linux/drivers/accel/ivpu/ivpu_gem.c
Jacek Lawrynowicz cd7272215c accel/ivpu: Add command buffer submission logic
Each of the user contexts has two command queues, one for compute engine
and one for the copy engine. Command queues are allocated and registered
in the device when the first job (command buffer) is submitted from
the user space to the VPU device. The userspace provides a list of
GEM buffer object handles to submit to the VPU, the driver resolves
buffer handles, pins physical memory if needed, increments ref count
for each buffer and stores pointers to buffer objects in
the ivpu_job objects that track jobs submitted to the device.
The VPU signals job completion with an asynchronous message that
contains the job id passed to firmware when the job was submitted.

Currently, the driver supports simple scheduling logic
where jobs submitted from user space are immediately pushed
to the VPU device command queues. In the future, it will be
extended to use hardware base scheduling and/or drm_sched.

Co-developed-by: Andrzej Kacprowski <andrzej.kacprowski@linux.intel.com>
Signed-off-by: Andrzej Kacprowski <andrzej.kacprowski@linux.intel.com>
Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com>
Reviewed-by: Oded Gabbay <ogabbay@kernel.org>
Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-7-jacek.lawrynowicz@linux.intel.com
2023-01-19 11:12:00 +01:00

754 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020-2023 Intel Corporation
*/
#include <linux/dma-buf.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/set_memory.h>
#include <linux/xarray.h>
#include <drm/drm_cache.h>
#include <drm/drm_debugfs.h>
#include <drm/drm_file.h>
#include <drm/drm_utils.h>
#include "ivpu_drv.h"
#include "ivpu_gem.h"
#include "ivpu_hw.h"
#include "ivpu_mmu.h"
#include "ivpu_mmu_context.h"
MODULE_IMPORT_NS(DMA_BUF);
static const struct drm_gem_object_funcs ivpu_gem_funcs;
static struct lock_class_key prime_bo_lock_class_key;
static int __must_check prime_alloc_pages_locked(struct ivpu_bo *bo)
{
/* Pages are managed by the underlying dma-buf */
return 0;
}
static void prime_free_pages_locked(struct ivpu_bo *bo)
{
/* Pages are managed by the underlying dma-buf */
}
static int prime_map_pages_locked(struct ivpu_bo *bo)
{
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
struct sg_table *sgt;
WARN_ON(!bo->base.import_attach);
sgt = dma_buf_map_attachment(bo->base.import_attach, DMA_BIDIRECTIONAL);
if (IS_ERR(sgt)) {
ivpu_err(vdev, "Failed to map attachment: %ld\n", PTR_ERR(sgt));
return PTR_ERR(sgt);
}
bo->sgt = sgt;
return 0;
}
static void prime_unmap_pages_locked(struct ivpu_bo *bo)
{
WARN_ON(!bo->base.import_attach);
dma_buf_unmap_attachment(bo->base.import_attach, bo->sgt, DMA_BIDIRECTIONAL);
bo->sgt = NULL;
}
static const struct ivpu_bo_ops prime_ops = {
.type = IVPU_BO_TYPE_PRIME,
.name = "prime",
.alloc_pages = prime_alloc_pages_locked,
.free_pages = prime_free_pages_locked,
.map_pages = prime_map_pages_locked,
.unmap_pages = prime_unmap_pages_locked,
};
static int __must_check shmem_alloc_pages_locked(struct ivpu_bo *bo)
{
int npages = bo->base.size >> PAGE_SHIFT;
struct page **pages;
pages = drm_gem_get_pages(&bo->base);
if (IS_ERR(pages))
return PTR_ERR(pages);
if (bo->flags & DRM_IVPU_BO_WC)
set_pages_array_wc(pages, npages);
else if (bo->flags & DRM_IVPU_BO_UNCACHED)
set_pages_array_uc(pages, npages);
bo->pages = pages;
return 0;
}
static void shmem_free_pages_locked(struct ivpu_bo *bo)
{
if (ivpu_bo_cache_mode(bo) != DRM_IVPU_BO_CACHED)
set_pages_array_wb(bo->pages, bo->base.size >> PAGE_SHIFT);
drm_gem_put_pages(&bo->base, bo->pages, true, false);
bo->pages = NULL;
}
static int ivpu_bo_map_pages_locked(struct ivpu_bo *bo)
{
int npages = bo->base.size >> PAGE_SHIFT;
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
struct sg_table *sgt;
int ret;
sgt = drm_prime_pages_to_sg(&vdev->drm, bo->pages, npages);
if (IS_ERR(sgt)) {
ivpu_err(vdev, "Failed to allocate sgtable\n");
return PTR_ERR(sgt);
}
ret = dma_map_sgtable(vdev->drm.dev, sgt, DMA_BIDIRECTIONAL, 0);
if (ret) {
ivpu_err(vdev, "Failed to map BO in IOMMU: %d\n", ret);
goto err_free_sgt;
}
bo->sgt = sgt;
return 0;
err_free_sgt:
kfree(sgt);
return ret;
}
static void ivpu_bo_unmap_pages_locked(struct ivpu_bo *bo)
{
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
dma_unmap_sgtable(vdev->drm.dev, bo->sgt, DMA_BIDIRECTIONAL, 0);
sg_free_table(bo->sgt);
kfree(bo->sgt);
bo->sgt = NULL;
}
static const struct ivpu_bo_ops shmem_ops = {
.type = IVPU_BO_TYPE_SHMEM,
.name = "shmem",
.alloc_pages = shmem_alloc_pages_locked,
.free_pages = shmem_free_pages_locked,
.map_pages = ivpu_bo_map_pages_locked,
.unmap_pages = ivpu_bo_unmap_pages_locked,
};
static int __must_check internal_alloc_pages_locked(struct ivpu_bo *bo)
{
unsigned int i, npages = bo->base.size >> PAGE_SHIFT;
struct page **pages;
int ret;
pages = kvmalloc_array(npages, sizeof(*bo->pages), GFP_KERNEL);
if (!pages)
return -ENOMEM;
for (i = 0; i < npages; i++) {
pages[i] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
if (!pages[i]) {
ret = -ENOMEM;
goto err_free_pages;
}
cond_resched();
}
bo->pages = pages;
return 0;
err_free_pages:
while (i--)
put_page(pages[i]);
kvfree(pages);
return ret;
}
static void internal_free_pages_locked(struct ivpu_bo *bo)
{
unsigned int i, npages = bo->base.size >> PAGE_SHIFT;
for (i = 0; i < npages; i++)
put_page(bo->pages[i]);
kvfree(bo->pages);
bo->pages = NULL;
}
static const struct ivpu_bo_ops internal_ops = {
.type = IVPU_BO_TYPE_INTERNAL,
.name = "internal",
.alloc_pages = internal_alloc_pages_locked,
.free_pages = internal_free_pages_locked,
.map_pages = ivpu_bo_map_pages_locked,
.unmap_pages = ivpu_bo_unmap_pages_locked,
};
static int __must_check ivpu_bo_alloc_and_map_pages_locked(struct ivpu_bo *bo)
{
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
int ret;
lockdep_assert_held(&bo->lock);
drm_WARN_ON(&vdev->drm, bo->sgt);
ret = bo->ops->alloc_pages(bo);
if (ret) {
ivpu_err(vdev, "Failed to allocate pages for BO: %d", ret);
return ret;
}
ret = bo->ops->map_pages(bo);
if (ret) {
ivpu_err(vdev, "Failed to map pages for BO: %d", ret);
goto err_free_pages;
}
return ret;
err_free_pages:
bo->ops->free_pages(bo);
return ret;
}
static void ivpu_bo_unmap_and_free_pages(struct ivpu_bo *bo)
{
mutex_lock(&bo->lock);
WARN_ON(!bo->sgt);
bo->ops->unmap_pages(bo);
WARN_ON(bo->sgt);
bo->ops->free_pages(bo);
WARN_ON(bo->pages);
mutex_unlock(&bo->lock);
}
/*
* ivpu_bo_pin() - pin the backing physical pages and map them to VPU.
*
* This function pins physical memory pages, then maps the physical pages
* to IOMMU address space and finally updates the VPU MMU page tables
* to allow the VPU to translate VPU address to IOMMU address.
*/
int __must_check ivpu_bo_pin(struct ivpu_bo *bo)
{
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
int ret = 0;
mutex_lock(&bo->lock);
if (!bo->vpu_addr) {
ivpu_err(vdev, "vpu_addr not set for BO ctx_id: %d handle: %d\n",
bo->ctx->id, bo->handle);
ret = -EINVAL;
goto unlock;
}
if (!bo->sgt) {
ret = ivpu_bo_alloc_and_map_pages_locked(bo);
if (ret)
goto unlock;
}
if (!bo->mmu_mapped) {
ret = ivpu_mmu_context_map_sgt(vdev, bo->ctx, bo->vpu_addr, bo->sgt,
ivpu_bo_is_snooped(bo));
if (ret) {
ivpu_err(vdev, "Failed to map BO in MMU: %d\n", ret);
goto unlock;
}
bo->mmu_mapped = true;
}
unlock:
mutex_unlock(&bo->lock);
return ret;
}
static int
ivpu_bo_alloc_vpu_addr(struct ivpu_bo *bo, struct ivpu_mmu_context *ctx,
const struct ivpu_addr_range *range)
{
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
int ret;
if (!range) {
if (bo->flags & DRM_IVPU_BO_HIGH_MEM)
range = &vdev->hw->ranges.user_high;
else
range = &vdev->hw->ranges.user_low;
}
mutex_lock(&ctx->lock);
ret = ivpu_mmu_context_insert_node_locked(ctx, range, bo->base.size, &bo->mm_node);
if (!ret) {
bo->ctx = ctx;
bo->vpu_addr = bo->mm_node.start;
list_add_tail(&bo->ctx_node, &ctx->bo_list);
}
mutex_unlock(&ctx->lock);
return ret;
}
static void ivpu_bo_free_vpu_addr(struct ivpu_bo *bo)
{
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
struct ivpu_mmu_context *ctx = bo->ctx;
ivpu_dbg(vdev, BO, "remove from ctx: ctx %d vpu_addr 0x%llx allocated %d mmu_mapped %d\n",
ctx->id, bo->vpu_addr, (bool)bo->sgt, bo->mmu_mapped);
mutex_lock(&bo->lock);
if (bo->mmu_mapped) {
drm_WARN_ON(&vdev->drm, !bo->sgt);
ivpu_mmu_context_unmap_sgt(vdev, ctx, bo->vpu_addr, bo->sgt);
bo->mmu_mapped = false;
}
mutex_lock(&ctx->lock);
list_del(&bo->ctx_node);
bo->vpu_addr = 0;
bo->ctx = NULL;
ivpu_mmu_context_remove_node_locked(ctx, &bo->mm_node);
mutex_unlock(&ctx->lock);
mutex_unlock(&bo->lock);
}
void ivpu_bo_remove_all_bos_from_context(struct ivpu_mmu_context *ctx)
{
struct ivpu_bo *bo, *tmp;
list_for_each_entry_safe(bo, tmp, &ctx->bo_list, ctx_node)
ivpu_bo_free_vpu_addr(bo);
}
static struct ivpu_bo *
ivpu_bo_alloc(struct ivpu_device *vdev, struct ivpu_mmu_context *mmu_context,
u64 size, u32 flags, const struct ivpu_bo_ops *ops,
const struct ivpu_addr_range *range, u64 user_ptr)
{
struct ivpu_bo *bo;
int ret = 0;
if (drm_WARN_ON(&vdev->drm, size == 0 || !PAGE_ALIGNED(size)))
return ERR_PTR(-EINVAL);
switch (flags & DRM_IVPU_BO_CACHE_MASK) {
case DRM_IVPU_BO_CACHED:
case DRM_IVPU_BO_UNCACHED:
case DRM_IVPU_BO_WC:
break;
default:
return ERR_PTR(-EINVAL);
}
bo = kzalloc(sizeof(*bo), GFP_KERNEL);
if (!bo)
return ERR_PTR(-ENOMEM);
mutex_init(&bo->lock);
bo->base.funcs = &ivpu_gem_funcs;
bo->flags = flags;
bo->ops = ops;
bo->user_ptr = user_ptr;
if (ops->type == IVPU_BO_TYPE_SHMEM)
ret = drm_gem_object_init(&vdev->drm, &bo->base, size);
else
drm_gem_private_object_init(&vdev->drm, &bo->base, size);
if (ret) {
ivpu_err(vdev, "Failed to initialize drm object\n");
goto err_free;
}
if (flags & DRM_IVPU_BO_MAPPABLE) {
ret = drm_gem_create_mmap_offset(&bo->base);
if (ret) {
ivpu_err(vdev, "Failed to allocate mmap offset\n");
goto err_release;
}
}
if (mmu_context) {
ret = ivpu_bo_alloc_vpu_addr(bo, mmu_context, range);
if (ret) {
ivpu_err(vdev, "Failed to add BO to context: %d\n", ret);
goto err_release;
}
}
return bo;
err_release:
drm_gem_object_release(&bo->base);
err_free:
kfree(bo);
return ERR_PTR(ret);
}
static void ivpu_bo_free(struct drm_gem_object *obj)
{
struct ivpu_bo *bo = to_ivpu_bo(obj);
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
if (bo->ctx)
ivpu_dbg(vdev, BO, "free: ctx %d vpu_addr 0x%llx allocated %d mmu_mapped %d\n",
bo->ctx->id, bo->vpu_addr, (bool)bo->sgt, bo->mmu_mapped);
else
ivpu_dbg(vdev, BO, "free: ctx (released) allocated %d mmu_mapped %d\n",
(bool)bo->sgt, bo->mmu_mapped);
drm_WARN_ON(&vdev->drm, !dma_resv_test_signaled(obj->resv, DMA_RESV_USAGE_READ));
vunmap(bo->kvaddr);
if (bo->ctx)
ivpu_bo_free_vpu_addr(bo);
if (bo->sgt)
ivpu_bo_unmap_and_free_pages(bo);
if (bo->base.import_attach)
drm_prime_gem_destroy(&bo->base, bo->sgt);
drm_gem_object_release(&bo->base);
mutex_destroy(&bo->lock);
kfree(bo);
}
static int ivpu_bo_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma)
{
struct ivpu_bo *bo = to_ivpu_bo(obj);
struct ivpu_device *vdev = ivpu_bo_to_vdev(bo);
ivpu_dbg(vdev, BO, "mmap: ctx %u handle %u vpu_addr 0x%llx size %zu type %s",
bo->ctx->id, bo->handle, bo->vpu_addr, bo->base.size, bo->ops->name);
if (obj->import_attach) {
/* Drop the reference drm_gem_mmap_obj() acquired.*/
drm_gem_object_put(obj);
vma->vm_private_data = NULL;
return dma_buf_mmap(obj->dma_buf, vma, 0);
}
vma->vm_flags |= VM_PFNMAP | VM_DONTEXPAND;
vma->vm_page_prot = ivpu_bo_pgprot(bo, vm_get_page_prot(vma->vm_flags));
return 0;
}
static struct sg_table *ivpu_bo_get_sg_table(struct drm_gem_object *obj)
{
struct ivpu_bo *bo = to_ivpu_bo(obj);
loff_t npages = obj->size >> PAGE_SHIFT;
int ret = 0;
mutex_lock(&bo->lock);
if (!bo->sgt)
ret = ivpu_bo_alloc_and_map_pages_locked(bo);
mutex_unlock(&bo->lock);
if (ret)
return ERR_PTR(ret);
return drm_prime_pages_to_sg(obj->dev, bo->pages, npages);
}
static vm_fault_t ivpu_vm_fault(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct drm_gem_object *obj = vma->vm_private_data;
struct ivpu_bo *bo = to_ivpu_bo(obj);
loff_t npages = obj->size >> PAGE_SHIFT;
pgoff_t page_offset;
struct page *page;
vm_fault_t ret;
int err;
mutex_lock(&bo->lock);
if (!bo->sgt) {
err = ivpu_bo_alloc_and_map_pages_locked(bo);
if (err) {
ret = vmf_error(err);
goto unlock;
}
}
/* We don't use vmf->pgoff since that has the fake offset */
page_offset = (vmf->address - vma->vm_start) >> PAGE_SHIFT;
if (page_offset >= npages) {
ret = VM_FAULT_SIGBUS;
} else {
page = bo->pages[page_offset];
ret = vmf_insert_pfn(vma, vmf->address, page_to_pfn(page));
}
unlock:
mutex_unlock(&bo->lock);
return ret;
}
static const struct vm_operations_struct ivpu_vm_ops = {
.fault = ivpu_vm_fault,
.open = drm_gem_vm_open,
.close = drm_gem_vm_close,
};
static const struct drm_gem_object_funcs ivpu_gem_funcs = {
.free = ivpu_bo_free,
.mmap = ivpu_bo_mmap,
.vm_ops = &ivpu_vm_ops,
.get_sg_table = ivpu_bo_get_sg_table,
};
int
ivpu_bo_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
struct ivpu_file_priv *file_priv = file->driver_priv;
struct ivpu_device *vdev = file_priv->vdev;
struct drm_ivpu_bo_create *args = data;
u64 size = PAGE_ALIGN(args->size);
struct ivpu_bo *bo;
int ret;
if (args->flags & ~DRM_IVPU_BO_FLAGS)
return -EINVAL;
if (size == 0)
return -EINVAL;
bo = ivpu_bo_alloc(vdev, &file_priv->ctx, size, args->flags, &shmem_ops, NULL, 0);
if (IS_ERR(bo)) {
ivpu_err(vdev, "Failed to create BO: %pe (ctx %u size %llu flags 0x%x)",
bo, file_priv->ctx.id, args->size, args->flags);
return PTR_ERR(bo);
}
ret = drm_gem_handle_create(file, &bo->base, &bo->handle);
if (!ret) {
args->vpu_addr = bo->vpu_addr;
args->handle = bo->handle;
}
drm_gem_object_put(&bo->base);
ivpu_dbg(vdev, BO, "alloc shmem: ctx %u vpu_addr 0x%llx size %zu flags 0x%x\n",
file_priv->ctx.id, bo->vpu_addr, bo->base.size, bo->flags);
return ret;
}
struct ivpu_bo *
ivpu_bo_alloc_internal(struct ivpu_device *vdev, u64 vpu_addr, u64 size, u32 flags)
{
const struct ivpu_addr_range *range;
struct ivpu_addr_range fixed_range;
struct ivpu_bo *bo;
pgprot_t prot;
int ret;
drm_WARN_ON(&vdev->drm, !PAGE_ALIGNED(vpu_addr));
drm_WARN_ON(&vdev->drm, !PAGE_ALIGNED(size));
if (vpu_addr) {
fixed_range.start = vpu_addr;
fixed_range.end = vpu_addr + size;
range = &fixed_range;
} else {
range = &vdev->hw->ranges.global_low;
}
bo = ivpu_bo_alloc(vdev, &vdev->gctx, size, flags, &internal_ops, range, 0);
if (IS_ERR(bo)) {
ivpu_err(vdev, "Failed to create BO: %pe (vpu_addr 0x%llx size %llu flags 0x%x)",
bo, vpu_addr, size, flags);
return NULL;
}
ret = ivpu_bo_pin(bo);
if (ret)
goto err_put;
if (ivpu_bo_cache_mode(bo) != DRM_IVPU_BO_CACHED)
drm_clflush_pages(bo->pages, bo->base.size >> PAGE_SHIFT);
prot = ivpu_bo_pgprot(bo, PAGE_KERNEL);
bo->kvaddr = vmap(bo->pages, bo->base.size >> PAGE_SHIFT, VM_MAP, prot);
if (!bo->kvaddr) {
ivpu_err(vdev, "Failed to map BO into kernel virtual memory\n");
goto err_put;
}
ivpu_dbg(vdev, BO, "alloc internal: ctx 0 vpu_addr 0x%llx size %zu flags 0x%x\n",
bo->vpu_addr, bo->base.size, flags);
return bo;
err_put:
drm_gem_object_put(&bo->base);
return NULL;
}
void ivpu_bo_free_internal(struct ivpu_bo *bo)
{
drm_gem_object_put(&bo->base);
}
struct drm_gem_object *ivpu_gem_prime_import(struct drm_device *dev, struct dma_buf *buf)
{
struct ivpu_device *vdev = to_ivpu_device(dev);
struct dma_buf_attachment *attach;
struct ivpu_bo *bo;
attach = dma_buf_attach(buf, dev->dev);
if (IS_ERR(attach))
return ERR_CAST(attach);
get_dma_buf(buf);
bo = ivpu_bo_alloc(vdev, NULL, buf->size, DRM_IVPU_BO_MAPPABLE, &prime_ops, NULL, 0);
if (IS_ERR(bo)) {
ivpu_err(vdev, "Failed to import BO: %pe (size %lu)", bo, buf->size);
goto err_detach;
}
lockdep_set_class(&bo->lock, &prime_bo_lock_class_key);
bo->base.import_attach = attach;
return &bo->base;
err_detach:
dma_buf_detach(buf, attach);
dma_buf_put(buf);
return ERR_CAST(bo);
}
int ivpu_bo_info_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
struct ivpu_file_priv *file_priv = file->driver_priv;
struct ivpu_device *vdev = to_ivpu_device(dev);
struct drm_ivpu_bo_info *args = data;
struct drm_gem_object *obj;
struct ivpu_bo *bo;
int ret = 0;
obj = drm_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
bo = to_ivpu_bo(obj);
mutex_lock(&bo->lock);
if (!bo->ctx) {
ret = ivpu_bo_alloc_vpu_addr(bo, &file_priv->ctx, NULL);
if (ret) {
ivpu_err(vdev, "Failed to allocate vpu_addr: %d\n", ret);
goto unlock;
}
}
args->flags = bo->flags;
args->mmap_offset = drm_vma_node_offset_addr(&obj->vma_node);
args->vpu_addr = bo->vpu_addr;
args->size = obj->size;
unlock:
mutex_unlock(&bo->lock);
drm_gem_object_put(obj);
return ret;
}
int ivpu_bo_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
struct drm_ivpu_bo_wait *args = data;
struct drm_gem_object *obj;
unsigned long timeout;
long ret;
timeout = drm_timeout_abs_to_jiffies(args->timeout_ns);
obj = drm_gem_object_lookup(file, args->handle);
if (!obj)
return -EINVAL;
ret = dma_resv_wait_timeout(obj->resv, DMA_RESV_USAGE_READ, true, timeout);
if (ret == 0) {
ret = -ETIMEDOUT;
} else if (ret > 0) {
ret = 0;
args->job_status = to_ivpu_bo(obj)->job_status;
}
drm_gem_object_put(obj);
return ret;
}
static void ivpu_bo_print_info(struct ivpu_bo *bo, struct drm_printer *p)
{
unsigned long dma_refcount = 0;
if (bo->base.dma_buf && bo->base.dma_buf->file)
dma_refcount = atomic_long_read(&bo->base.dma_buf->file->f_count);
drm_printf(p, "%5u %6d %16llx %10lu %10u %12lu %14s\n",
bo->ctx->id, bo->handle, bo->vpu_addr, bo->base.size,
kref_read(&bo->base.refcount), dma_refcount, bo->ops->name);
}
void ivpu_bo_list(struct drm_device *dev, struct drm_printer *p)
{
struct ivpu_device *vdev = to_ivpu_device(dev);
struct ivpu_file_priv *file_priv;
unsigned long ctx_id;
struct ivpu_bo *bo;
drm_printf(p, "%5s %6s %16s %10s %10s %12s %14s\n",
"ctx", "handle", "vpu_addr", "size", "refcount", "dma_refcount", "type");
mutex_lock(&vdev->gctx.lock);
list_for_each_entry(bo, &vdev->gctx.bo_list, ctx_node)
ivpu_bo_print_info(bo, p);
mutex_unlock(&vdev->gctx.lock);
xa_for_each(&vdev->context_xa, ctx_id, file_priv) {
file_priv = ivpu_file_priv_get_by_ctx_id(vdev, ctx_id);
if (!file_priv)
continue;
mutex_lock(&file_priv->ctx.lock);
list_for_each_entry(bo, &file_priv->ctx.bo_list, ctx_node)
ivpu_bo_print_info(bo, p);
mutex_unlock(&file_priv->ctx.lock);
ivpu_file_priv_put(&file_priv);
}
}
void ivpu_bo_list_print(struct drm_device *dev)
{
struct drm_printer p = drm_info_printer(dev->dev);
ivpu_bo_list(dev, &p);
}