linux/fs/bcachefs/util.c
Darrick J. Wong 273960b8f3 bcachefs: time_stats: split stats-with-quantiles into a separate structure
Currently, struct time_stats has the optional ability to quantize the
information that it collects.  This is /probably/ useful for callers who
want to see quantized information, but it more than doubles the size of
the structure from 224 bytes to 464.  For users who don't care about
that (e.g. upcoming xfs patches) and want to avoid wasting 240 bytes per
counter, split the two into separate pieces.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2024-03-13 21:38:01 -04:00

1040 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* random utiility code, for bcache but in theory not specific to bcache
*
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
* Copyright 2012 Google, Inc.
*/
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/console.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/freezer.h>
#include <linux/kthread.h>
#include <linux/log2.h>
#include <linux/math64.h>
#include <linux/percpu.h>
#include <linux/preempt.h>
#include <linux/random.h>
#include <linux/seq_file.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/sched/clock.h>
#include "eytzinger.h"
#include "mean_and_variance.h"
#include "util.h"
static const char si_units[] = "?kMGTPEZY";
/* string_get_size units: */
static const char *const units_2[] = {
"B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB", "ZiB", "YiB"
};
static const char *const units_10[] = {
"B", "kB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB"
};
static int parse_u64(const char *cp, u64 *res)
{
const char *start = cp;
u64 v = 0;
if (!isdigit(*cp))
return -EINVAL;
do {
if (v > U64_MAX / 10)
return -ERANGE;
v *= 10;
if (v > U64_MAX - (*cp - '0'))
return -ERANGE;
v += *cp - '0';
cp++;
} while (isdigit(*cp));
*res = v;
return cp - start;
}
static int bch2_pow(u64 n, u64 p, u64 *res)
{
*res = 1;
while (p--) {
if (*res > div_u64(U64_MAX, n))
return -ERANGE;
*res *= n;
}
return 0;
}
static int parse_unit_suffix(const char *cp, u64 *res)
{
const char *start = cp;
u64 base = 1024;
unsigned u;
int ret;
if (*cp == ' ')
cp++;
for (u = 1; u < strlen(si_units); u++)
if (*cp == si_units[u]) {
cp++;
goto got_unit;
}
for (u = 0; u < ARRAY_SIZE(units_2); u++)
if (!strncmp(cp, units_2[u], strlen(units_2[u]))) {
cp += strlen(units_2[u]);
goto got_unit;
}
for (u = 0; u < ARRAY_SIZE(units_10); u++)
if (!strncmp(cp, units_10[u], strlen(units_10[u]))) {
cp += strlen(units_10[u]);
base = 1000;
goto got_unit;
}
*res = 1;
return 0;
got_unit:
ret = bch2_pow(base, u, res);
if (ret)
return ret;
return cp - start;
}
#define parse_or_ret(cp, _f) \
do { \
int _ret = _f; \
if (_ret < 0) \
return _ret; \
cp += _ret; \
} while (0)
static int __bch2_strtou64_h(const char *cp, u64 *res)
{
const char *start = cp;
u64 v = 0, b, f_n = 0, f_d = 1;
int ret;
parse_or_ret(cp, parse_u64(cp, &v));
if (*cp == '.') {
cp++;
ret = parse_u64(cp, &f_n);
if (ret < 0)
return ret;
cp += ret;
ret = bch2_pow(10, ret, &f_d);
if (ret)
return ret;
}
parse_or_ret(cp, parse_unit_suffix(cp, &b));
if (v > div_u64(U64_MAX, b))
return -ERANGE;
v *= b;
if (f_n > div_u64(U64_MAX, b))
return -ERANGE;
f_n = div_u64(f_n * b, f_d);
if (v + f_n < v)
return -ERANGE;
v += f_n;
*res = v;
return cp - start;
}
static int __bch2_strtoh(const char *cp, u64 *res,
u64 t_max, bool t_signed)
{
bool positive = *cp != '-';
u64 v = 0;
if (*cp == '+' || *cp == '-')
cp++;
parse_or_ret(cp, __bch2_strtou64_h(cp, &v));
if (*cp == '\n')
cp++;
if (*cp)
return -EINVAL;
if (positive) {
if (v > t_max)
return -ERANGE;
} else {
if (v && !t_signed)
return -ERANGE;
if (v > t_max + 1)
return -ERANGE;
v = -v;
}
*res = v;
return 0;
}
#define STRTO_H(name, type) \
int bch2_ ## name ## _h(const char *cp, type *res) \
{ \
u64 v = 0; \
int ret = __bch2_strtoh(cp, &v, ANYSINT_MAX(type), \
ANYSINT_MAX(type) != ((type) ~0ULL)); \
*res = v; \
return ret; \
}
STRTO_H(strtoint, int)
STRTO_H(strtouint, unsigned int)
STRTO_H(strtoll, long long)
STRTO_H(strtoull, unsigned long long)
STRTO_H(strtou64, u64)
u64 bch2_read_flag_list(char *opt, const char * const list[])
{
u64 ret = 0;
char *p, *s, *d = kstrdup(opt, GFP_KERNEL);
if (!d)
return -ENOMEM;
s = strim(d);
while ((p = strsep(&s, ","))) {
int flag = match_string(list, -1, p);
if (flag < 0) {
ret = -1;
break;
}
ret |= 1 << flag;
}
kfree(d);
return ret;
}
bool bch2_is_zero(const void *_p, size_t n)
{
const char *p = _p;
size_t i;
for (i = 0; i < n; i++)
if (p[i])
return false;
return true;
}
void bch2_prt_u64_base2_nbits(struct printbuf *out, u64 v, unsigned nr_bits)
{
while (nr_bits)
prt_char(out, '0' + ((v >> --nr_bits) & 1));
}
void bch2_prt_u64_base2(struct printbuf *out, u64 v)
{
bch2_prt_u64_base2_nbits(out, v, fls64(v) ?: 1);
}
void bch2_print_string_as_lines(const char *prefix, const char *lines)
{
const char *p;
if (!lines) {
printk("%s (null)\n", prefix);
return;
}
console_lock();
while (1) {
p = strchrnul(lines, '\n');
printk("%s%.*s\n", prefix, (int) (p - lines), lines);
if (!*p)
break;
lines = p + 1;
}
console_unlock();
}
int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *task, unsigned skipnr,
gfp_t gfp)
{
#ifdef CONFIG_STACKTRACE
unsigned nr_entries = 0;
stack->nr = 0;
int ret = darray_make_room_gfp(stack, 32, gfp);
if (ret)
return ret;
if (!down_read_trylock(&task->signal->exec_update_lock))
return -1;
do {
nr_entries = stack_trace_save_tsk(task, stack->data, stack->size, skipnr + 1);
} while (nr_entries == stack->size &&
!(ret = darray_make_room_gfp(stack, stack->size * 2, gfp)));
stack->nr = nr_entries;
up_read(&task->signal->exec_update_lock);
return ret;
#else
return 0;
#endif
}
void bch2_prt_backtrace(struct printbuf *out, bch_stacktrace *stack)
{
darray_for_each(*stack, i) {
prt_printf(out, "[<0>] %pB", (void *) *i);
prt_newline(out);
}
}
int bch2_prt_task_backtrace(struct printbuf *out, struct task_struct *task, unsigned skipnr, gfp_t gfp)
{
bch_stacktrace stack = { 0 };
int ret = bch2_save_backtrace(&stack, task, skipnr + 1, gfp);
bch2_prt_backtrace(out, &stack);
darray_exit(&stack);
return ret;
}
#ifndef __KERNEL__
#include <time.h>
void bch2_prt_datetime(struct printbuf *out, time64_t sec)
{
time_t t = sec;
char buf[64];
ctime_r(&t, buf);
strim(buf);
prt_str(out, buf);
}
#else
void bch2_prt_datetime(struct printbuf *out, time64_t sec)
{
char buf[64];
snprintf(buf, sizeof(buf), "%ptT", &sec);
prt_u64(out, sec);
}
#endif
void bch2_pr_time_units(struct printbuf *out, u64 ns)
{
const struct time_unit *u = bch2_pick_time_units(ns);
prt_printf(out, "%llu %s", div_u64(ns, u->nsecs), u->name);
}
static void bch2_pr_time_units_aligned(struct printbuf *out, u64 ns)
{
const struct time_unit *u = bch2_pick_time_units(ns);
prt_printf(out, "%llu ", div64_u64(ns, u->nsecs));
prt_tab_rjust(out);
prt_printf(out, "%s", u->name);
}
static inline void pr_name_and_units(struct printbuf *out, const char *name, u64 ns)
{
prt_str(out, name);
prt_tab(out);
bch2_pr_time_units_aligned(out, ns);
prt_newline(out);
}
#define TABSTOP_SIZE 12
void bch2_time_stats_to_text(struct printbuf *out, struct bch2_time_stats *stats)
{
struct quantiles *quantiles = time_stats_to_quantiles(stats);
s64 f_mean = 0, d_mean = 0;
u64 f_stddev = 0, d_stddev = 0;
if (stats->buffer) {
int cpu;
spin_lock_irq(&stats->lock);
for_each_possible_cpu(cpu)
__bch2_time_stats_clear_buffer(stats, per_cpu_ptr(stats->buffer, cpu));
spin_unlock_irq(&stats->lock);
}
/*
* avoid divide by zero
*/
if (stats->freq_stats.n) {
f_mean = mean_and_variance_get_mean(stats->freq_stats);
f_stddev = mean_and_variance_get_stddev(stats->freq_stats);
d_mean = mean_and_variance_get_mean(stats->duration_stats);
d_stddev = mean_and_variance_get_stddev(stats->duration_stats);
}
printbuf_tabstop_push(out, out->indent + TABSTOP_SIZE);
prt_printf(out, "count:");
prt_tab(out);
prt_printf(out, "%llu ",
stats->duration_stats.n);
printbuf_tabstop_pop(out);
prt_newline(out);
printbuf_tabstops_reset(out);
printbuf_tabstop_push(out, out->indent + 20);
printbuf_tabstop_push(out, TABSTOP_SIZE + 2);
printbuf_tabstop_push(out, 0);
printbuf_tabstop_push(out, TABSTOP_SIZE + 2);
prt_tab(out);
prt_printf(out, "since mount");
prt_tab_rjust(out);
prt_tab(out);
prt_printf(out, "recent");
prt_tab_rjust(out);
prt_newline(out);
printbuf_tabstops_reset(out);
printbuf_tabstop_push(out, out->indent + 20);
printbuf_tabstop_push(out, TABSTOP_SIZE);
printbuf_tabstop_push(out, 2);
printbuf_tabstop_push(out, TABSTOP_SIZE);
prt_printf(out, "duration of events");
prt_newline(out);
printbuf_indent_add(out, 2);
pr_name_and_units(out, "min:", stats->min_duration);
pr_name_and_units(out, "max:", stats->max_duration);
pr_name_and_units(out, "total:", stats->total_duration);
prt_printf(out, "mean:");
prt_tab(out);
bch2_pr_time_units_aligned(out, d_mean);
prt_tab(out);
bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_mean(stats->duration_stats_weighted, TIME_STATS_MV_WEIGHT));
prt_newline(out);
prt_printf(out, "stddev:");
prt_tab(out);
bch2_pr_time_units_aligned(out, d_stddev);
prt_tab(out);
bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_stddev(stats->duration_stats_weighted, TIME_STATS_MV_WEIGHT));
printbuf_indent_sub(out, 2);
prt_newline(out);
prt_printf(out, "time between events");
prt_newline(out);
printbuf_indent_add(out, 2);
pr_name_and_units(out, "min:", stats->min_freq);
pr_name_and_units(out, "max:", stats->max_freq);
prt_printf(out, "mean:");
prt_tab(out);
bch2_pr_time_units_aligned(out, f_mean);
prt_tab(out);
bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_mean(stats->freq_stats_weighted, TIME_STATS_MV_WEIGHT));
prt_newline(out);
prt_printf(out, "stddev:");
prt_tab(out);
bch2_pr_time_units_aligned(out, f_stddev);
prt_tab(out);
bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_stddev(stats->freq_stats_weighted, TIME_STATS_MV_WEIGHT));
printbuf_indent_sub(out, 2);
prt_newline(out);
printbuf_tabstops_reset(out);
if (quantiles) {
int i = eytzinger0_first(NR_QUANTILES);
const struct time_unit *u =
bch2_pick_time_units(quantiles->entries[i].m);
u64 last_q = 0;
prt_printf(out, "quantiles (%s):\t", u->name);
eytzinger0_for_each(i, NR_QUANTILES) {
bool is_last = eytzinger0_next(i, NR_QUANTILES) == -1;
u64 q = max(quantiles->entries[i].m, last_q);
prt_printf(out, "%llu ", div_u64(q, u->nsecs));
if (is_last)
prt_newline(out);
last_q = q;
}
}
}
/* ratelimit: */
/**
* bch2_ratelimit_delay() - return how long to delay until the next time to do
* some work
* @d: the struct bch_ratelimit to update
* Returns: the amount of time to delay by, in jiffies
*/
u64 bch2_ratelimit_delay(struct bch_ratelimit *d)
{
u64 now = local_clock();
return time_after64(d->next, now)
? nsecs_to_jiffies(d->next - now)
: 0;
}
/**
* bch2_ratelimit_increment() - increment @d by the amount of work done
* @d: the struct bch_ratelimit to update
* @done: the amount of work done, in arbitrary units
*/
void bch2_ratelimit_increment(struct bch_ratelimit *d, u64 done)
{
u64 now = local_clock();
d->next += div_u64(done * NSEC_PER_SEC, d->rate);
if (time_before64(now + NSEC_PER_SEC, d->next))
d->next = now + NSEC_PER_SEC;
if (time_after64(now - NSEC_PER_SEC * 2, d->next))
d->next = now - NSEC_PER_SEC * 2;
}
/* pd controller: */
/*
* Updates pd_controller. Attempts to scale inputed values to units per second.
* @target: desired value
* @actual: current value
*
* @sign: 1 or -1; 1 if increasing the rate makes actual go up, -1 if increasing
* it makes actual go down.
*/
void bch2_pd_controller_update(struct bch_pd_controller *pd,
s64 target, s64 actual, int sign)
{
s64 proportional, derivative, change;
unsigned long seconds_since_update = (jiffies - pd->last_update) / HZ;
if (seconds_since_update == 0)
return;
pd->last_update = jiffies;
proportional = actual - target;
proportional *= seconds_since_update;
proportional = div_s64(proportional, pd->p_term_inverse);
derivative = actual - pd->last_actual;
derivative = div_s64(derivative, seconds_since_update);
derivative = ewma_add(pd->smoothed_derivative, derivative,
(pd->d_term / seconds_since_update) ?: 1);
derivative = derivative * pd->d_term;
derivative = div_s64(derivative, pd->p_term_inverse);
change = proportional + derivative;
/* Don't increase rate if not keeping up */
if (change > 0 &&
pd->backpressure &&
time_after64(local_clock(),
pd->rate.next + NSEC_PER_MSEC))
change = 0;
change *= (sign * -1);
pd->rate.rate = clamp_t(s64, (s64) pd->rate.rate + change,
1, UINT_MAX);
pd->last_actual = actual;
pd->last_derivative = derivative;
pd->last_proportional = proportional;
pd->last_change = change;
pd->last_target = target;
}
void bch2_pd_controller_init(struct bch_pd_controller *pd)
{
pd->rate.rate = 1024;
pd->last_update = jiffies;
pd->p_term_inverse = 6000;
pd->d_term = 30;
pd->d_smooth = pd->d_term;
pd->backpressure = 1;
}
void bch2_pd_controller_debug_to_text(struct printbuf *out, struct bch_pd_controller *pd)
{
if (!out->nr_tabstops)
printbuf_tabstop_push(out, 20);
prt_printf(out, "rate:");
prt_tab(out);
prt_human_readable_s64(out, pd->rate.rate);
prt_newline(out);
prt_printf(out, "target:");
prt_tab(out);
prt_human_readable_u64(out, pd->last_target);
prt_newline(out);
prt_printf(out, "actual:");
prt_tab(out);
prt_human_readable_u64(out, pd->last_actual);
prt_newline(out);
prt_printf(out, "proportional:");
prt_tab(out);
prt_human_readable_s64(out, pd->last_proportional);
prt_newline(out);
prt_printf(out, "derivative:");
prt_tab(out);
prt_human_readable_s64(out, pd->last_derivative);
prt_newline(out);
prt_printf(out, "change:");
prt_tab(out);
prt_human_readable_s64(out, pd->last_change);
prt_newline(out);
prt_printf(out, "next io:");
prt_tab(out);
prt_printf(out, "%llims", div64_s64(pd->rate.next - local_clock(), NSEC_PER_MSEC));
prt_newline(out);
}
/* misc: */
void bch2_bio_map(struct bio *bio, void *base, size_t size)
{
while (size) {
struct page *page = is_vmalloc_addr(base)
? vmalloc_to_page(base)
: virt_to_page(base);
unsigned offset = offset_in_page(base);
unsigned len = min_t(size_t, PAGE_SIZE - offset, size);
BUG_ON(!bio_add_page(bio, page, len, offset));
size -= len;
base += len;
}
}
int bch2_bio_alloc_pages(struct bio *bio, size_t size, gfp_t gfp_mask)
{
while (size) {
struct page *page = alloc_pages(gfp_mask, 0);
unsigned len = min_t(size_t, PAGE_SIZE, size);
if (!page)
return -ENOMEM;
if (unlikely(!bio_add_page(bio, page, len, 0))) {
__free_page(page);
break;
}
size -= len;
}
return 0;
}
size_t bch2_rand_range(size_t max)
{
size_t rand;
if (!max)
return 0;
do {
rand = get_random_long();
rand &= roundup_pow_of_two(max) - 1;
} while (rand >= max);
return rand;
}
void memcpy_to_bio(struct bio *dst, struct bvec_iter dst_iter, const void *src)
{
struct bio_vec bv;
struct bvec_iter iter;
__bio_for_each_segment(bv, dst, iter, dst_iter) {
void *dstp = kmap_local_page(bv.bv_page);
memcpy(dstp + bv.bv_offset, src, bv.bv_len);
kunmap_local(dstp);
src += bv.bv_len;
}
}
void memcpy_from_bio(void *dst, struct bio *src, struct bvec_iter src_iter)
{
struct bio_vec bv;
struct bvec_iter iter;
__bio_for_each_segment(bv, src, iter, src_iter) {
void *srcp = kmap_local_page(bv.bv_page);
memcpy(dst, srcp + bv.bv_offset, bv.bv_len);
kunmap_local(srcp);
dst += bv.bv_len;
}
}
static int alignment_ok(const void *base, size_t align)
{
return IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
((unsigned long)base & (align - 1)) == 0;
}
static void u32_swap(void *a, void *b, size_t size)
{
u32 t = *(u32 *)a;
*(u32 *)a = *(u32 *)b;
*(u32 *)b = t;
}
static void u64_swap(void *a, void *b, size_t size)
{
u64 t = *(u64 *)a;
*(u64 *)a = *(u64 *)b;
*(u64 *)b = t;
}
static void generic_swap(void *a, void *b, size_t size)
{
char t;
do {
t = *(char *)a;
*(char *)a++ = *(char *)b;
*(char *)b++ = t;
} while (--size > 0);
}
static inline int do_cmp(void *base, size_t n, size_t size,
int (*cmp_func)(const void *, const void *, size_t),
size_t l, size_t r)
{
return cmp_func(base + inorder_to_eytzinger0(l, n) * size,
base + inorder_to_eytzinger0(r, n) * size,
size);
}
static inline void do_swap(void *base, size_t n, size_t size,
void (*swap_func)(void *, void *, size_t),
size_t l, size_t r)
{
swap_func(base + inorder_to_eytzinger0(l, n) * size,
base + inorder_to_eytzinger0(r, n) * size,
size);
}
void eytzinger0_sort(void *base, size_t n, size_t size,
int (*cmp_func)(const void *, const void *, size_t),
void (*swap_func)(void *, void *, size_t))
{
int i, c, r;
if (!swap_func) {
if (size == 4 && alignment_ok(base, 4))
swap_func = u32_swap;
else if (size == 8 && alignment_ok(base, 8))
swap_func = u64_swap;
else
swap_func = generic_swap;
}
/* heapify */
for (i = n / 2 - 1; i >= 0; --i) {
for (r = i; r * 2 + 1 < n; r = c) {
c = r * 2 + 1;
if (c + 1 < n &&
do_cmp(base, n, size, cmp_func, c, c + 1) < 0)
c++;
if (do_cmp(base, n, size, cmp_func, r, c) >= 0)
break;
do_swap(base, n, size, swap_func, r, c);
}
}
/* sort */
for (i = n - 1; i > 0; --i) {
do_swap(base, n, size, swap_func, 0, i);
for (r = 0; r * 2 + 1 < i; r = c) {
c = r * 2 + 1;
if (c + 1 < i &&
do_cmp(base, n, size, cmp_func, c, c + 1) < 0)
c++;
if (do_cmp(base, n, size, cmp_func, r, c) >= 0)
break;
do_swap(base, n, size, swap_func, r, c);
}
}
}
void sort_cmp_size(void *base, size_t num, size_t size,
int (*cmp_func)(const void *, const void *, size_t),
void (*swap_func)(void *, void *, size_t size))
{
/* pre-scale counters for performance */
int i = (num/2 - 1) * size, n = num * size, c, r;
if (!swap_func) {
if (size == 4 && alignment_ok(base, 4))
swap_func = u32_swap;
else if (size == 8 && alignment_ok(base, 8))
swap_func = u64_swap;
else
swap_func = generic_swap;
}
/* heapify */
for ( ; i >= 0; i -= size) {
for (r = i; r * 2 + size < n; r = c) {
c = r * 2 + size;
if (c < n - size &&
cmp_func(base + c, base + c + size, size) < 0)
c += size;
if (cmp_func(base + r, base + c, size) >= 0)
break;
swap_func(base + r, base + c, size);
}
}
/* sort */
for (i = n - size; i > 0; i -= size) {
swap_func(base, base + i, size);
for (r = 0; r * 2 + size < i; r = c) {
c = r * 2 + size;
if (c < i - size &&
cmp_func(base + c, base + c + size, size) < 0)
c += size;
if (cmp_func(base + r, base + c, size) >= 0)
break;
swap_func(base + r, base + c, size);
}
}
}
#if 0
void eytzinger1_test(void)
{
unsigned inorder, eytz, size;
pr_info("1 based eytzinger test:");
for (size = 2;
size < 65536;
size++) {
unsigned extra = eytzinger1_extra(size);
if (!(size % 4096))
pr_info("tree size %u", size);
BUG_ON(eytzinger1_prev(0, size) != eytzinger1_last(size));
BUG_ON(eytzinger1_next(0, size) != eytzinger1_first(size));
BUG_ON(eytzinger1_prev(eytzinger1_first(size), size) != 0);
BUG_ON(eytzinger1_next(eytzinger1_last(size), size) != 0);
inorder = 1;
eytzinger1_for_each(eytz, size) {
BUG_ON(__inorder_to_eytzinger1(inorder, size, extra) != eytz);
BUG_ON(__eytzinger1_to_inorder(eytz, size, extra) != inorder);
BUG_ON(eytz != eytzinger1_last(size) &&
eytzinger1_prev(eytzinger1_next(eytz, size), size) != eytz);
inorder++;
}
}
}
void eytzinger0_test(void)
{
unsigned inorder, eytz, size;
pr_info("0 based eytzinger test:");
for (size = 1;
size < 65536;
size++) {
unsigned extra = eytzinger0_extra(size);
if (!(size % 4096))
pr_info("tree size %u", size);
BUG_ON(eytzinger0_prev(-1, size) != eytzinger0_last(size));
BUG_ON(eytzinger0_next(-1, size) != eytzinger0_first(size));
BUG_ON(eytzinger0_prev(eytzinger0_first(size), size) != -1);
BUG_ON(eytzinger0_next(eytzinger0_last(size), size) != -1);
inorder = 0;
eytzinger0_for_each(eytz, size) {
BUG_ON(__inorder_to_eytzinger0(inorder, size, extra) != eytz);
BUG_ON(__eytzinger0_to_inorder(eytz, size, extra) != inorder);
BUG_ON(eytz != eytzinger0_last(size) &&
eytzinger0_prev(eytzinger0_next(eytz, size), size) != eytz);
inorder++;
}
}
}
static inline int cmp_u16(const void *_l, const void *_r, size_t size)
{
const u16 *l = _l, *r = _r;
return (*l > *r) - (*r - *l);
}
static void eytzinger0_find_test_val(u16 *test_array, unsigned nr, u16 search)
{
int i, c1 = -1, c2 = -1;
ssize_t r;
r = eytzinger0_find_le(test_array, nr,
sizeof(test_array[0]),
cmp_u16, &search);
if (r >= 0)
c1 = test_array[r];
for (i = 0; i < nr; i++)
if (test_array[i] <= search && test_array[i] > c2)
c2 = test_array[i];
if (c1 != c2) {
eytzinger0_for_each(i, nr)
pr_info("[%3u] = %12u", i, test_array[i]);
pr_info("find_le(%2u) -> [%2zi] = %2i should be %2i",
i, r, c1, c2);
}
}
void eytzinger0_find_test(void)
{
unsigned i, nr, allocated = 1 << 12;
u16 *test_array = kmalloc_array(allocated, sizeof(test_array[0]), GFP_KERNEL);
for (nr = 1; nr < allocated; nr++) {
pr_info("testing %u elems", nr);
get_random_bytes(test_array, nr * sizeof(test_array[0]));
eytzinger0_sort(test_array, nr, sizeof(test_array[0]), cmp_u16, NULL);
/* verify array is sorted correctly: */
eytzinger0_for_each(i, nr)
BUG_ON(i != eytzinger0_last(nr) &&
test_array[i] > test_array[eytzinger0_next(i, nr)]);
for (i = 0; i < U16_MAX; i += 1 << 12)
eytzinger0_find_test_val(test_array, nr, i);
for (i = 0; i < nr; i++) {
eytzinger0_find_test_val(test_array, nr, test_array[i] - 1);
eytzinger0_find_test_val(test_array, nr, test_array[i]);
eytzinger0_find_test_val(test_array, nr, test_array[i] + 1);
}
}
kfree(test_array);
}
#endif
/*
* Accumulate percpu counters onto one cpu's copy - only valid when access
* against any percpu counter is guarded against
*/
u64 *bch2_acc_percpu_u64s(u64 __percpu *p, unsigned nr)
{
u64 *ret;
int cpu;
/* access to pcpu vars has to be blocked by other locking */
preempt_disable();
ret = this_cpu_ptr(p);
preempt_enable();
for_each_possible_cpu(cpu) {
u64 *i = per_cpu_ptr(p, cpu);
if (i != ret) {
acc_u64s(ret, i, nr);
memset(i, 0, nr * sizeof(u64));
}
}
return ret;
}
void bch2_darray_str_exit(darray_str *d)
{
darray_for_each(*d, i)
kfree(*i);
darray_exit(d);
}
int bch2_split_devs(const char *_dev_name, darray_str *ret)
{
darray_init(ret);
char *dev_name, *s, *orig;
dev_name = orig = kstrdup(_dev_name, GFP_KERNEL);
if (!dev_name)
return -ENOMEM;
while ((s = strsep(&dev_name, ":"))) {
char *p = kstrdup(s, GFP_KERNEL);
if (!p)
goto err;
if (darray_push(ret, p)) {
kfree(p);
goto err;
}
}
kfree(orig);
return 0;
err:
bch2_darray_str_exit(ret);
kfree(orig);
return -ENOMEM;
}