linux/drivers/leds/leds-sun50i-a100.c
Andy Shevchenko 06c5206ccd leds: sun50i-a100: Convert to be agnostic to property provider
Convert the driver to be agnostic to the property provider.
LEDS subsytem is not dependent on OF, so no need to make drivers
be a such.

Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Jernej Skrabec <jernej.skrabec@gmail.com>
Link: https://lore.kernel.org/r/20231214192131.1309912-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Lee Jones <lee@kernel.org>
2023-12-21 14:45:35 +00:00

585 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2021-2023 Samuel Holland <samuel@sholland.org>
*
* Partly based on drivers/leds/leds-turris-omnia.c, which is:
* Copyright (c) 2020 by Marek Behún <kabel@kernel.org>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/led-class-multicolor.h>
#include <linux/leds.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/property.h>
#include <linux/reset.h>
#include <linux/spinlock.h>
#define LEDC_CTRL_REG 0x0000
#define LEDC_CTRL_REG_DATA_LENGTH GENMASK(28, 16)
#define LEDC_CTRL_REG_RGB_MODE GENMASK(8, 6)
#define LEDC_CTRL_REG_LEDC_EN BIT(0)
#define LEDC_T01_TIMING_CTRL_REG 0x0004
#define LEDC_T01_TIMING_CTRL_REG_T1H GENMASK(26, 21)
#define LEDC_T01_TIMING_CTRL_REG_T1L GENMASK(20, 16)
#define LEDC_T01_TIMING_CTRL_REG_T0H GENMASK(10, 6)
#define LEDC_T01_TIMING_CTRL_REG_T0L GENMASK(5, 0)
#define LEDC_RESET_TIMING_CTRL_REG 0x000c
#define LEDC_RESET_TIMING_CTRL_REG_TR GENMASK(28, 16)
#define LEDC_RESET_TIMING_CTRL_REG_LED_NUM GENMASK(9, 0)
#define LEDC_DATA_REG 0x0014
#define LEDC_DMA_CTRL_REG 0x0018
#define LEDC_DMA_CTRL_REG_DMA_EN BIT(5)
#define LEDC_DMA_CTRL_REG_FIFO_TRIG_LEVEL GENMASK(4, 0)
#define LEDC_INT_CTRL_REG 0x001c
#define LEDC_INT_CTRL_REG_GLOBAL_INT_EN BIT(5)
#define LEDC_INT_CTRL_REG_FIFO_CPUREQ_INT_EN BIT(1)
#define LEDC_INT_CTRL_REG_TRANS_FINISH_INT_EN BIT(0)
#define LEDC_INT_STS_REG 0x0020
#define LEDC_INT_STS_REG_FIFO_WLW GENMASK(15, 10)
#define LEDC_INT_STS_REG_FIFO_CPUREQ_INT BIT(1)
#define LEDC_INT_STS_REG_TRANS_FINISH_INT BIT(0)
#define LEDC_FIFO_DEPTH 32U
#define LEDC_MAX_LEDS 1024
#define LEDC_CHANNELS_PER_LED 3 /* RGB */
#define LEDS_TO_BYTES(n) ((n) * sizeof(u32))
struct sun50i_a100_ledc_led {
struct led_classdev_mc mc_cdev;
struct mc_subled subled_info[LEDC_CHANNELS_PER_LED];
u32 addr;
};
#define to_ledc_led(mc) container_of(mc, struct sun50i_a100_ledc_led, mc_cdev)
struct sun50i_a100_ledc_timing {
u32 t0h_ns;
u32 t0l_ns;
u32 t1h_ns;
u32 t1l_ns;
u32 treset_ns;
};
struct sun50i_a100_ledc {
struct device *dev;
void __iomem *base;
struct clk *bus_clk;
struct clk *mod_clk;
struct reset_control *reset;
u32 *buffer;
struct dma_chan *dma_chan;
dma_addr_t dma_handle;
unsigned int pio_length;
unsigned int pio_offset;
spinlock_t lock;
unsigned int next_length;
bool xfer_active;
u32 format;
struct sun50i_a100_ledc_timing timing;
u32 max_addr;
u32 num_leds;
struct sun50i_a100_ledc_led leds[] __counted_by(num_leds);
};
static int sun50i_a100_ledc_dma_xfer(struct sun50i_a100_ledc *priv, unsigned int length)
{
struct dma_async_tx_descriptor *desc;
dma_cookie_t cookie;
desc = dmaengine_prep_slave_single(priv->dma_chan, priv->dma_handle,
LEDS_TO_BYTES(length), DMA_MEM_TO_DEV, 0);
if (!desc)
return -ENOMEM;
cookie = dmaengine_submit(desc);
if (dma_submit_error(cookie))
return -EIO;
dma_async_issue_pending(priv->dma_chan);
return 0;
}
static void sun50i_a100_ledc_pio_xfer(struct sun50i_a100_ledc *priv, unsigned int fifo_used)
{
unsigned int burst, length, offset;
u32 control;
length = priv->pio_length;
offset = priv->pio_offset;
burst = min(length, LEDC_FIFO_DEPTH - fifo_used);
iowrite32_rep(priv->base + LEDC_DATA_REG, priv->buffer + offset, burst);
if (burst < length) {
priv->pio_length = length - burst;
priv->pio_offset = offset + burst;
if (!offset) {
control = readl(priv->base + LEDC_INT_CTRL_REG);
control |= LEDC_INT_CTRL_REG_FIFO_CPUREQ_INT_EN;
writel(control, priv->base + LEDC_INT_CTRL_REG);
}
} else {
/* Disable the request IRQ once all data is written. */
control = readl(priv->base + LEDC_INT_CTRL_REG);
control &= ~LEDC_INT_CTRL_REG_FIFO_CPUREQ_INT_EN;
writel(control, priv->base + LEDC_INT_CTRL_REG);
}
}
static void sun50i_a100_ledc_start_xfer(struct sun50i_a100_ledc *priv, unsigned int length)
{
bool use_dma = false;
u32 control;
if (priv->dma_chan && length > LEDC_FIFO_DEPTH) {
int ret;
ret = sun50i_a100_ledc_dma_xfer(priv, length);
if (ret)
dev_warn(priv->dev, "Failed to set up DMA (%d), using PIO\n", ret);
else
use_dma = true;
}
/* The DMA trigger level must be at least the burst length. */
control = FIELD_PREP(LEDC_DMA_CTRL_REG_DMA_EN, use_dma) |
FIELD_PREP_CONST(LEDC_DMA_CTRL_REG_FIFO_TRIG_LEVEL, LEDC_FIFO_DEPTH / 2);
writel(control, priv->base + LEDC_DMA_CTRL_REG);
control = readl(priv->base + LEDC_CTRL_REG);
control &= ~LEDC_CTRL_REG_DATA_LENGTH;
control |= FIELD_PREP(LEDC_CTRL_REG_DATA_LENGTH, length) | LEDC_CTRL_REG_LEDC_EN;
writel(control, priv->base + LEDC_CTRL_REG);
if (!use_dma) {
/* The FIFO is empty when starting a new transfer. */
unsigned int fifo_used = 0;
priv->pio_length = length;
priv->pio_offset = 0;
sun50i_a100_ledc_pio_xfer(priv, fifo_used);
}
}
static irqreturn_t sun50i_a100_ledc_irq(int irq, void *data)
{
struct sun50i_a100_ledc *priv = data;
u32 status;
status = readl(priv->base + LEDC_INT_STS_REG);
if (status & LEDC_INT_STS_REG_TRANS_FINISH_INT) {
unsigned int next_length;
spin_lock(&priv->lock);
/* If another transfer is queued, dequeue and start it. */
next_length = priv->next_length;
if (next_length)
priv->next_length = 0;
else
priv->xfer_active = false;
spin_unlock(&priv->lock);
if (next_length)
sun50i_a100_ledc_start_xfer(priv, next_length);
} else if (status & LEDC_INT_STS_REG_FIFO_CPUREQ_INT) {
/* Continue the current transfer. */
sun50i_a100_ledc_pio_xfer(priv, FIELD_GET(LEDC_INT_STS_REG_FIFO_WLW, status));
}
/* Clear the W1C status bits. */
writel(status, priv->base + LEDC_INT_STS_REG);
return IRQ_HANDLED;
}
static void sun50i_a100_ledc_brightness_set(struct led_classdev *cdev,
enum led_brightness brightness)
{
struct sun50i_a100_ledc *priv = dev_get_drvdata(cdev->dev->parent);
struct led_classdev_mc *mc_cdev = lcdev_to_mccdev(cdev);
struct sun50i_a100_ledc_led *led = to_ledc_led(mc_cdev);
unsigned int next_length;
unsigned long flags;
bool xfer_active;
led_mc_calc_color_components(mc_cdev, brightness);
priv->buffer[led->addr] = led->subled_info[0].brightness << 16 |
led->subled_info[1].brightness << 8 |
led->subled_info[2].brightness;
spin_lock_irqsave(&priv->lock, flags);
/* Start, enqueue, or extend an enqueued transfer, as appropriate. */
next_length = max(priv->next_length, led->addr + 1);
xfer_active = priv->xfer_active;
if (xfer_active)
priv->next_length = next_length;
else
priv->xfer_active = true;
spin_unlock_irqrestore(&priv->lock, flags);
if (!xfer_active)
sun50i_a100_ledc_start_xfer(priv, next_length);
}
static const char *const sun50i_a100_ledc_formats[] = {
"rgb", "rbg", "grb", "gbr", "brg", "bgr",
};
static int sun50i_a100_ledc_parse_format(struct device *dev,
struct sun50i_a100_ledc *priv)
{
const char *format = "grb";
u32 i;
device_property_read_string(dev, "allwinner,pixel-format", &format);
for (i = 0; i < ARRAY_SIZE(sun50i_a100_ledc_formats); i++) {
if (!strcmp(format, sun50i_a100_ledc_formats[i])) {
priv->format = i;
return 0;
}
}
return dev_err_probe(dev, -EINVAL, "Bad pixel format '%s'\n", format);
}
static void sun50i_a100_ledc_set_format(struct sun50i_a100_ledc *priv)
{
u32 control;
control = readl(priv->base + LEDC_CTRL_REG);
control &= ~LEDC_CTRL_REG_RGB_MODE;
control |= FIELD_PREP(LEDC_CTRL_REG_RGB_MODE, priv->format);
writel(control, priv->base + LEDC_CTRL_REG);
}
static const struct sun50i_a100_ledc_timing sun50i_a100_ledc_default_timing = {
.t0h_ns = 336,
.t0l_ns = 840,
.t1h_ns = 882,
.t1l_ns = 294,
.treset_ns = 300000,
};
static int sun50i_a100_ledc_parse_timing(struct device *dev,
struct sun50i_a100_ledc *priv)
{
struct sun50i_a100_ledc_timing *timing = &priv->timing;
*timing = sun50i_a100_ledc_default_timing;
device_property_read_u32(dev, "allwinner,t0h-ns", &timing->t0h_ns);
device_property_read_u32(dev, "allwinner,t0l-ns", &timing->t0l_ns);
device_property_read_u32(dev, "allwinner,t1h-ns", &timing->t1h_ns);
device_property_read_u32(dev, "allwinner,t1l-ns", &timing->t1l_ns);
device_property_read_u32(dev, "allwinner,treset-ns", &timing->treset_ns);
return 0;
}
static void sun50i_a100_ledc_set_timing(struct sun50i_a100_ledc *priv)
{
const struct sun50i_a100_ledc_timing *timing = &priv->timing;
unsigned long mod_freq = clk_get_rate(priv->mod_clk);
u32 cycle_ns;
u32 control;
if (!mod_freq)
return;
cycle_ns = NSEC_PER_SEC / mod_freq;
control = FIELD_PREP(LEDC_T01_TIMING_CTRL_REG_T1H, timing->t1h_ns / cycle_ns) |
FIELD_PREP(LEDC_T01_TIMING_CTRL_REG_T1L, timing->t1l_ns / cycle_ns) |
FIELD_PREP(LEDC_T01_TIMING_CTRL_REG_T0H, timing->t0h_ns / cycle_ns) |
FIELD_PREP(LEDC_T01_TIMING_CTRL_REG_T0L, timing->t0l_ns / cycle_ns);
writel(control, priv->base + LEDC_T01_TIMING_CTRL_REG);
control = FIELD_PREP(LEDC_RESET_TIMING_CTRL_REG_TR, timing->treset_ns / cycle_ns) |
FIELD_PREP(LEDC_RESET_TIMING_CTRL_REG_LED_NUM, priv->max_addr);
writel(control, priv->base + LEDC_RESET_TIMING_CTRL_REG);
}
static int sun50i_a100_ledc_resume(struct device *dev)
{
struct sun50i_a100_ledc *priv = dev_get_drvdata(dev);
int ret;
ret = reset_control_deassert(priv->reset);
if (ret)
return ret;
ret = clk_prepare_enable(priv->bus_clk);
if (ret)
goto err_assert_reset;
ret = clk_prepare_enable(priv->mod_clk);
if (ret)
goto err_disable_bus_clk;
sun50i_a100_ledc_set_format(priv);
sun50i_a100_ledc_set_timing(priv);
writel(LEDC_INT_CTRL_REG_GLOBAL_INT_EN | LEDC_INT_CTRL_REG_TRANS_FINISH_INT_EN,
priv->base + LEDC_INT_CTRL_REG);
return 0;
err_disable_bus_clk:
clk_disable_unprepare(priv->bus_clk);
err_assert_reset:
reset_control_assert(priv->reset);
return ret;
}
static int sun50i_a100_ledc_suspend(struct device *dev)
{
struct sun50i_a100_ledc *priv = dev_get_drvdata(dev);
/* Wait for all transfers to complete. */
for (;;) {
unsigned long flags;
bool xfer_active;
spin_lock_irqsave(&priv->lock, flags);
xfer_active = priv->xfer_active;
spin_unlock_irqrestore(&priv->lock, flags);
if (!xfer_active)
break;
msleep(1);
}
clk_disable_unprepare(priv->mod_clk);
clk_disable_unprepare(priv->bus_clk);
reset_control_assert(priv->reset);
return 0;
}
static void sun50i_a100_ledc_dma_cleanup(void *data)
{
struct sun50i_a100_ledc *priv = data;
dma_release_channel(priv->dma_chan);
}
static int sun50i_a100_ledc_probe(struct platform_device *pdev)
{
struct dma_slave_config dma_cfg = {};
struct led_init_data init_data = {};
struct sun50i_a100_ledc_led *led;
struct device *dev = &pdev->dev;
struct sun50i_a100_ledc *priv;
struct fwnode_handle *child;
struct resource *mem;
u32 max_addr = 0;
u32 num_leds = 0;
int irq, ret;
/*
* The maximum LED address must be known in sun50i_a100_ledc_resume() before
* class device registration, so parse and validate the subnodes up front.
*/
device_for_each_child_node(dev, child) {
u32 addr, color;
ret = fwnode_property_read_u32(child, "reg", &addr);
if (ret || addr >= LEDC_MAX_LEDS) {
fwnode_handle_put(child);
return dev_err_probe(dev, -EINVAL, "'reg' must be between 0 and %d\n",
LEDC_MAX_LEDS - 1);
}
ret = fwnode_property_read_u32(child, "color", &color);
if (ret || color != LED_COLOR_ID_RGB) {
fwnode_handle_put(child);
return dev_err_probe(dev, -EINVAL, "'color' must be LED_COLOR_ID_RGB\n");
}
max_addr = max(max_addr, addr);
num_leds++;
}
if (!num_leds)
return -ENODEV;
priv = devm_kzalloc(dev, struct_size(priv, leds, num_leds), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
priv->max_addr = max_addr;
priv->num_leds = num_leds;
spin_lock_init(&priv->lock);
dev_set_drvdata(dev, priv);
ret = sun50i_a100_ledc_parse_format(dev, priv);
if (ret)
return ret;
ret = sun50i_a100_ledc_parse_timing(dev, priv);
if (ret)
return ret;
priv->base = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
priv->bus_clk = devm_clk_get(dev, "bus");
if (IS_ERR(priv->bus_clk))
return PTR_ERR(priv->bus_clk);
priv->mod_clk = devm_clk_get(dev, "mod");
if (IS_ERR(priv->mod_clk))
return PTR_ERR(priv->mod_clk);
priv->reset = devm_reset_control_get_exclusive(dev, NULL);
if (IS_ERR(priv->reset))
return PTR_ERR(priv->reset);
priv->dma_chan = dma_request_chan(dev, "tx");
if (IS_ERR(priv->dma_chan)) {
if (PTR_ERR(priv->dma_chan) != -ENODEV)
return PTR_ERR(priv->dma_chan);
priv->dma_chan = NULL;
priv->buffer = devm_kzalloc(dev, LEDS_TO_BYTES(LEDC_MAX_LEDS), GFP_KERNEL);
if (!priv->buffer)
return -ENOMEM;
} else {
ret = devm_add_action_or_reset(dev, sun50i_a100_ledc_dma_cleanup, priv);
if (ret)
return ret;
dma_cfg.dst_addr = mem->start + LEDC_DATA_REG;
dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
dma_cfg.dst_maxburst = LEDC_FIFO_DEPTH / 2;
ret = dmaengine_slave_config(priv->dma_chan, &dma_cfg);
if (ret)
return ret;
priv->buffer = dmam_alloc_attrs(dmaengine_get_dma_device(priv->dma_chan),
LEDS_TO_BYTES(LEDC_MAX_LEDS), &priv->dma_handle,
GFP_KERNEL, DMA_ATTR_WRITE_COMBINE);
if (!priv->buffer)
return -ENOMEM;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = devm_request_irq(dev, irq, sun50i_a100_ledc_irq, 0, dev_name(dev), priv);
if (ret)
return ret;
ret = sun50i_a100_ledc_resume(dev);
if (ret)
return ret;
led = priv->leds;
device_for_each_child_node(dev, child) {
struct led_classdev *cdev;
/* The node was already validated above. */
fwnode_property_read_u32(child, "reg", &led->addr);
led->subled_info[0].color_index = LED_COLOR_ID_RED;
led->subled_info[0].channel = 0;
led->subled_info[1].color_index = LED_COLOR_ID_GREEN;
led->subled_info[1].channel = 1;
led->subled_info[2].color_index = LED_COLOR_ID_BLUE;
led->subled_info[2].channel = 2;
led->mc_cdev.num_colors = ARRAY_SIZE(led->subled_info);
led->mc_cdev.subled_info = led->subled_info;
cdev = &led->mc_cdev.led_cdev;
cdev->max_brightness = U8_MAX;
cdev->brightness_set = sun50i_a100_ledc_brightness_set;
init_data.fwnode = child;
ret = led_classdev_multicolor_register_ext(dev, &led->mc_cdev, &init_data);
if (ret) {
dev_err_probe(dev, ret, "Failed to register multicolor LED %u", led->addr);
goto err_put_child;
}
led++;
}
dev_info(dev, "Registered %u LEDs\n", num_leds);
return 0;
err_put_child:
fwnode_handle_put(child);
while (led-- > priv->leds)
led_classdev_multicolor_unregister(&led->mc_cdev);
sun50i_a100_ledc_suspend(&pdev->dev);
return ret;
}
static void sun50i_a100_ledc_remove(struct platform_device *pdev)
{
struct sun50i_a100_ledc *priv = platform_get_drvdata(pdev);
for (u32 i = 0; i < priv->num_leds; i++)
led_classdev_multicolor_unregister(&priv->leds[i].mc_cdev);
sun50i_a100_ledc_suspend(&pdev->dev);
}
static const struct of_device_id sun50i_a100_ledc_of_match[] = {
{ .compatible = "allwinner,sun50i-a100-ledc" },
{}
};
MODULE_DEVICE_TABLE(of, sun50i_a100_ledc_of_match);
static DEFINE_SIMPLE_DEV_PM_OPS(sun50i_a100_ledc_pm,
sun50i_a100_ledc_suspend,
sun50i_a100_ledc_resume);
static struct platform_driver sun50i_a100_ledc_driver = {
.probe = sun50i_a100_ledc_probe,
.remove_new = sun50i_a100_ledc_remove,
.shutdown = sun50i_a100_ledc_remove,
.driver = {
.name = "sun50i-a100-ledc",
.of_match_table = sun50i_a100_ledc_of_match,
.pm = pm_ptr(&sun50i_a100_ledc_pm),
},
};
module_platform_driver(sun50i_a100_ledc_driver);
MODULE_AUTHOR("Samuel Holland <samuel@sholland.org>");
MODULE_DESCRIPTION("Allwinner A100 LED controller driver");
MODULE_LICENSE("GPL");