(unsigned long)shadow_end);
|
|
}
|
|
}
|
|
|
|
#else /* CONFIG_KASAN_VMALLOC */
|
|
|
|
int kasan_module_alloc(void *addr, size_t size, gfp_t gfp_mask)
|
|
{
|
|
void *ret;
|
|
size_t scaled_size;
|
|
size_t shadow_size;
|
|
unsigned long shadow_start;
|
|
|
|
shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
|
|
scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
|
|
KASAN_SHADOW_SCALE_SHIFT;
|
|
shadow_size = round_up(scaled_size, PAGE_SIZE);
|
|
|
|
if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
|
|
return -EINVAL;
|
|
|
|
ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
|
|
shadow_start + shadow_size,
|
|
GFP_KERNEL,
|
|
PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
|
|
__builtin_return_address(0));
|
|
|
|
if (ret) {
|
|
struct vm_struct *vm = find_vm_area(addr);
|
|
__memset(ret, KASAN_SHADOW_INIT, shadow_size);
|
|
vm->flags |= VM_KASAN;
|
|
kmemleak_ignore(ret);
|
|
|
|
if (vm->flags & VM_DEFER_KMEMLEAK)
|
|
kmemleak_vmalloc(vm, size, gfp_mask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void kasan_free_shadow(const struct vm_struct *vm)
|
|
{
|
|
if (vm->flags & VM_KASAN)
|
|
vfree(kasan_mem_to_shadow(vm->addr));
|
|
}
|
|
|
|
#endif
|