mirror of
https://github.com/torvalds/linux.git
synced 2024-11-05 03:21:32 +00:00
8eb2dfac41
It turns out that LRW has never worked properly on big endian. This was never discussed because nobody actually used it that way. In fact, it was only discovered when Geert Uytterhoeven loaded it through tcrypt which failed the test on it. The fix is straightforward, on big endian the to find the nth bit we should be grouping them by words instead of bytes. So setbit128_bbe should xor with 128 - BITS_PER_LONG instead of 128 - BITS_PER_BYTE == 0x78. Tested-by: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
315 lines
7.6 KiB
C
315 lines
7.6 KiB
C
/* LRW: as defined by Cyril Guyot in
|
|
* http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
|
|
*
|
|
* Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
|
|
*
|
|
* Based om ecb.c
|
|
* Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*/
|
|
/* This implementation is checked against the test vectors in the above
|
|
* document and by a test vector provided by Ken Buchanan at
|
|
* http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
|
|
*
|
|
* The test vectors are included in the testing module tcrypt.[ch] */
|
|
#include <crypto/algapi.h>
|
|
#include <linux/err.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <crypto/b128ops.h>
|
|
#include <crypto/gf128mul.h>
|
|
|
|
struct priv {
|
|
struct crypto_cipher *child;
|
|
/* optimizes multiplying a random (non incrementing, as at the
|
|
* start of a new sector) value with key2, we could also have
|
|
* used 4k optimization tables or no optimization at all. In the
|
|
* latter case we would have to store key2 here */
|
|
struct gf128mul_64k *table;
|
|
/* stores:
|
|
* key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
|
|
* key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
|
|
* key2*{ 0,0,...1,1,1,1,1 }, etc
|
|
* needed for optimized multiplication of incrementing values
|
|
* with key2 */
|
|
be128 mulinc[128];
|
|
};
|
|
|
|
static inline void setbit128_bbe(void *b, int bit)
|
|
{
|
|
__set_bit(bit ^ (0x80 -
|
|
#ifdef __BIG_ENDIAN
|
|
BITS_PER_LONG
|
|
#else
|
|
BITS_PER_BYTE
|
|
#endif
|
|
), b);
|
|
}
|
|
|
|
static int setkey(struct crypto_tfm *parent, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct priv *ctx = crypto_tfm_ctx(parent);
|
|
struct crypto_cipher *child = ctx->child;
|
|
int err, i;
|
|
be128 tmp = { 0 };
|
|
int bsize = crypto_cipher_blocksize(child);
|
|
|
|
crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
|
|
crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) &
|
|
CRYPTO_TFM_REQ_MASK);
|
|
if ((err = crypto_cipher_setkey(child, key, keylen - bsize)))
|
|
return err;
|
|
crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) &
|
|
CRYPTO_TFM_RES_MASK);
|
|
|
|
if (ctx->table)
|
|
gf128mul_free_64k(ctx->table);
|
|
|
|
/* initialize multiplication table for Key2 */
|
|
ctx->table = gf128mul_init_64k_bbe((be128 *)(key + keylen - bsize));
|
|
if (!ctx->table)
|
|
return -ENOMEM;
|
|
|
|
/* initialize optimization table */
|
|
for (i = 0; i < 128; i++) {
|
|
setbit128_bbe(&tmp, i);
|
|
ctx->mulinc[i] = tmp;
|
|
gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct sinfo {
|
|
be128 t;
|
|
struct crypto_tfm *tfm;
|
|
void (*fn)(struct crypto_tfm *, u8 *, const u8 *);
|
|
};
|
|
|
|
static inline void inc(be128 *iv)
|
|
{
|
|
be64_add_cpu(&iv->b, 1);
|
|
if (!iv->b)
|
|
be64_add_cpu(&iv->a, 1);
|
|
}
|
|
|
|
static inline void lrw_round(struct sinfo *s, void *dst, const void *src)
|
|
{
|
|
be128_xor(dst, &s->t, src); /* PP <- T xor P */
|
|
s->fn(s->tfm, dst, dst); /* CC <- E(Key2,PP) */
|
|
be128_xor(dst, dst, &s->t); /* C <- T xor CC */
|
|
}
|
|
|
|
/* this returns the number of consequative 1 bits starting
|
|
* from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
|
|
static inline int get_index128(be128 *block)
|
|
{
|
|
int x;
|
|
__be32 *p = (__be32 *) block;
|
|
|
|
for (p += 3, x = 0; x < 128; p--, x += 32) {
|
|
u32 val = be32_to_cpup(p);
|
|
|
|
if (!~val)
|
|
continue;
|
|
|
|
return x + ffz(val);
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
static int crypt(struct blkcipher_desc *d,
|
|
struct blkcipher_walk *w, struct priv *ctx,
|
|
void (*fn)(struct crypto_tfm *, u8 *, const u8 *))
|
|
{
|
|
int err;
|
|
unsigned int avail;
|
|
const int bs = crypto_cipher_blocksize(ctx->child);
|
|
struct sinfo s = {
|
|
.tfm = crypto_cipher_tfm(ctx->child),
|
|
.fn = fn
|
|
};
|
|
be128 *iv;
|
|
u8 *wsrc;
|
|
u8 *wdst;
|
|
|
|
err = blkcipher_walk_virt(d, w);
|
|
if (!(avail = w->nbytes))
|
|
return err;
|
|
|
|
wsrc = w->src.virt.addr;
|
|
wdst = w->dst.virt.addr;
|
|
|
|
/* calculate first value of T */
|
|
iv = (be128 *)w->iv;
|
|
s.t = *iv;
|
|
|
|
/* T <- I*Key2 */
|
|
gf128mul_64k_bbe(&s.t, ctx->table);
|
|
|
|
goto first;
|
|
|
|
for (;;) {
|
|
do {
|
|
/* T <- I*Key2, using the optimization
|
|
* discussed in the specification */
|
|
be128_xor(&s.t, &s.t, &ctx->mulinc[get_index128(iv)]);
|
|
inc(iv);
|
|
|
|
first:
|
|
lrw_round(&s, wdst, wsrc);
|
|
|
|
wsrc += bs;
|
|
wdst += bs;
|
|
} while ((avail -= bs) >= bs);
|
|
|
|
err = blkcipher_walk_done(d, w, avail);
|
|
if (!(avail = w->nbytes))
|
|
break;
|
|
|
|
wsrc = w->src.virt.addr;
|
|
wdst = w->dst.virt.addr;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
|
|
struct scatterlist *src, unsigned int nbytes)
|
|
{
|
|
struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
|
|
struct blkcipher_walk w;
|
|
|
|
blkcipher_walk_init(&w, dst, src, nbytes);
|
|
return crypt(desc, &w, ctx,
|
|
crypto_cipher_alg(ctx->child)->cia_encrypt);
|
|
}
|
|
|
|
static int decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
|
|
struct scatterlist *src, unsigned int nbytes)
|
|
{
|
|
struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
|
|
struct blkcipher_walk w;
|
|
|
|
blkcipher_walk_init(&w, dst, src, nbytes);
|
|
return crypt(desc, &w, ctx,
|
|
crypto_cipher_alg(ctx->child)->cia_decrypt);
|
|
}
|
|
|
|
static int init_tfm(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_cipher *cipher;
|
|
struct crypto_instance *inst = (void *)tfm->__crt_alg;
|
|
struct crypto_spawn *spawn = crypto_instance_ctx(inst);
|
|
struct priv *ctx = crypto_tfm_ctx(tfm);
|
|
u32 *flags = &tfm->crt_flags;
|
|
|
|
cipher = crypto_spawn_cipher(spawn);
|
|
if (IS_ERR(cipher))
|
|
return PTR_ERR(cipher);
|
|
|
|
if (crypto_cipher_blocksize(cipher) != 16) {
|
|
*flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN;
|
|
return -EINVAL;
|
|
}
|
|
|
|
ctx->child = cipher;
|
|
return 0;
|
|
}
|
|
|
|
static void exit_tfm(struct crypto_tfm *tfm)
|
|
{
|
|
struct priv *ctx = crypto_tfm_ctx(tfm);
|
|
if (ctx->table)
|
|
gf128mul_free_64k(ctx->table);
|
|
crypto_free_cipher(ctx->child);
|
|
}
|
|
|
|
static struct crypto_instance *alloc(struct rtattr **tb)
|
|
{
|
|
struct crypto_instance *inst;
|
|
struct crypto_alg *alg;
|
|
int err;
|
|
|
|
err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
|
|
alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
|
|
CRYPTO_ALG_TYPE_MASK);
|
|
if (IS_ERR(alg))
|
|
return ERR_CAST(alg);
|
|
|
|
inst = crypto_alloc_instance("lrw", alg);
|
|
if (IS_ERR(inst))
|
|
goto out_put_alg;
|
|
|
|
inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER;
|
|
inst->alg.cra_priority = alg->cra_priority;
|
|
inst->alg.cra_blocksize = alg->cra_blocksize;
|
|
|
|
if (alg->cra_alignmask < 7) inst->alg.cra_alignmask = 7;
|
|
else inst->alg.cra_alignmask = alg->cra_alignmask;
|
|
inst->alg.cra_type = &crypto_blkcipher_type;
|
|
|
|
if (!(alg->cra_blocksize % 4))
|
|
inst->alg.cra_alignmask |= 3;
|
|
inst->alg.cra_blkcipher.ivsize = alg->cra_blocksize;
|
|
inst->alg.cra_blkcipher.min_keysize =
|
|
alg->cra_cipher.cia_min_keysize + alg->cra_blocksize;
|
|
inst->alg.cra_blkcipher.max_keysize =
|
|
alg->cra_cipher.cia_max_keysize + alg->cra_blocksize;
|
|
|
|
inst->alg.cra_ctxsize = sizeof(struct priv);
|
|
|
|
inst->alg.cra_init = init_tfm;
|
|
inst->alg.cra_exit = exit_tfm;
|
|
|
|
inst->alg.cra_blkcipher.setkey = setkey;
|
|
inst->alg.cra_blkcipher.encrypt = encrypt;
|
|
inst->alg.cra_blkcipher.decrypt = decrypt;
|
|
|
|
out_put_alg:
|
|
crypto_mod_put(alg);
|
|
return inst;
|
|
}
|
|
|
|
static void free(struct crypto_instance *inst)
|
|
{
|
|
crypto_drop_spawn(crypto_instance_ctx(inst));
|
|
kfree(inst);
|
|
}
|
|
|
|
static struct crypto_template crypto_tmpl = {
|
|
.name = "lrw",
|
|
.alloc = alloc,
|
|
.free = free,
|
|
.module = THIS_MODULE,
|
|
};
|
|
|
|
static int __init crypto_module_init(void)
|
|
{
|
|
return crypto_register_template(&crypto_tmpl);
|
|
}
|
|
|
|
static void __exit crypto_module_exit(void)
|
|
{
|
|
crypto_unregister_template(&crypto_tmpl);
|
|
}
|
|
|
|
module_init(crypto_module_init);
|
|
module_exit(crypto_module_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("LRW block cipher mode");
|