linux/kernel/fork.c
Sukadev Bhattiprolu 0800d30832 Use task_pgrp() task_session() in copy_process()
Use task_pgrp() and task_session() in copy_process(), and avoid find_pid()
call when attaching the task to its process group and session.

Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Serge Hallyn <serue@us.ibm.com>
Cc: <containers@lists.osdl.org>
Acked-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-11 08:29:36 -07:00

1679 lines
41 KiB
C

/*
* linux/kernel/fork.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
/*
* 'fork.c' contains the help-routines for the 'fork' system call
* (see also entry.S and others).
* Fork is rather simple, once you get the hang of it, but the memory
* management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
*/
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/unistd.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/completion.h>
#include <linux/mnt_namespace.h>
#include <linux/personality.h>
#include <linux/mempolicy.h>
#include <linux/sem.h>
#include <linux/file.h>
#include <linux/key.h>
#include <linux/binfmts.h>
#include <linux/mman.h>
#include <linux/fs.h>
#include <linux/nsproxy.h>
#include <linux/capability.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/security.h>
#include <linux/swap.h>
#include <linux/syscalls.h>
#include <linux/jiffies.h>
#include <linux/futex.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/rcupdate.h>
#include <linux/ptrace.h>
#include <linux/mount.h>
#include <linux/audit.h>
#include <linux/profile.h>
#include <linux/rmap.h>
#include <linux/acct.h>
#include <linux/tsacct_kern.h>
#include <linux/cn_proc.h>
#include <linux/delayacct.h>
#include <linux/taskstats_kern.h>
#include <linux/random.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
/*
* Protected counters by write_lock_irq(&tasklist_lock)
*/
unsigned long total_forks; /* Handle normal Linux uptimes. */
int nr_threads; /* The idle threads do not count.. */
int max_threads; /* tunable limit on nr_threads */
DEFINE_PER_CPU(unsigned long, process_counts) = 0;
__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
int nr_processes(void)
{
int cpu;
int total = 0;
for_each_online_cpu(cpu)
total += per_cpu(process_counts, cpu);
return total;
}
#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
# define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
# define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
static struct kmem_cache *task_struct_cachep;
#endif
/* SLAB cache for signal_struct structures (tsk->signal) */
static struct kmem_cache *signal_cachep;
/* SLAB cache for sighand_struct structures (tsk->sighand) */
struct kmem_cache *sighand_cachep;
/* SLAB cache for files_struct structures (tsk->files) */
struct kmem_cache *files_cachep;
/* SLAB cache for fs_struct structures (tsk->fs) */
struct kmem_cache *fs_cachep;
/* SLAB cache for vm_area_struct structures */
struct kmem_cache *vm_area_cachep;
/* SLAB cache for mm_struct structures (tsk->mm) */
static struct kmem_cache *mm_cachep;
void free_task(struct task_struct *tsk)
{
free_thread_info(tsk->stack);
rt_mutex_debug_task_free(tsk);
free_task_struct(tsk);
}
EXPORT_SYMBOL(free_task);
void __put_task_struct(struct task_struct *tsk)
{
WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
WARN_ON(atomic_read(&tsk->usage));
WARN_ON(tsk == current);
security_task_free(tsk);
free_uid(tsk->user);
put_group_info(tsk->group_info);
delayacct_tsk_free(tsk);
if (!profile_handoff_task(tsk))
free_task(tsk);
}
void __init fork_init(unsigned long mempages)
{
#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
#ifndef ARCH_MIN_TASKALIGN
#define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
#endif
/* create a slab on which task_structs can be allocated */
task_struct_cachep =
kmem_cache_create("task_struct", sizeof(struct task_struct),
ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
#endif
/*
* The default maximum number of threads is set to a safe
* value: the thread structures can take up at most half
* of memory.
*/
max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
/*
* we need to allow at least 20 threads to boot a system
*/
if(max_threads < 20)
max_threads = 20;
init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
init_task.signal->rlim[RLIMIT_SIGPENDING] =
init_task.signal->rlim[RLIMIT_NPROC];
}
static struct task_struct *dup_task_struct(struct task_struct *orig)
{
struct task_struct *tsk;
struct thread_info *ti;
prepare_to_copy(orig);
tsk = alloc_task_struct();
if (!tsk)
return NULL;
ti = alloc_thread_info(tsk);
if (!ti) {
free_task_struct(tsk);
return NULL;
}
*tsk = *orig;
tsk->stack = ti;
setup_thread_stack(tsk, orig);
#ifdef CONFIG_CC_STACKPROTECTOR
tsk->stack_canary = get_random_int();
#endif
/* One for us, one for whoever does the "release_task()" (usually parent) */
atomic_set(&tsk->usage,2);
atomic_set(&tsk->fs_excl, 0);
#ifdef CONFIG_BLK_DEV_IO_TRACE
tsk->btrace_seq = 0;
#endif
tsk->splice_pipe = NULL;
return tsk;
}
#ifdef CONFIG_MMU
static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
{
struct vm_area_struct *mpnt, *tmp, **pprev;
struct rb_node **rb_link, *rb_parent;
int retval;
unsigned long charge;
struct mempolicy *pol;
down_write(&oldmm->mmap_sem);
flush_cache_dup_mm(oldmm);
/*
* Not linked in yet - no deadlock potential:
*/
down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
mm->locked_vm = 0;
mm->mmap = NULL;
mm->mmap_cache = NULL;
mm->free_area_cache = oldmm->mmap_base;
mm->cached_hole_size = ~0UL;
mm->map_count = 0;
cpus_clear(mm->cpu_vm_mask);
mm->mm_rb = RB_ROOT;
rb_link = &mm->mm_rb.rb_node;
rb_parent = NULL;
pprev = &mm->mmap;
for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
struct file *file;
if (mpnt->vm_flags & VM_DONTCOPY) {
long pages = vma_pages(mpnt);
mm->total_vm -= pages;
vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
-pages);
continue;
}
charge = 0;
if (mpnt->vm_flags & VM_ACCOUNT) {
unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
if (security_vm_enough_memory(len))
goto fail_nomem;
charge = len;
}
tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
if (!tmp)
goto fail_nomem;
*tmp = *mpnt;
pol = mpol_copy(vma_policy(mpnt));
retval = PTR_ERR(pol);
if (IS_ERR(pol))
goto fail_nomem_policy;
vma_set_policy(tmp, pol);
tmp->vm_flags &= ~VM_LOCKED;
tmp->vm_mm = mm;
tmp->vm_next = NULL;
anon_vma_link(tmp);
file = tmp->vm_file;
if (file) {
struct inode *inode = file->f_path.dentry->d_inode;
get_file(file);
if (tmp->vm_flags & VM_DENYWRITE)
atomic_dec(&inode->i_writecount);
/* insert tmp into the share list, just after mpnt */
spin_lock(&file->f_mapping->i_mmap_lock);
tmp->vm_truncate_count = mpnt->vm_truncate_count;
flush_dcache_mmap_lock(file->f_mapping);
vma_prio_tree_add(tmp, mpnt);
flush_dcache_mmap_unlock(file->f_mapping);
spin_unlock(&file->f_mapping->i_mmap_lock);
}
/*
* Link in the new vma and copy the page table entries.
*/
*pprev = tmp;
pprev = &tmp->vm_next;
__vma_link_rb(mm, tmp, rb_link, rb_parent);
rb_link = &tmp->vm_rb.rb_right;
rb_parent = &tmp->vm_rb;
mm->map_count++;
retval = copy_page_range(mm, oldmm, mpnt);
if (tmp->vm_ops && tmp->vm_ops->open)
tmp->vm_ops->open(tmp);
if (retval)
goto out;
}
/* a new mm has just been created */
arch_dup_mmap(oldmm, mm);
retval = 0;
out:
up_write(&mm->mmap_sem);
flush_tlb_mm(oldmm);
up_write(&oldmm->mmap_sem);
return retval;
fail_nomem_policy:
kmem_cache_free(vm_area_cachep, tmp);
fail_nomem:
retval = -ENOMEM;
vm_unacct_memory(charge);
goto out;
}
static inline int mm_alloc_pgd(struct mm_struct * mm)
{
mm->pgd = pgd_alloc(mm);
if (unlikely(!mm->pgd))
return -ENOMEM;
return 0;
}
static inline void mm_free_pgd(struct mm_struct * mm)
{
pgd_free(mm->pgd);
}
#else
#define dup_mmap(mm, oldmm) (0)
#define mm_alloc_pgd(mm) (0)
#define mm_free_pgd(mm)
#endif /* CONFIG_MMU */
__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
#include <linux/init_task.h>
static struct mm_struct * mm_init(struct mm_struct * mm)
{
atomic_set(&mm->mm_users, 1);
atomic_set(&mm->mm_count, 1);
init_rwsem(&mm->mmap_sem);
INIT_LIST_HEAD(&mm->mmlist);
mm->core_waiters = 0;
mm->nr_ptes = 0;
set_mm_counter(mm, file_rss, 0);
set_mm_counter(mm, anon_rss, 0);
spin_lock_init(&mm->page_table_lock);
rwlock_init(&mm->ioctx_list_lock);
mm->ioctx_list = NULL;
mm->free_area_cache = TASK_UNMAPPED_BASE;
mm->cached_hole_size = ~0UL;
if (likely(!mm_alloc_pgd(mm))) {
mm->def_flags = 0;
return mm;
}
free_mm(mm);
return NULL;
}
/*
* Allocate and initialize an mm_struct.
*/
struct mm_struct * mm_alloc(void)
{
struct mm_struct * mm;
mm = allocate_mm();
if (mm) {
memset(mm, 0, sizeof(*mm));
mm = mm_init(mm);
}
return mm;
}
/*
* Called when the last reference to the mm
* is dropped: either by a lazy thread or by
* mmput. Free the page directory and the mm.
*/
void fastcall __mmdrop(struct mm_struct *mm)
{
BUG_ON(mm == &init_mm);
mm_free_pgd(mm);
destroy_context(mm);
free_mm(mm);
}
/*
* Decrement the use count and release all resources for an mm.
*/
void mmput(struct mm_struct *mm)
{
might_sleep();
if (atomic_dec_and_test(&mm->mm_users)) {
exit_aio(mm);
exit_mmap(mm);
if (!list_empty(&mm->mmlist)) {
spin_lock(&mmlist_lock);
list_del(&mm->mmlist);
spin_unlock(&mmlist_lock);
}
put_swap_token(mm);
mmdrop(mm);
}
}
EXPORT_SYMBOL_GPL(mmput);
/**
* get_task_mm - acquire a reference to the task's mm
*
* Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
* this kernel workthread has transiently adopted a user mm with use_mm,
* to do its AIO) is not set and if so returns a reference to it, after
* bumping up the use count. User must release the mm via mmput()
* after use. Typically used by /proc and ptrace.
*/
struct mm_struct *get_task_mm(struct task_struct *task)
{
struct mm_struct *mm;
task_lock(task);
mm = task->mm;
if (mm) {
if (task->flags & PF_BORROWED_MM)
mm = NULL;
else
atomic_inc(&mm->mm_users);
}
task_unlock(task);
return mm;
}
EXPORT_SYMBOL_GPL(get_task_mm);
/* Please note the differences between mmput and mm_release.
* mmput is called whenever we stop holding onto a mm_struct,
* error success whatever.
*
* mm_release is called after a mm_struct has been removed
* from the current process.
*
* This difference is important for error handling, when we
* only half set up a mm_struct for a new process and need to restore
* the old one. Because we mmput the new mm_struct before
* restoring the old one. . .
* Eric Biederman 10 January 1998
*/
void mm_release(struct task_struct *tsk, struct mm_struct *mm)
{
struct completion *vfork_done = tsk->vfork_done;
/* Get rid of any cached register state */
deactivate_mm(tsk, mm);
/* notify parent sleeping on vfork() */
if (vfork_done) {
tsk->vfork_done = NULL;
complete(vfork_done);
}
/*
* If we're exiting normally, clear a user-space tid field if
* requested. We leave this alone when dying by signal, to leave
* the value intact in a core dump, and to save the unnecessary
* trouble otherwise. Userland only wants this done for a sys_exit.
*/
if (tsk->clear_child_tid
&& !(tsk->flags & PF_SIGNALED)
&& atomic_read(&mm->mm_users) > 1) {
u32 __user * tidptr = tsk->clear_child_tid;
tsk->clear_child_tid = NULL;
/*
* We don't check the error code - if userspace has
* not set up a proper pointer then tough luck.
*/
put_user(0, tidptr);
sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
}
}
/*
* Allocate a new mm structure and copy contents from the
* mm structure of the passed in task structure.
*/
static struct mm_struct *dup_mm(struct task_struct *tsk)
{
struct mm_struct *mm, *oldmm = current->mm;
int err;
if (!oldmm)
return NULL;
mm = allocate_mm();
if (!mm)
goto fail_nomem;
memcpy(mm, oldmm, sizeof(*mm));
/* Initializing for Swap token stuff */
mm->token_priority = 0;
mm->last_interval = 0;
if (!mm_init(mm))
goto fail_nomem;
if (init_new_context(tsk, mm))
goto fail_nocontext;
err = dup_mmap(mm, oldmm);
if (err)
goto free_pt;
mm->hiwater_rss = get_mm_rss(mm);
mm->hiwater_vm = mm->total_vm;
return mm;
free_pt:
mmput(mm);
fail_nomem:
return NULL;
fail_nocontext:
/*
* If init_new_context() failed, we cannot use mmput() to free the mm
* because it calls destroy_context()
*/
mm_free_pgd(mm);
free_mm(mm);
return NULL;
}
static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
{
struct mm_struct * mm, *oldmm;
int retval;
tsk->min_flt = tsk->maj_flt = 0;
tsk->nvcsw = tsk->nivcsw = 0;
tsk->mm = NULL;
tsk->active_mm = NULL;
/*
* Are we cloning a kernel thread?
*
* We need to steal a active VM for that..
*/
oldmm = current->mm;
if (!oldmm)
return 0;
if (clone_flags & CLONE_VM) {
atomic_inc(&oldmm->mm_users);
mm = oldmm;
goto good_mm;
}
retval = -ENOMEM;
mm = dup_mm(tsk);
if (!mm)
goto fail_nomem;
good_mm:
/* Initializing for Swap token stuff */
mm->token_priority = 0;
mm->last_interval = 0;
tsk->mm = mm;
tsk->active_mm = mm;
return 0;
fail_nomem:
return retval;
}
static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
{
struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
/* We don't need to lock fs - think why ;-) */
if (fs) {
atomic_set(&fs->count, 1);
rwlock_init(&fs->lock);
fs->umask = old->umask;
read_lock(&old->lock);
fs->rootmnt = mntget(old->rootmnt);
fs->root = dget(old->root);
fs->pwdmnt = mntget(old->pwdmnt);
fs->pwd = dget(old->pwd);
if (old->altroot) {
fs->altrootmnt = mntget(old->altrootmnt);
fs->altroot = dget(old->altroot);
} else {
fs->altrootmnt = NULL;
fs->altroot = NULL;
}
read_unlock(&old->lock);
}
return fs;
}
struct fs_struct *copy_fs_struct(struct fs_struct *old)
{
return __copy_fs_struct(old);
}
EXPORT_SYMBOL_GPL(copy_fs_struct);
static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
{
if (clone_flags & CLONE_FS) {
atomic_inc(&current->fs->count);
return 0;
}
tsk->fs = __copy_fs_struct(current->fs);
if (!tsk->fs)
return -ENOMEM;
return 0;
}
static int count_open_files(struct fdtable *fdt)
{
int size = fdt->max_fds;
int i;
/* Find the last open fd */
for (i = size/(8*sizeof(long)); i > 0; ) {
if (fdt->open_fds->fds_bits[--i])
break;
}
i = (i+1) * 8 * sizeof(long);
return i;
}
static struct files_struct *alloc_files(void)
{
struct files_struct *newf;
struct fdtable *fdt;
newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
if (!newf)
goto out;
atomic_set(&newf->count, 1);
spin_lock_init(&newf->file_lock);
newf->next_fd = 0;
fdt = &newf->fdtab;
fdt->max_fds = NR_OPEN_DEFAULT;
fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
fdt->open_fds = (fd_set *)&newf->open_fds_init;
fdt->fd = &newf->fd_array[0];
INIT_RCU_HEAD(&fdt->rcu);
fdt->next = NULL;
rcu_assign_pointer(newf->fdt, fdt);
out:
return newf;
}
/*
* Allocate a new files structure and copy contents from the
* passed in files structure.
* errorp will be valid only when the returned files_struct is NULL.
*/
static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
{
struct files_struct *newf;
struct file **old_fds, **new_fds;
int open_files, size, i;
struct fdtable *old_fdt, *new_fdt;
*errorp = -ENOMEM;
newf = alloc_files();
if (!newf)
goto out;
spin_lock(&oldf->file_lock);
old_fdt = files_fdtable(oldf);
new_fdt = files_fdtable(newf);
open_files = count_open_files(old_fdt);
/*
* Check whether we need to allocate a larger fd array and fd set.
* Note: we're not a clone task, so the open count won't change.
*/
if (open_files > new_fdt->max_fds) {
new_fdt->max_fds = 0;
spin_unlock(&oldf->file_lock);
spin_lock(&newf->file_lock);
*errorp = expand_files(newf, open_files-1);
spin_unlock(&newf->file_lock);
if (*errorp < 0)
goto out_release;
new_fdt = files_fdtable(newf);
/*
* Reacquire the oldf lock and a pointer to its fd table
* who knows it may have a new bigger fd table. We need
* the latest pointer.
*/
spin_lock(&oldf->file_lock);
old_fdt = files_fdtable(oldf);
}
old_fds = old_fdt->fd;
new_fds = new_fdt->fd;
memcpy(new_fdt->open_fds->fds_bits,
old_fdt->open_fds->fds_bits, open_files/8);
memcpy(new_fdt->close_on_exec->fds_bits,
old_fdt->close_on_exec->fds_bits, open_files/8);
for (i = open_files; i != 0; i--) {
struct file *f = *old_fds++;
if (f) {
get_file(f);
} else {
/*
* The fd may be claimed in the fd bitmap but not yet
* instantiated in the files array if a sibling thread
* is partway through open(). So make sure that this
* fd is available to the new process.
*/
FD_CLR(open_files - i, new_fdt->open_fds);
}
rcu_assign_pointer(*new_fds++, f);
}
spin_unlock(&oldf->file_lock);
/* compute the remainder to be cleared */
size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
/* This is long word aligned thus could use a optimized version */
memset(new_fds, 0, size);
if (new_fdt->max_fds > open_files) {
int left = (new_fdt->max_fds-open_files)/8;
int start = open_files / (8 * sizeof(unsigned long));
memset(&new_fdt->open_fds->fds_bits[start], 0, left);
memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
}
return newf;
out_release:
kmem_cache_free(files_cachep, newf);
out:
return NULL;
}
static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
{
struct files_struct *oldf, *newf;
int error = 0;
/*
* A background process may not have any files ...
*/
oldf = current->files;
if (!oldf)
goto out;
if (clone_flags & CLONE_FILES) {
atomic_inc(&oldf->count);
goto out;
}
/*
* Note: we may be using current for both targets (See exec.c)
* This works because we cache current->files (old) as oldf. Don't
* break this.
*/
tsk->files = NULL;
newf = dup_fd(oldf, &error);
if (!newf)
goto out;
tsk->files = newf;
error = 0;
out:
return error;
}
/*
* Helper to unshare the files of the current task.
* We don't want to expose copy_files internals to
* the exec layer of the kernel.
*/
int unshare_files(void)
{
struct files_struct *files = current->files;
int rc;
BUG_ON(!files);
/* This can race but the race causes us to copy when we don't
need to and drop the copy */
if(atomic_read(&files->count) == 1)
{
atomic_inc(&files->count);
return 0;
}
rc = copy_files(0, current);
if(rc)
current->files = files;
return rc;
}
EXPORT_SYMBOL(unshare_files);
static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
{
struct sighand_struct *sig;
if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
atomic_inc(&current->sighand->count);
return 0;
}
sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
rcu_assign_pointer(tsk->sighand, sig);
if (!sig)
return -ENOMEM;
atomic_set(&sig->count, 1);
memcpy(sig->action, current->sighand->action, sizeof(sig->action));
return 0;
}
void __cleanup_sighand(struct sighand_struct *sighand)
{
if (atomic_dec_and_test(&sighand->count))
kmem_cache_free(sighand_cachep, sighand);
}
static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
{
struct signal_struct *sig;
int ret;
if (clone_flags & CLONE_THREAD) {
atomic_inc(&current->signal->count);
atomic_inc(&current->signal->live);
return 0;
}
sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
tsk->signal = sig;
if (!sig)
return -ENOMEM;
ret = copy_thread_group_keys(tsk);
if (ret < 0) {
kmem_cache_free(signal_cachep, sig);
return ret;
}
atomic_set(&sig->count, 1);
atomic_set(&sig->live, 1);
init_waitqueue_head(&sig->wait_chldexit);
sig->flags = 0;
sig->group_exit_code = 0;
sig->group_exit_task = NULL;
sig->group_stop_count = 0;
sig->curr_target = NULL;
init_sigpending(&sig->shared_pending);
INIT_LIST_HEAD(&sig->posix_timers);
hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
sig->it_real_incr.tv64 = 0;
sig->real_timer.function = it_real_fn;
sig->tsk = tsk;
sig->it_virt_expires = cputime_zero;
sig->it_virt_incr = cputime_zero;
sig->it_prof_expires = cputime_zero;
sig->it_prof_incr = cputime_zero;
sig->leader = 0; /* session leadership doesn't inherit */
sig->tty_old_pgrp = NULL;
sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
sig->sched_time = 0;
INIT_LIST_HEAD(&sig->cpu_timers[0]);
INIT_LIST_HEAD(&sig->cpu_timers[1]);
INIT_LIST_HEAD(&sig->cpu_timers[2]);
taskstats_tgid_init(sig);
task_lock(current->group_leader);
memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
task_unlock(current->group_leader);
if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
/*
* New sole thread in the process gets an expiry time
* of the whole CPU time limit.
*/
tsk->it_prof_expires =
secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
}
acct_init_pacct(&sig->pacct);
return 0;
}
void __cleanup_signal(struct signal_struct *sig)
{
exit_thread_group_keys(sig);
kmem_cache_free(signal_cachep, sig);
}
static inline void cleanup_signal(struct task_struct *tsk)
{
struct signal_struct *sig = tsk->signal;
atomic_dec(&sig->live);
if (atomic_dec_and_test(&sig->count))
__cleanup_signal(sig);
}
static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
{
unsigned long new_flags = p->flags;
new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
new_flags |= PF_FORKNOEXEC;
if (!(clone_flags & CLONE_PTRACE))
p->ptrace = 0;
p->flags = new_flags;
}
asmlinkage long sys_set_tid_address(int __user *tidptr)
{
current->clear_child_tid = tidptr;
return current->pid;
}
static inline void rt_mutex_init_task(struct task_struct *p)
{
spin_lock_init(&p->pi_lock);
#ifdef CONFIG_RT_MUTEXES
plist_head_init(&p->pi_waiters, &p->pi_lock);
p->pi_blocked_on = NULL;
#endif
}
/*
* This creates a new process as a copy of the old one,
* but does not actually start it yet.
*
* It copies the registers, and all the appropriate
* parts of the process environment (as per the clone
* flags). The actual kick-off is left to the caller.
*/
static struct task_struct *copy_process(unsigned long clone_flags,
unsigned long stack_start,
struct pt_regs *regs,
unsigned long stack_size,
int __user *parent_tidptr,
int __user *child_tidptr,
struct pid *pid)
{
int retval;
struct task_struct *p = NULL;
if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
return ERR_PTR(-EINVAL);
/*
* Thread groups must share signals as well, and detached threads
* can only be started up within the thread group.
*/
if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
return ERR_PTR(-EINVAL);
/*
* Shared signal handlers imply shared VM. By way of the above,
* thread groups also imply shared VM. Blocking this case allows
* for various simplifications in other code.
*/
if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
return ERR_PTR(-EINVAL);
retval = security_task_create(clone_flags);
if (retval)
goto fork_out;
retval = -ENOMEM;
p = dup_task_struct(current);
if (!p)
goto fork_out;
rt_mutex_init_task(p);
#ifdef CONFIG_TRACE_IRQFLAGS
DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
#endif
retval = -EAGAIN;
if (atomic_read(&p->user->processes) >=
p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
p->user != &root_user)
goto bad_fork_free;
}
atomic_inc(&p->user->__count);
atomic_inc(&p->user->processes);
get_group_info(p->group_info);
/*
* If multiple threads are within copy_process(), then this check
* triggers too late. This doesn't hurt, the check is only there
* to stop root fork bombs.
*/
if (nr_threads >= max_threads)
goto bad_fork_cleanup_count;
if (!try_module_get(task_thread_info(p)->exec_domain->module))
goto bad_fork_cleanup_count;
if (p->binfmt && !try_module_get(p->binfmt->module))
goto bad_fork_cleanup_put_domain;
p->did_exec = 0;
delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
copy_flags(clone_flags, p);
p->pid = pid_nr(pid);
retval = -EFAULT;
if (clone_flags & CLONE_PARENT_SETTID)
if (put_user(p->pid, parent_tidptr))
goto bad_fork_cleanup_delays_binfmt;
INIT_LIST_HEAD(&p->children);
INIT_LIST_HEAD(&p->sibling);
p->vfork_done = NULL;
spin_lock_init(&p->alloc_lock);
clear_tsk_thread_flag(p, TIF_SIGPENDING);
init_sigpending(&p->pending);
p->utime = cputime_zero;
p->stime = cputime_zero;
p->sched_time = 0;
#ifdef CONFIG_TASK_XACCT
p->rchar = 0; /* I/O counter: bytes read */
p->wchar = 0; /* I/O counter: bytes written */
p->syscr = 0; /* I/O counter: read syscalls */
p->syscw = 0; /* I/O counter: write syscalls */
#endif
task_io_accounting_init(p);
acct_clear_integrals(p);
p->it_virt_expires = cputime_zero;
p->it_prof_expires = cputime_zero;
p->it_sched_expires = 0;
INIT_LIST_HEAD(&p->cpu_timers[0]);
INIT_LIST_HEAD(&p->cpu_timers[1]);
INIT_LIST_HEAD(&p->cpu_timers[2]);
p->lock_depth = -1; /* -1 = no lock */
do_posix_clock_monotonic_gettime(&p->start_time);
p->security = NULL;
p->io_context = NULL;
p->io_wait = NULL;
p->audit_context = NULL;
cpuset_fork(p);
#ifdef CONFIG_NUMA
p->mempolicy = mpol_copy(p->mempolicy);
if (IS_ERR(p->mempolicy)) {
retval = PTR_ERR(p->mempolicy);
p->mempolicy = NULL;
goto bad_fork_cleanup_cpuset;
}
mpol_fix_fork_child_flag(p);
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
p->irq_events = 0;
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
p->hardirqs_enabled = 1;
#else
p->hardirqs_enabled = 0;
#endif
p->hardirq_enable_ip = 0;
p->hardirq_enable_event = 0;
p->hardirq_disable_ip = _THIS_IP_;
p->hardirq_disable_event = 0;
p->softirqs_enabled = 1;
p->softirq_enable_ip = _THIS_IP_;
p->softirq_enable_event = 0;
p->softirq_disable_ip = 0;
p->softirq_disable_event = 0;
p->hardirq_context = 0;
p->softirq_context = 0;
#endif
#ifdef CONFIG_LOCKDEP
p->lockdep_depth = 0; /* no locks held yet */
p->curr_chain_key = 0;
p->lockdep_recursion = 0;
#endif
#ifdef CONFIG_DEBUG_MUTEXES
p->blocked_on = NULL; /* not blocked yet */
#endif
p->tgid = p->pid;
if (clone_flags & CLONE_THREAD)
p->tgid = current->tgid;
if ((retval = security_task_alloc(p)))
goto bad_fork_cleanup_policy;
if ((retval = audit_alloc(p)))
goto bad_fork_cleanup_security;
/* copy all the process information */
if ((retval = copy_semundo(clone_flags, p)))
goto bad_fork_cleanup_audit;
if ((retval = copy_files(clone_flags, p)))
goto bad_fork_cleanup_semundo;
if ((retval = copy_fs(clone_flags, p)))
goto bad_fork_cleanup_files;
if ((retval = copy_sighand(clone_flags, p)))
goto bad_fork_cleanup_fs;
if ((retval = copy_signal(clone_flags, p)))
goto bad_fork_cleanup_sighand;
if ((retval = copy_mm(clone_flags, p)))
goto bad_fork_cleanup_signal;
if ((retval = copy_keys(clone_flags, p)))
goto bad_fork_cleanup_mm;
if ((retval = copy_namespaces(clone_flags, p)))
goto bad_fork_cleanup_keys;
retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
if (retval)
goto bad_fork_cleanup_namespaces;
p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
/*
* Clear TID on mm_release()?
*/
p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
p->robust_list = NULL;
#ifdef CONFIG_COMPAT
p->compat_robust_list = NULL;
#endif
INIT_LIST_HEAD(&p->pi_state_list);
p->pi_state_cache = NULL;
/*
* sigaltstack should be cleared when sharing the same VM
*/
if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
p->sas_ss_sp = p->sas_ss_size = 0;
/*
* Syscall tracing should be turned off in the child regardless
* of CLONE_PTRACE.
*/
clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
#ifdef TIF_SYSCALL_EMU
clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
#endif
/* Our parent execution domain becomes current domain
These must match for thread signalling to apply */
p->parent_exec_id = p->self_exec_id;
/* ok, now we should be set up.. */
p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
p->pdeath_signal = 0;
p->exit_state = 0;
/*
* Ok, make it visible to the rest of the system.
* We dont wake it up yet.
*/
p->group_leader = p;
INIT_LIST_HEAD(&p->thread_group);
INIT_LIST_HEAD(&p->ptrace_children);
INIT_LIST_HEAD(&p->ptrace_list);
/* Perform scheduler related setup. Assign this task to a CPU. */
sched_fork(p, clone_flags);
/* Need tasklist lock for parent etc handling! */
write_lock_irq(&tasklist_lock);
/* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
p->ioprio = current->ioprio;
/*
* The task hasn't been attached yet, so its cpus_allowed mask will
* not be changed, nor will its assigned CPU.
*
* The cpus_allowed mask of the parent may have changed after it was
* copied first time - so re-copy it here, then check the child's CPU
* to ensure it is on a valid CPU (and if not, just force it back to
* parent's CPU). This avoids alot of nasty races.
*/
p->cpus_allowed = current->cpus_allowed;
if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
!cpu_online(task_cpu(p))))
set_task_cpu(p, smp_processor_id());
/* CLONE_PARENT re-uses the old parent */
if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
p->real_parent = current->real_parent;
else
p->real_parent = current;
p->parent = p->real_parent;
spin_lock(&current->sighand->siglock);
/*
* Process group and session signals need to be delivered to just the
* parent before the fork or both the parent and the child after the
* fork. Restart if a signal comes in before we add the new process to
* it's process group.
* A fatal signal pending means that current will exit, so the new
* thread can't slip out of an OOM kill (or normal SIGKILL).
*/
recalc_sigpending();
if (signal_pending(current)) {
spin_unlock(&current->sighand->siglock);
write_unlock_irq(&tasklist_lock);
retval = -ERESTARTNOINTR;
goto bad_fork_cleanup_namespaces;
}
if (clone_flags & CLONE_THREAD) {
p->group_leader = current->group_leader;
list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
if (!cputime_eq(current->signal->it_virt_expires,
cputime_zero) ||
!cputime_eq(current->signal->it_prof_expires,
cputime_zero) ||
current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
!list_empty(&current->signal->cpu_timers[0]) ||
!list_empty(&current->signal->cpu_timers[1]) ||
!list_empty(&current->signal->cpu_timers[2])) {
/*
* Have child wake up on its first tick to check
* for process CPU timers.
*/
p->it_prof_expires = jiffies_to_cputime(1);
}
}
if (likely(p->pid)) {
add_parent(p);
if (unlikely(p->ptrace & PT_PTRACED))
__ptrace_link(p, current->parent);
if (thread_group_leader(p)) {
p->signal->tty = current->signal->tty;
p->signal->pgrp = process_group(current);
set_signal_session(p->signal, process_session(current));
attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
attach_pid(p, PIDTYPE_SID, task_session(current));
list_add_tail_rcu(&p->tasks, &init_task.tasks);
__get_cpu_var(process_counts)++;
}
attach_pid(p, PIDTYPE_PID, pid);
nr_threads++;
}
total_forks++;
spin_unlock(&current->sighand->siglock);
write_unlock_irq(&tasklist_lock);
proc_fork_connector(p);
return p;
bad_fork_cleanup_namespaces:
exit_task_namespaces(p);
bad_fork_cleanup_keys:
exit_keys(p);
bad_fork_cleanup_mm:
if (p->mm)
mmput(p->mm);
bad_fork_cleanup_signal:
cleanup_signal(p);
bad_fork_cleanup_sighand:
__cleanup_sighand(p->sighand);
bad_fork_cleanup_fs:
exit_fs(p); /* blocking */
bad_fork_cleanup_files:
exit_files(p); /* blocking */
bad_fork_cleanup_semundo:
exit_sem(p);
bad_fork_cleanup_audit:
audit_free(p);
bad_fork_cleanup_security:
security_task_free(p);
bad_fork_cleanup_policy:
#ifdef CONFIG_NUMA
mpol_free(p->mempolicy);
bad_fork_cleanup_cpuset:
#endif
cpuset_exit(p);
bad_fork_cleanup_delays_binfmt:
delayacct_tsk_free(p);
if (p->binfmt)
module_put(p->binfmt->module);
bad_fork_cleanup_put_domain:
module_put(task_thread_info(p)->exec_domain->module);
bad_fork_cleanup_count:
put_group_info(p->group_info);
atomic_dec(&p->user->processes);
free_uid(p->user);
bad_fork_free:
free_task(p);
fork_out:
return ERR_PTR(retval);
}
noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
{
memset(regs, 0, sizeof(struct pt_regs));
return regs;
}
struct task_struct * __cpuinit fork_idle(int cpu)
{
struct task_struct *task;
struct pt_regs regs;
task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL,
&init_struct_pid);
if (!IS_ERR(task))
init_idle(task, cpu);
return task;
}
static inline int fork_traceflag (unsigned clone_flags)
{
if (clone_flags & CLONE_UNTRACED)
return 0;
else if (clone_flags & CLONE_VFORK) {
if (current->ptrace & PT_TRACE_VFORK)
return PTRACE_EVENT_VFORK;
} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
if (current->ptrace & PT_TRACE_CLONE)
return PTRACE_EVENT_CLONE;
} else if (current->ptrace & PT_TRACE_FORK)
return PTRACE_EVENT_FORK;
return 0;
}
/*
* Ok, this is the main fork-routine.
*
* It copies the process, and if successful kick-starts
* it and waits for it to finish using the VM if required.
*/
long do_fork(unsigned long clone_flags,
unsigned long stack_start,
struct pt_regs *regs,
unsigned long stack_size,
int __user *parent_tidptr,
int __user *child_tidptr)
{
struct task_struct *p;
int trace = 0;
struct pid *pid = alloc_pid();
long nr;
if (!pid)
return -EAGAIN;
nr = pid->nr;
if (unlikely(current->ptrace)) {
trace = fork_traceflag (clone_flags);
if (trace)
clone_flags |= CLONE_PTRACE;
}
p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
/*
* Do this prior waking up the new thread - the thread pointer
* might get invalid after that point, if the thread exits quickly.
*/
if (!IS_ERR(p)) {
struct completion vfork;
if (clone_flags & CLONE_VFORK) {
p->vfork_done = &vfork;
init_completion(&vfork);
}
if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
/*
* We'll start up with an immediate SIGSTOP.
*/
sigaddset(&p->pending.signal, SIGSTOP);
set_tsk_thread_flag(p, TIF_SIGPENDING);
}
if (!(clone_flags & CLONE_STOPPED))
wake_up_new_task(p, clone_flags);
else
p->state = TASK_STOPPED;
if (unlikely (trace)) {
current->ptrace_message = nr;
ptrace_notify ((trace << 8) | SIGTRAP);
}
if (clone_flags & CLONE_VFORK) {
wait_for_completion(&vfork);
if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
current->ptrace_message = nr;
ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
}
}
} else {
free_pid(pid);
nr = PTR_ERR(p);
}
return nr;
}
#ifndef ARCH_MIN_MMSTRUCT_ALIGN
#define ARCH_MIN_MMSTRUCT_ALIGN 0
#endif
static void sighand_ctor(void *data, struct kmem_cache *cachep, unsigned long flags)
{
struct sighand_struct *sighand = data;
if (flags & SLAB_CTOR_CONSTRUCTOR)
spin_lock_init(&sighand->siglock);
}
void __init proc_caches_init(void)
{
sighand_cachep = kmem_cache_create("sighand_cache",
sizeof(struct sighand_struct), 0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
sighand_ctor, NULL);
signal_cachep = kmem_cache_create("signal_cache",
sizeof(struct signal_struct), 0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
files_cachep = kmem_cache_create("files_cache",
sizeof(struct files_struct), 0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
fs_cachep = kmem_cache_create("fs_cache",
sizeof(struct fs_struct), 0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
vm_area_cachep = kmem_cache_create("vm_area_struct",
sizeof(struct vm_area_struct), 0,
SLAB_PANIC, NULL, NULL);
mm_cachep = kmem_cache_create("mm_struct",
sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
}
/*
* Check constraints on flags passed to the unshare system call and
* force unsharing of additional process context as appropriate.
*/
static inline void check_unshare_flags(unsigned long *flags_ptr)
{
/*
* If unsharing a thread from a thread group, must also
* unshare vm.
*/
if (*flags_ptr & CLONE_THREAD)
*flags_ptr |= CLONE_VM;
/*
* If unsharing vm, must also unshare signal handlers.
*/
if (*flags_ptr & CLONE_VM)
*flags_ptr |= CLONE_SIGHAND;
/*
* If unsharing signal handlers and the task was created
* using CLONE_THREAD, then must unshare the thread
*/
if ((*flags_ptr & CLONE_SIGHAND) &&
(atomic_read(&current->signal->count) > 1))
*flags_ptr |= CLONE_THREAD;
/*
* If unsharing namespace, must also unshare filesystem information.
*/
if (*flags_ptr & CLONE_NEWNS)
*flags_ptr |= CLONE_FS;
}
/*
* Unsharing of tasks created with CLONE_THREAD is not supported yet
*/
static int unshare_thread(unsigned long unshare_flags)
{
if (unshare_flags & CLONE_THREAD)
return -EINVAL;
return 0;
}
/*
* Unshare the filesystem structure if it is being shared
*/
static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
{
struct fs_struct *fs = current->fs;
if ((unshare_flags & CLONE_FS) &&
(fs && atomic_read(&fs->count) > 1)) {
*new_fsp = __copy_fs_struct(current->fs);
if (!*new_fsp)
return -ENOMEM;
}
return 0;
}
/*
* Unsharing of sighand is not supported yet
*/
static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
{
struct sighand_struct *sigh = current->sighand;
if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
return -EINVAL;
else
return 0;
}
/*
* Unshare vm if it is being shared
*/
static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
{
struct mm_struct *mm = current->mm;
if ((unshare_flags & CLONE_VM) &&
(mm && atomic_read(&mm->mm_users) > 1)) {
return -EINVAL;
}
return 0;
}
/*
* Unshare file descriptor table if it is being shared
*/
static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
{
struct files_struct *fd = current->files;
int error = 0;
if ((unshare_flags & CLONE_FILES) &&
(fd && atomic_read(&fd->count) > 1)) {
*new_fdp = dup_fd(fd, &error);
if (!*new_fdp)
return error;
}
return 0;
}
/*
* Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
* supported yet
*/
static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
{
if (unshare_flags & CLONE_SYSVSEM)
return -EINVAL;
return 0;
}
/*
* unshare allows a process to 'unshare' part of the process
* context which was originally shared using clone. copy_*
* functions used by do_fork() cannot be used here directly
* because they modify an inactive task_struct that is being
* constructed. Here we are modifying the current, active,
* task_struct.
*/
asmlinkage long sys_unshare(unsigned long unshare_flags)
{
int err = 0;
struct fs_struct *fs, *new_fs = NULL;
struct sighand_struct *new_sigh = NULL;
struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
struct files_struct *fd, *new_fd = NULL;
struct sem_undo_list *new_ulist = NULL;
struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
check_unshare_flags(&unshare_flags);
/* Return -EINVAL for all unsupported flags */
err = -EINVAL;
if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
CLONE_NEWUTS|CLONE_NEWIPC))
goto bad_unshare_out;
if ((err = unshare_thread(unshare_flags)))
goto bad_unshare_out;
if ((err = unshare_fs(unshare_flags, &new_fs)))
goto bad_unshare_cleanup_thread;
if ((err = unshare_sighand(unshare_flags, &new_sigh)))
goto bad_unshare_cleanup_fs;
if ((err = unshare_vm(unshare_flags, &new_mm)))
goto bad_unshare_cleanup_sigh;
if ((err = unshare_fd(unshare_flags, &new_fd)))
goto bad_unshare_cleanup_vm;
if ((err = unshare_semundo(unshare_flags, &new_ulist)))
goto bad_unshare_cleanup_fd;
if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
new_fs)))
goto bad_unshare_cleanup_semundo;
if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
task_lock(current);
if (new_nsproxy) {
old_nsproxy = current->nsproxy;
current->nsproxy = new_nsproxy;
new_nsproxy = old_nsproxy;
}
if (new_fs) {
fs = current->fs;
current->fs = new_fs;
new_fs = fs;
}
if (new_mm) {
mm = current->mm;
active_mm = current->active_mm;
current->mm = new_mm;
current->active_mm = new_mm;
activate_mm(active_mm, new_mm);
new_mm = mm;
}
if (new_fd) {
fd = current->files;
current->files = new_fd;
new_fd = fd;
}
task_unlock(current);
}
if (new_nsproxy)
put_nsproxy(new_nsproxy);
bad_unshare_cleanup_semundo:
bad_unshare_cleanup_fd:
if (new_fd)
put_files_struct(new_fd);
bad_unshare_cleanup_vm:
if (new_mm)
mmput(new_mm);
bad_unshare_cleanup_sigh:
if (new_sigh)
if (atomic_dec_and_test(&new_sigh->count))
kmem_cache_free(sighand_cachep, new_sigh);
bad_unshare_cleanup_fs:
if (new_fs)
put_fs_struct(new_fs);
bad_unshare_cleanup_thread:
bad_unshare_out:
return err;
}