mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 12:42:02 +00:00
bc63eb9c7e
Use bitrev8 for bmac, mace, macmace, macsonic, and skfp drivers. [akpm@osdl.org: use the API, not the array] Cc: Jeff Garzik <jgarzik@pobox.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Mirko Lindner <mlindner@syskonnect.de> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
1312 lines
29 KiB
C
1312 lines
29 KiB
C
/******************************************************************************
|
|
*
|
|
* (C)Copyright 1998,1999 SysKonnect,
|
|
* a business unit of Schneider & Koch & Co. Datensysteme GmbH.
|
|
*
|
|
* See the file "skfddi.c" for further information.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* The information in this file is provided "AS IS" without warranty.
|
|
*
|
|
******************************************************************************/
|
|
|
|
/*
|
|
* FBI board dependent Driver for SMT and LLC
|
|
*/
|
|
|
|
#include "h/types.h"
|
|
#include "h/fddi.h"
|
|
#include "h/smc.h"
|
|
#include "h/supern_2.h"
|
|
#include "h/skfbiinc.h"
|
|
#include <linux/bitrev.h>
|
|
|
|
#ifndef lint
|
|
static const char ID_sccs[] = "@(#)drvfbi.c 1.63 99/02/11 (C) SK " ;
|
|
#endif
|
|
|
|
/*
|
|
* PCM active state
|
|
*/
|
|
#define PC8_ACTIVE 8
|
|
|
|
#define LED_Y_ON 0x11 /* Used for ring up/down indication */
|
|
#define LED_Y_OFF 0x10
|
|
|
|
|
|
#define MS2BCLK(x) ((x)*12500L)
|
|
|
|
/*
|
|
* valid configuration values are:
|
|
*/
|
|
#ifdef ISA
|
|
const int opt_ints[] = {8, 3, 4, 5, 9, 10, 11, 12, 15} ;
|
|
const int opt_iops[] = {8,
|
|
0x100, 0x120, 0x180, 0x1a0, 0x220, 0x240, 0x320, 0x340};
|
|
const int opt_dmas[] = {4, 3, 5, 6, 7} ;
|
|
const int opt_eproms[] = {15, 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce,
|
|
0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc} ;
|
|
#endif
|
|
#ifdef EISA
|
|
const int opt_ints[] = {5, 9, 10, 11} ;
|
|
const int opt_dmas[] = {0, 5, 6, 7} ;
|
|
const int opt_eproms[] = {0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce,
|
|
0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc} ;
|
|
#endif
|
|
|
|
#ifdef MCA
|
|
int opt_ints[] = {3, 11, 10, 9} ; /* FM1 */
|
|
int opt_eproms[] = {0, 0xc4, 0xc8, 0xcc, 0xd0, 0xd4, 0xd8, 0xdc} ;
|
|
#endif /* MCA */
|
|
|
|
/*
|
|
* xPOS_ID:xxxx
|
|
* | \ /
|
|
* | \/
|
|
* | --------------------- the patched POS_ID of the Adapter
|
|
* | xxxx = (Vendor ID low byte,
|
|
* | Vendor ID high byte,
|
|
* | Device ID low byte,
|
|
* | Device ID high byte)
|
|
* +------------------------------ the patched oem_id must be
|
|
* 'S' for SK or 'I' for IBM
|
|
* this is a short id for the driver.
|
|
*/
|
|
#ifndef MULT_OEM
|
|
#ifndef OEM_CONCEPT
|
|
#ifndef MCA
|
|
const u_char oem_id[] = "xPOS_ID:xxxx" ;
|
|
#else
|
|
const u_char oem_id[] = "xPOSID1:xxxx" ; /* FM1 card id. */
|
|
#endif
|
|
#else /* OEM_CONCEPT */
|
|
#ifndef MCA
|
|
const u_char oem_id[] = OEM_ID ;
|
|
#else
|
|
const u_char oem_id[] = OEM_ID1 ; /* FM1 card id. */
|
|
#endif /* MCA */
|
|
#endif /* OEM_CONCEPT */
|
|
#define ID_BYTE0 8
|
|
#define OEMID(smc,i) oem_id[ID_BYTE0 + i]
|
|
#else /* MULT_OEM */
|
|
const struct s_oem_ids oem_ids[] = {
|
|
#include "oemids.h"
|
|
{0}
|
|
};
|
|
#define OEMID(smc,i) smc->hw.oem_id->oi_id[i]
|
|
#endif /* MULT_OEM */
|
|
|
|
/* Prototypes of external functions */
|
|
#ifdef AIX
|
|
extern int AIX_vpdReadByte() ;
|
|
#endif
|
|
|
|
|
|
/* Prototype of a local function. */
|
|
static void smt_stop_watchdog(struct s_smc *smc);
|
|
|
|
#ifdef MCA
|
|
static int read_card_id() ;
|
|
static void DisableSlotAccess() ;
|
|
static void EnableSlotAccess() ;
|
|
#ifdef AIX
|
|
extern int attach_POS_addr() ;
|
|
extern int detach_POS_addr() ;
|
|
extern u_char read_POS() ;
|
|
extern void write_POS() ;
|
|
extern int AIX_vpdReadByte() ;
|
|
#else
|
|
#define read_POS(smc,a1,a2) ((u_char) inp(a1))
|
|
#define write_POS(smc,a1,a2,a3) outp((a1),(a3))
|
|
#endif
|
|
#endif /* MCA */
|
|
|
|
|
|
/*
|
|
* FDDI card reset
|
|
*/
|
|
static void card_start(struct s_smc *smc)
|
|
{
|
|
int i ;
|
|
#ifdef PCI
|
|
u_char rev_id ;
|
|
u_short word;
|
|
#endif
|
|
|
|
smt_stop_watchdog(smc) ;
|
|
|
|
#ifdef ISA
|
|
outpw(CSR_A,0) ; /* reset for all chips */
|
|
for (i = 10 ; i ; i--) /* delay for PLC's */
|
|
(void)inpw(ISR_A) ;
|
|
OUT_82c54_TIMER(3,COUNT(2) | RW_OP(3) | TMODE(2)) ;
|
|
/* counter 2, mode 2 */
|
|
OUT_82c54_TIMER(2,97) ; /* LSB */
|
|
OUT_82c54_TIMER(2,0) ; /* MSB ( 15.6 us ) */
|
|
outpw(CSR_A,CS_CRESET) ;
|
|
#endif
|
|
#ifdef EISA
|
|
outpw(CSR_A,0) ; /* reset for all chips */
|
|
for (i = 10 ; i ; i--) /* delay for PLC's */
|
|
(void)inpw(ISR_A) ;
|
|
outpw(CSR_A,CS_CRESET) ;
|
|
smc->hw.led = (2<<6) ;
|
|
outpw(CSR_A,CS_CRESET | smc->hw.led) ;
|
|
#endif
|
|
#ifdef MCA
|
|
outp(ADDR(CARD_DIS),0) ; /* reset for all chips */
|
|
for (i = 10 ; i ; i--) /* delay for PLC's */
|
|
(void)inpw(ISR_A) ;
|
|
outp(ADDR(CARD_EN),0) ;
|
|
/* first I/O after reset must not be a access to FORMAC or PLC */
|
|
|
|
/*
|
|
* bus timeout (MCA)
|
|
*/
|
|
OUT_82c54_TIMER(3,COUNT(2) | RW_OP(3) | TMODE(3)) ;
|
|
/* counter 2, mode 3 */
|
|
OUT_82c54_TIMER(2,(2*24)) ; /* 3.9 us * 2 square wave */
|
|
OUT_82c54_TIMER(2,0) ; /* MSB */
|
|
|
|
/* POS 102 indicated an activ Check Line or Buss Error monitoring */
|
|
if (inpw(CSA_A) & (POS_EN_CHKINT | POS_EN_BUS_ERR)) {
|
|
outp(ADDR(IRQ_CHCK_EN),0) ;
|
|
}
|
|
|
|
if (!((i = inpw(CSR_A)) & CS_SAS)) {
|
|
if (!(i & CS_BYSTAT)) {
|
|
outp(ADDR(BYPASS(STAT_INS)),0) ;/* insert station */
|
|
}
|
|
}
|
|
outpw(LEDR_A,LED_1) ; /* yellow */
|
|
#endif /* MCA */
|
|
#ifdef PCI
|
|
/*
|
|
* make sure no transfer activity is pending
|
|
*/
|
|
outpw(FM_A(FM_MDREG1),FM_MINIT) ;
|
|
outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
|
|
hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ;
|
|
/*
|
|
* now reset everything
|
|
*/
|
|
outp(ADDR(B0_CTRL),CTRL_RST_SET) ; /* reset for all chips */
|
|
i = (int) inp(ADDR(B0_CTRL)) ; /* do dummy read */
|
|
SK_UNUSED(i) ; /* Make LINT happy. */
|
|
outp(ADDR(B0_CTRL), CTRL_RST_CLR) ;
|
|
|
|
/*
|
|
* Reset all bits in the PCI STATUS register
|
|
*/
|
|
outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_ON) ; /* enable for writes */
|
|
word = inpw(PCI_C(PCI_STATUS)) ;
|
|
outpw(PCI_C(PCI_STATUS), word | PCI_ERRBITS) ;
|
|
outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_OFF) ; /* disable writes */
|
|
|
|
/*
|
|
* Release the reset of all the State machines
|
|
* Release Master_Reset
|
|
* Release HPI_SM_Reset
|
|
*/
|
|
outp(ADDR(B0_CTRL), CTRL_MRST_CLR|CTRL_HPI_CLR) ;
|
|
|
|
/*
|
|
* determine the adapter type
|
|
* Note: Do it here, because some drivers may call card_start() once
|
|
* at very first before any other initialization functions is
|
|
* executed.
|
|
*/
|
|
rev_id = inp(PCI_C(PCI_REV_ID)) ;
|
|
if ((rev_id & 0xf0) == SK_ML_ID_1 || (rev_id & 0xf0) == SK_ML_ID_2) {
|
|
smc->hw.hw_is_64bit = TRUE ;
|
|
} else {
|
|
smc->hw.hw_is_64bit = FALSE ;
|
|
}
|
|
|
|
/*
|
|
* Watermark initialization
|
|
*/
|
|
if (!smc->hw.hw_is_64bit) {
|
|
outpd(ADDR(B4_R1_F), RX_WATERMARK) ;
|
|
outpd(ADDR(B5_XA_F), TX_WATERMARK) ;
|
|
outpd(ADDR(B5_XS_F), TX_WATERMARK) ;
|
|
}
|
|
|
|
outp(ADDR(B0_CTRL),CTRL_RST_CLR) ; /* clear the reset chips */
|
|
outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_ON|LED_GB_OFF) ; /* ye LED on */
|
|
|
|
/* init the timer value for the watch dog 2,5 minutes */
|
|
outpd(ADDR(B2_WDOG_INI),0x6FC23AC0) ;
|
|
|
|
/* initialize the ISR mask */
|
|
smc->hw.is_imask = ISR_MASK ;
|
|
smc->hw.hw_state = STOPPED ;
|
|
#endif
|
|
GET_PAGE(0) ; /* necessary for BOOT */
|
|
}
|
|
|
|
void card_stop(struct s_smc *smc)
|
|
{
|
|
smt_stop_watchdog(smc) ;
|
|
smc->hw.mac_ring_is_up = 0 ; /* ring down */
|
|
#ifdef ISA
|
|
outpw(CSR_A,0) ; /* reset for all chips */
|
|
#endif
|
|
#ifdef EISA
|
|
outpw(CSR_A,0) ; /* reset for all chips */
|
|
#endif
|
|
#ifdef MCA
|
|
outp(ADDR(CARD_DIS),0) ; /* reset for all chips */
|
|
#endif
|
|
#ifdef PCI
|
|
/*
|
|
* make sure no transfer activity is pending
|
|
*/
|
|
outpw(FM_A(FM_MDREG1),FM_MINIT) ;
|
|
outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
|
|
hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ;
|
|
/*
|
|
* now reset everything
|
|
*/
|
|
outp(ADDR(B0_CTRL),CTRL_RST_SET) ; /* reset for all chips */
|
|
outp(ADDR(B0_CTRL),CTRL_RST_CLR) ; /* reset for all chips */
|
|
outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_OFF|LED_GB_OFF) ; /* all LEDs off */
|
|
smc->hw.hw_state = STOPPED ;
|
|
#endif
|
|
}
|
|
/*--------------------------- ISR handling ----------------------------------*/
|
|
|
|
void mac1_irq(struct s_smc *smc, u_short stu, u_short stl)
|
|
{
|
|
int restart_tx = 0 ;
|
|
again:
|
|
#ifndef PCI
|
|
#ifndef ISA
|
|
/*
|
|
* FORMAC+ bug modified the queue pointer if many read/write accesses happens!?
|
|
*/
|
|
if (stl & (FM_SPCEPDS | /* parit/coding err. syn.q.*/
|
|
FM_SPCEPDA0 | /* parit/coding err. a.q.0 */
|
|
FM_SPCEPDA1 | /* parit/coding err. a.q.1 */
|
|
FM_SPCEPDA2)) { /* parit/coding err. a.q.2 */
|
|
SMT_PANIC(smc,SMT_E0132, SMT_E0132_MSG) ;
|
|
}
|
|
if (stl & (FM_STBURS | /* tx buffer underrun syn.q.*/
|
|
FM_STBURA0 | /* tx buffer underrun a.q.0 */
|
|
FM_STBURA1 | /* tx buffer underrun a.q.1 */
|
|
FM_STBURA2)) { /* tx buffer underrun a.q.2 */
|
|
SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ;
|
|
}
|
|
#endif
|
|
if ( (stu & (FM_SXMTABT | /* transmit abort */
|
|
#ifdef SYNC
|
|
FM_STXABRS | /* syn. tx abort */
|
|
#endif /* SYNC */
|
|
FM_STXABRA0)) || /* asyn. tx abort */
|
|
(stl & (FM_SQLCKS | /* lock for syn. q. */
|
|
FM_SQLCKA0)) ) { /* lock for asyn. q. */
|
|
formac_tx_restart(smc) ; /* init tx */
|
|
restart_tx = 1 ;
|
|
stu = inpw(FM_A(FM_ST1U)) ;
|
|
stl = inpw(FM_A(FM_ST1L)) ;
|
|
stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ;
|
|
if (stu || stl)
|
|
goto again ;
|
|
}
|
|
|
|
#ifndef SYNC
|
|
if (stu & (FM_STECFRMA0 | /* end of chain asyn tx */
|
|
FM_STEFRMA0)) { /* end of frame asyn tx */
|
|
/* free tx_queue */
|
|
smc->hw.n_a_send = 0 ;
|
|
if (++smc->hw.fp.tx_free < smc->hw.fp.tx_max) {
|
|
start_next_send(smc);
|
|
}
|
|
restart_tx = 1 ;
|
|
}
|
|
#else /* SYNC */
|
|
if (stu & (FM_STEFRMA0 | /* end of asyn tx */
|
|
FM_STEFRMS)) { /* end of sync tx */
|
|
restart_tx = 1 ;
|
|
}
|
|
#endif /* SYNC */
|
|
if (restart_tx)
|
|
llc_restart_tx(smc) ;
|
|
}
|
|
#else /* PCI */
|
|
|
|
/*
|
|
* parity error: note encoding error is not possible in tag mode
|
|
*/
|
|
if (stl & (FM_SPCEPDS | /* parity err. syn.q.*/
|
|
FM_SPCEPDA0 | /* parity err. a.q.0 */
|
|
FM_SPCEPDA1)) { /* parity err. a.q.1 */
|
|
SMT_PANIC(smc,SMT_E0134, SMT_E0134_MSG) ;
|
|
}
|
|
/*
|
|
* buffer underrun: can only occur if a tx threshold is specified
|
|
*/
|
|
if (stl & (FM_STBURS | /* tx buffer underrun syn.q.*/
|
|
FM_STBURA0 | /* tx buffer underrun a.q.0 */
|
|
FM_STBURA1)) { /* tx buffer underrun a.q.2 */
|
|
SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ;
|
|
}
|
|
|
|
if ( (stu & (FM_SXMTABT | /* transmit abort */
|
|
FM_STXABRS | /* syn. tx abort */
|
|
FM_STXABRA0)) || /* asyn. tx abort */
|
|
(stl & (FM_SQLCKS | /* lock for syn. q. */
|
|
FM_SQLCKA0)) ) { /* lock for asyn. q. */
|
|
formac_tx_restart(smc) ; /* init tx */
|
|
restart_tx = 1 ;
|
|
stu = inpw(FM_A(FM_ST1U)) ;
|
|
stl = inpw(FM_A(FM_ST1L)) ;
|
|
stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ;
|
|
if (stu || stl)
|
|
goto again ;
|
|
}
|
|
|
|
if (stu & (FM_STEFRMA0 | /* end of asyn tx */
|
|
FM_STEFRMS)) { /* end of sync tx */
|
|
restart_tx = 1 ;
|
|
}
|
|
|
|
if (restart_tx)
|
|
llc_restart_tx(smc) ;
|
|
}
|
|
#endif /* PCI */
|
|
/*
|
|
* interrupt source= plc1
|
|
* this function is called in nwfbisr.asm
|
|
*/
|
|
void plc1_irq(struct s_smc *smc)
|
|
{
|
|
u_short st = inpw(PLC(PB,PL_INTR_EVENT)) ;
|
|
|
|
#if (defined(ISA) || defined(EISA))
|
|
/* reset PLC Int. bits */
|
|
outpw(PLC1_I,inpw(PLC1_I)) ;
|
|
#endif
|
|
plc_irq(smc,PB,st) ;
|
|
}
|
|
|
|
/*
|
|
* interrupt source= plc2
|
|
* this function is called in nwfbisr.asm
|
|
*/
|
|
void plc2_irq(struct s_smc *smc)
|
|
{
|
|
u_short st = inpw(PLC(PA,PL_INTR_EVENT)) ;
|
|
|
|
#if (defined(ISA) || defined(EISA))
|
|
/* reset PLC Int. bits */
|
|
outpw(PLC2_I,inpw(PLC2_I)) ;
|
|
#endif
|
|
plc_irq(smc,PA,st) ;
|
|
}
|
|
|
|
|
|
/*
|
|
* interrupt source= timer
|
|
*/
|
|
void timer_irq(struct s_smc *smc)
|
|
{
|
|
hwt_restart(smc);
|
|
smc->hw.t_stop = smc->hw.t_start;
|
|
smt_timer_done(smc) ;
|
|
}
|
|
|
|
/*
|
|
* return S-port (PA or PB)
|
|
*/
|
|
int pcm_get_s_port(struct s_smc *smc)
|
|
{
|
|
SK_UNUSED(smc) ;
|
|
return(PS) ;
|
|
}
|
|
|
|
/*
|
|
* Station Label = "FDDI-XYZ" where
|
|
*
|
|
* X = connector type
|
|
* Y = PMD type
|
|
* Z = port type
|
|
*/
|
|
#define STATION_LABEL_CONNECTOR_OFFSET 5
|
|
#define STATION_LABEL_PMD_OFFSET 6
|
|
#define STATION_LABEL_PORT_OFFSET 7
|
|
|
|
void read_address(struct s_smc *smc, u_char *mac_addr)
|
|
{
|
|
char ConnectorType ;
|
|
char PmdType ;
|
|
int i ;
|
|
|
|
#if (defined(ISA) || defined(MCA))
|
|
for (i = 0; i < 4 ;i++) { /* read mac address from board */
|
|
smc->hw.fddi_phys_addr.a[i] =
|
|
bitrev8(inpw(PR_A(i+SA_MAC)));
|
|
}
|
|
for (i = 4; i < 6; i++) {
|
|
smc->hw.fddi_phys_addr.a[i] =
|
|
bitrev8(inpw(PR_A(i+SA_MAC+PRA_OFF)));
|
|
}
|
|
#endif
|
|
#ifdef EISA
|
|
/*
|
|
* Note: We get trouble on an Alpha machine if we make a inpw()
|
|
* instead of inp()
|
|
*/
|
|
for (i = 0; i < 4 ;i++) { /* read mac address from board */
|
|
smc->hw.fddi_phys_addr.a[i] =
|
|
bitrev8(inp(PR_A(i+SA_MAC)));
|
|
}
|
|
for (i = 4; i < 6; i++) {
|
|
smc->hw.fddi_phys_addr.a[i] =
|
|
bitrev8(inp(PR_A(i+SA_MAC+PRA_OFF)));
|
|
}
|
|
#endif
|
|
#ifdef PCI
|
|
for (i = 0; i < 6; i++) { /* read mac address from board */
|
|
smc->hw.fddi_phys_addr.a[i] =
|
|
bitrev8(inp(ADDR(B2_MAC_0+i)));
|
|
}
|
|
#endif
|
|
#ifndef PCI
|
|
ConnectorType = inpw(PR_A(SA_PMD_TYPE)) & 0xff ;
|
|
PmdType = inpw(PR_A(SA_PMD_TYPE+1)) & 0xff ;
|
|
#else
|
|
ConnectorType = inp(ADDR(B2_CONN_TYP)) ;
|
|
PmdType = inp(ADDR(B2_PMD_TYP)) ;
|
|
#endif
|
|
|
|
smc->y[PA].pmd_type[PMD_SK_CONN] =
|
|
smc->y[PB].pmd_type[PMD_SK_CONN] = ConnectorType ;
|
|
smc->y[PA].pmd_type[PMD_SK_PMD ] =
|
|
smc->y[PB].pmd_type[PMD_SK_PMD ] = PmdType ;
|
|
|
|
if (mac_addr) {
|
|
for (i = 0; i < 6 ;i++) {
|
|
smc->hw.fddi_canon_addr.a[i] = mac_addr[i] ;
|
|
smc->hw.fddi_home_addr.a[i] = bitrev8(mac_addr[i]);
|
|
}
|
|
return ;
|
|
}
|
|
smc->hw.fddi_home_addr = smc->hw.fddi_phys_addr ;
|
|
|
|
for (i = 0; i < 6 ;i++) {
|
|
smc->hw.fddi_canon_addr.a[i] =
|
|
bitrev8(smc->hw.fddi_phys_addr.a[i]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* FDDI card soft reset
|
|
*/
|
|
void init_board(struct s_smc *smc, u_char *mac_addr)
|
|
{
|
|
card_start(smc) ;
|
|
read_address(smc,mac_addr) ;
|
|
|
|
#ifndef PCI
|
|
if (inpw(CSR_A) & CS_SAS)
|
|
#else
|
|
if (!(inp(ADDR(B0_DAS)) & DAS_AVAIL))
|
|
#endif
|
|
smc->s.sas = SMT_SAS ; /* Single att. station */
|
|
else
|
|
smc->s.sas = SMT_DAS ; /* Dual att. station */
|
|
|
|
#ifndef PCI
|
|
if (inpw(CSR_A) & CS_BYSTAT)
|
|
#else
|
|
if (!(inp(ADDR(B0_DAS)) & DAS_BYP_ST))
|
|
#endif
|
|
smc->mib.fddiSMTBypassPresent = 0 ;
|
|
/* without opt. bypass */
|
|
else
|
|
smc->mib.fddiSMTBypassPresent = 1 ;
|
|
/* with opt. bypass */
|
|
}
|
|
|
|
/*
|
|
* insert or deinsert optical bypass (called by ECM)
|
|
*/
|
|
void sm_pm_bypass_req(struct s_smc *smc, int mode)
|
|
{
|
|
#if (defined(ISA) || defined(EISA))
|
|
int csra_v ;
|
|
#endif
|
|
|
|
DB_ECMN(1,"ECM : sm_pm_bypass_req(%s)\n",(mode == BP_INSERT) ?
|
|
"BP_INSERT" : "BP_DEINSERT",0) ;
|
|
|
|
if (smc->s.sas != SMT_DAS)
|
|
return ;
|
|
|
|
#if (defined(ISA) || defined(EISA))
|
|
|
|
csra_v = inpw(CSR_A) & ~CS_BYPASS ;
|
|
#ifdef EISA
|
|
csra_v |= smc->hw.led ;
|
|
#endif
|
|
|
|
switch(mode) {
|
|
case BP_INSERT :
|
|
outpw(CSR_A,csra_v | CS_BYPASS) ;
|
|
break ;
|
|
case BP_DEINSERT :
|
|
outpw(CSR_A,csra_v) ;
|
|
break ;
|
|
}
|
|
#endif /* ISA / EISA */
|
|
#ifdef MCA
|
|
switch(mode) {
|
|
case BP_INSERT :
|
|
outp(ADDR(BYPASS(STAT_INS)),0) ;/* insert station */
|
|
break ;
|
|
case BP_DEINSERT :
|
|
outp(ADDR(BYPASS(STAT_BYP)),0) ; /* bypass station */
|
|
break ;
|
|
}
|
|
#endif
|
|
#ifdef PCI
|
|
switch(mode) {
|
|
case BP_INSERT :
|
|
outp(ADDR(B0_DAS),DAS_BYP_INS) ; /* insert station */
|
|
break ;
|
|
case BP_DEINSERT :
|
|
outp(ADDR(B0_DAS),DAS_BYP_RMV) ; /* bypass station */
|
|
break ;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* check if bypass connected
|
|
*/
|
|
int sm_pm_bypass_present(struct s_smc *smc)
|
|
{
|
|
#ifndef PCI
|
|
return( (inpw(CSR_A) & CS_BYSTAT) ? FALSE : TRUE ) ;
|
|
#else
|
|
return( (inp(ADDR(B0_DAS)) & DAS_BYP_ST) ? TRUE: FALSE) ;
|
|
#endif
|
|
}
|
|
|
|
void plc_clear_irq(struct s_smc *smc, int p)
|
|
{
|
|
SK_UNUSED(p) ;
|
|
|
|
#if (defined(ISA) || defined(EISA))
|
|
switch (p) {
|
|
case PA :
|
|
/* reset PLC Int. bits */
|
|
outpw(PLC2_I,inpw(PLC2_I)) ;
|
|
break ;
|
|
case PB :
|
|
/* reset PLC Int. bits */
|
|
outpw(PLC1_I,inpw(PLC1_I)) ;
|
|
break ;
|
|
}
|
|
#else
|
|
SK_UNUSED(smc) ;
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* led_indication called by rmt_indication() and
|
|
* pcm_state_change()
|
|
*
|
|
* Input:
|
|
* smc: SMT context
|
|
* led_event:
|
|
* 0 Only switch green LEDs according to their respective PCM state
|
|
* LED_Y_OFF just switch yellow LED off
|
|
* LED_Y_ON just switch yello LED on
|
|
*/
|
|
static void led_indication(struct s_smc *smc, int led_event)
|
|
{
|
|
/* use smc->hw.mac_ring_is_up == TRUE
|
|
* as indication for Ring Operational
|
|
*/
|
|
u_short led_state ;
|
|
struct s_phy *phy ;
|
|
struct fddi_mib_p *mib_a ;
|
|
struct fddi_mib_p *mib_b ;
|
|
|
|
phy = &smc->y[PA] ;
|
|
mib_a = phy->mib ;
|
|
phy = &smc->y[PB] ;
|
|
mib_b = phy->mib ;
|
|
|
|
#ifdef EISA
|
|
/* Ring up = yellow led OFF*/
|
|
if (led_event == LED_Y_ON) {
|
|
smc->hw.led |= CS_LED_1 ;
|
|
}
|
|
else if (led_event == LED_Y_OFF) {
|
|
smc->hw.led &= ~CS_LED_1 ;
|
|
}
|
|
else {
|
|
/* Link at Port A or B = green led ON */
|
|
if (mib_a->fddiPORTPCMState == PC8_ACTIVE ||
|
|
mib_b->fddiPORTPCMState == PC8_ACTIVE) {
|
|
smc->hw.led |= CS_LED_0 ;
|
|
}
|
|
else {
|
|
smc->hw.led &= ~CS_LED_0 ;
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef MCA
|
|
led_state = inpw(LEDR_A) ;
|
|
|
|
/* Ring up = yellow led OFF*/
|
|
if (led_event == LED_Y_ON) {
|
|
led_state |= LED_1 ;
|
|
}
|
|
else if (led_event == LED_Y_OFF) {
|
|
led_state &= ~LED_1 ;
|
|
}
|
|
else {
|
|
led_state &= ~(LED_2|LED_0) ;
|
|
|
|
/* Link at Port A = green led A ON */
|
|
if (mib_a->fddiPORTPCMState == PC8_ACTIVE) {
|
|
led_state |= LED_2 ;
|
|
}
|
|
|
|
/* Link at Port B/S = green led B ON */
|
|
if (mib_b->fddiPORTPCMState == PC8_ACTIVE) {
|
|
led_state |= LED_0 ;
|
|
}
|
|
}
|
|
|
|
outpw(LEDR_A, led_state) ;
|
|
#endif /* MCA */
|
|
#ifdef PCI
|
|
led_state = 0 ;
|
|
|
|
/* Ring up = yellow led OFF*/
|
|
if (led_event == LED_Y_ON) {
|
|
led_state |= LED_MY_ON ;
|
|
}
|
|
else if (led_event == LED_Y_OFF) {
|
|
led_state |= LED_MY_OFF ;
|
|
}
|
|
else { /* PCM state changed */
|
|
/* Link at Port A/S = green led A ON */
|
|
if (mib_a->fddiPORTPCMState == PC8_ACTIVE) {
|
|
led_state |= LED_GA_ON ;
|
|
}
|
|
else {
|
|
led_state |= LED_GA_OFF ;
|
|
}
|
|
|
|
/* Link at Port B = green led B ON */
|
|
if (mib_b->fddiPORTPCMState == PC8_ACTIVE) {
|
|
led_state |= LED_GB_ON ;
|
|
}
|
|
else {
|
|
led_state |= LED_GB_OFF ;
|
|
}
|
|
}
|
|
|
|
outp(ADDR(B0_LED), led_state) ;
|
|
#endif /* PCI */
|
|
|
|
}
|
|
|
|
|
|
void pcm_state_change(struct s_smc *smc, int plc, int p_state)
|
|
{
|
|
/*
|
|
* the current implementation of pcm_state_change() in the driver
|
|
* parts must be renamed to drv_pcm_state_change() which will be called
|
|
* now after led_indication.
|
|
*/
|
|
DRV_PCM_STATE_CHANGE(smc,plc,p_state) ;
|
|
|
|
led_indication(smc,0) ;
|
|
}
|
|
|
|
|
|
void rmt_indication(struct s_smc *smc, int i)
|
|
{
|
|
/* Call a driver special function if defined */
|
|
DRV_RMT_INDICATION(smc,i) ;
|
|
|
|
led_indication(smc, i ? LED_Y_OFF : LED_Y_ON) ;
|
|
}
|
|
|
|
|
|
/*
|
|
* llc_recover_tx called by init_tx (fplus.c)
|
|
*/
|
|
void llc_recover_tx(struct s_smc *smc)
|
|
{
|
|
#ifdef LOAD_GEN
|
|
extern int load_gen_flag ;
|
|
|
|
load_gen_flag = 0 ;
|
|
#endif
|
|
#ifndef SYNC
|
|
smc->hw.n_a_send= 0 ;
|
|
#else
|
|
SK_UNUSED(smc) ;
|
|
#endif
|
|
}
|
|
|
|
#ifdef MULT_OEM
|
|
static int is_equal_num(char comp1[], char comp2[], int num)
|
|
{
|
|
int i ;
|
|
|
|
for (i = 0 ; i < num ; i++) {
|
|
if (comp1[i] != comp2[i])
|
|
return (0) ;
|
|
}
|
|
return (1) ;
|
|
} /* is_equal_num */
|
|
|
|
|
|
/*
|
|
* set the OEM ID defaults, and test the contents of the OEM data base
|
|
* The default OEM is the first ACTIVE entry in the OEM data base
|
|
*
|
|
* returns: 0 success
|
|
* 1 error in data base
|
|
* 2 data base empty
|
|
* 3 no active entry
|
|
*/
|
|
int set_oi_id_def(struct s_smc *smc)
|
|
{
|
|
int sel_id ;
|
|
int i ;
|
|
int act_entries ;
|
|
|
|
i = 0 ;
|
|
sel_id = -1 ;
|
|
act_entries = FALSE ;
|
|
smc->hw.oem_id = 0 ;
|
|
smc->hw.oem_min_status = OI_STAT_ACTIVE ;
|
|
|
|
/* check OEM data base */
|
|
while (oem_ids[i].oi_status) {
|
|
switch (oem_ids[i].oi_status) {
|
|
case OI_STAT_ACTIVE:
|
|
act_entries = TRUE ; /* we have active IDs */
|
|
if (sel_id == -1)
|
|
sel_id = i ; /* save the first active ID */
|
|
case OI_STAT_VALID:
|
|
case OI_STAT_PRESENT:
|
|
i++ ;
|
|
break ; /* entry ok */
|
|
default:
|
|
return (1) ; /* invalid oi_status */
|
|
}
|
|
}
|
|
|
|
if (i == 0)
|
|
return (2) ;
|
|
if (!act_entries)
|
|
return (3) ;
|
|
|
|
/* ok, we have a valid OEM data base with an active entry */
|
|
smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[sel_id] ;
|
|
return (0) ;
|
|
}
|
|
#endif /* MULT_OEM */
|
|
|
|
|
|
#ifdef MCA
|
|
/************************
|
|
*
|
|
* BEGIN_MANUAL_ENTRY()
|
|
*
|
|
* exist_board
|
|
*
|
|
* Check if an MCA board is present in the specified slot.
|
|
*
|
|
* int exist_board(
|
|
* struct s_smc *smc,
|
|
* int slot) ;
|
|
* In
|
|
* smc - A pointer to the SMT Context struct.
|
|
*
|
|
* slot - The number of the slot to inspect.
|
|
* Out
|
|
* 0 = No adapter present.
|
|
* 1 = Found FM1 adapter.
|
|
*
|
|
* Pseudo
|
|
* Read MCA ID
|
|
* for all valid OEM_IDs
|
|
* compare with ID read
|
|
* if equal, return 1
|
|
* return(0
|
|
*
|
|
* Note
|
|
* The smc pointer must be valid now.
|
|
*
|
|
* END_MANUAL_ENTRY()
|
|
*
|
|
************************/
|
|
#define LONG_CARD_ID(lo, hi) ((((hi) & 0xff) << 8) | ((lo) & 0xff))
|
|
int exist_board(struct s_smc *smc, int slot)
|
|
{
|
|
#ifdef MULT_OEM
|
|
SK_LOC_DECL(u_char,id[2]) ;
|
|
int idi ;
|
|
#endif /* MULT_OEM */
|
|
|
|
/* No longer valid. */
|
|
if (smc == NULL)
|
|
return(0) ;
|
|
|
|
#ifndef MULT_OEM
|
|
if (read_card_id(smc, slot)
|
|
== LONG_CARD_ID(OEMID(smc,0), OEMID(smc,1)))
|
|
return (1) ; /* Found FM adapter. */
|
|
|
|
#else /* MULT_OEM */
|
|
idi = read_card_id(smc, slot) ;
|
|
id[0] = idi & 0xff ;
|
|
id[1] = idi >> 8 ;
|
|
|
|
smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
|
|
for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
|
|
if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
|
|
continue ;
|
|
|
|
if (is_equal_num(&id[0],&OEMID(smc,0),2))
|
|
return (1) ;
|
|
}
|
|
#endif /* MULT_OEM */
|
|
return (0) ; /* No adapter found. */
|
|
}
|
|
|
|
/************************
|
|
*
|
|
* read_card_id
|
|
*
|
|
* Read the MCA card id from the specified slot.
|
|
* In
|
|
* smc - A pointer to the SMT Context struct.
|
|
* CAVEAT: This pointer may be NULL and *must not* be used within this
|
|
* function. It's only purpose is for drivers that need some information
|
|
* for the inp() and outp() macros.
|
|
*
|
|
* slot - The number of the slot for which the card id is returned.
|
|
* Out
|
|
* Returns the card id read from the specified slot. If an illegal slot
|
|
* number is specified, the function returns zero.
|
|
*
|
|
************************/
|
|
static int read_card_id(struct s_smc *smc, int slot)
|
|
/* struct s_smc *smc ; Do not use. */
|
|
{
|
|
int card_id ;
|
|
|
|
SK_UNUSED(smc) ; /* Make LINT happy. */
|
|
if ((slot < 1) || (slot > 15)) /* max 16 slots, 0 = motherboard */
|
|
return (0) ; /* Illegal slot number specified. */
|
|
|
|
EnableSlotAccess(smc, slot) ;
|
|
|
|
card_id = ((read_POS(smc,POS_ID_HIGH,slot - 1) & 0xff) << 8) |
|
|
(read_POS(smc,POS_ID_LOW,slot - 1) & 0xff) ;
|
|
|
|
DisableSlotAccess(smc) ;
|
|
|
|
return (card_id) ;
|
|
}
|
|
|
|
/************************
|
|
*
|
|
* BEGIN_MANUAL_ENTRY()
|
|
*
|
|
* get_board_para
|
|
*
|
|
* Get adapter configuration information. Fill all board specific
|
|
* parameters within the 'smc' structure.
|
|
*
|
|
* int get_board_para(
|
|
* struct s_smc *smc,
|
|
* int slot) ;
|
|
* In
|
|
* smc - A pointer to the SMT Context struct, to which this function will
|
|
* write some adapter configuration data.
|
|
*
|
|
* slot - The number of the slot, in which the adapter is installed.
|
|
* Out
|
|
* 0 = No adapter present.
|
|
* 1 = Ok.
|
|
* 2 = Adapter present, but card enable bit not set.
|
|
*
|
|
* END_MANUAL_ENTRY()
|
|
*
|
|
************************/
|
|
int get_board_para(struct s_smc *smc, int slot)
|
|
{
|
|
int val ;
|
|
int i ;
|
|
|
|
/* Check if adapter present & get type of adapter. */
|
|
switch (exist_board(smc, slot)) {
|
|
case 0: /* Adapter not present. */
|
|
return (0) ;
|
|
case 1: /* FM Rev. 1 */
|
|
smc->hw.rev = FM1_REV ;
|
|
smc->hw.VFullRead = 0x0a ;
|
|
smc->hw.VFullWrite = 0x05 ;
|
|
smc->hw.DmaWriteExtraBytes = 8 ; /* 2 extra words. */
|
|
break ;
|
|
}
|
|
smc->hw.slot = slot ;
|
|
|
|
EnableSlotAccess(smc, slot) ;
|
|
|
|
if (!(read_POS(smc,POS_102, slot - 1) & POS_CARD_EN)) {
|
|
DisableSlotAccess(smc) ;
|
|
return (2) ; /* Card enable bit not set. */
|
|
}
|
|
|
|
val = read_POS(smc,POS_104, slot - 1) ; /* I/O, IRQ */
|
|
|
|
#ifndef MEM_MAPPED_IO /* is defined by the operating system */
|
|
i = val & POS_IOSEL ; /* I/O base addr. (0x0200 .. 0xfe00) */
|
|
smc->hw.iop = (i + 1) * 0x0400 - 0x200 ;
|
|
#endif
|
|
i = ((val & POS_IRQSEL) >> 6) & 0x03 ; /* IRQ <0, 1> */
|
|
smc->hw.irq = opt_ints[i] ;
|
|
|
|
/* FPROM base addr. */
|
|
i = ((read_POS(smc,POS_103, slot - 1) & POS_MSEL) >> 4) & 0x07 ;
|
|
smc->hw.eprom = opt_eproms[i] ;
|
|
|
|
DisableSlotAccess(smc) ;
|
|
|
|
/* before this, the smc->hw.iop must be set !!! */
|
|
smc->hw.slot_32 = inpw(CSF_A) & SLOT_32 ;
|
|
|
|
return (1) ;
|
|
}
|
|
|
|
/* Enable access to specified MCA slot. */
|
|
static void EnableSlotAccess(struct s_smc *smc, int slot)
|
|
{
|
|
SK_UNUSED(slot) ;
|
|
|
|
#ifndef AIX
|
|
SK_UNUSED(smc) ;
|
|
|
|
/* System mode. */
|
|
outp(POS_SYS_SETUP, POS_SYSTEM) ;
|
|
|
|
/* Select slot. */
|
|
outp(POS_CHANNEL_POS, POS_CHANNEL_BIT | (slot-1)) ;
|
|
#else
|
|
attach_POS_addr (smc) ;
|
|
#endif
|
|
}
|
|
|
|
/* Disable access to MCA slot formerly enabled via EnableSlotAccess(). */
|
|
static void DisableSlotAccess(struct s_smc *smc)
|
|
{
|
|
#ifndef AIX
|
|
SK_UNUSED(smc) ;
|
|
|
|
outp(POS_CHANNEL_POS, 0) ;
|
|
#else
|
|
detach_POS_addr (smc) ;
|
|
#endif
|
|
}
|
|
#endif /* MCA */
|
|
|
|
#ifdef EISA
|
|
#ifndef MEM_MAPPED_IO
|
|
#define SADDR(slot) (((slot)<<12)&0xf000)
|
|
#else /* MEM_MAPPED_IO */
|
|
#define SADDR(slot) (smc->hw.iop)
|
|
#endif /* MEM_MAPPED_IO */
|
|
|
|
/************************
|
|
*
|
|
* BEGIN_MANUAL_ENTRY()
|
|
*
|
|
* exist_board
|
|
*
|
|
* Check if an EISA board is present in the specified slot.
|
|
*
|
|
* int exist_board(
|
|
* struct s_smc *smc,
|
|
* int slot) ;
|
|
* In
|
|
* smc - A pointer to the SMT Context struct.
|
|
*
|
|
* slot - The number of the slot to inspect.
|
|
* Out
|
|
* 0 = No adapter present.
|
|
* 1 = Found adapter.
|
|
*
|
|
* Pseudo
|
|
* Read EISA ID
|
|
* for all valid OEM_IDs
|
|
* compare with ID read
|
|
* if equal, return 1
|
|
* return(0
|
|
*
|
|
* Note
|
|
* The smc pointer must be valid now.
|
|
*
|
|
************************/
|
|
int exist_board(struct s_smc *smc, int slot)
|
|
{
|
|
int i ;
|
|
#ifdef MULT_OEM
|
|
SK_LOC_DECL(u_char,id[4]) ;
|
|
#endif /* MULT_OEM */
|
|
|
|
/* No longer valid. */
|
|
if (smc == NULL)
|
|
return(0);
|
|
|
|
SK_UNUSED(slot) ;
|
|
|
|
#ifndef MULT_OEM
|
|
for (i = 0 ; i < 4 ; i++) {
|
|
if (inp(SADDR(slot)+PRA(i)) != OEMID(smc,i))
|
|
return(0) ;
|
|
}
|
|
return(1) ;
|
|
#else /* MULT_OEM */
|
|
for (i = 0 ; i < 4 ; i++)
|
|
id[i] = inp(SADDR(slot)+PRA(i)) ;
|
|
|
|
smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
|
|
|
|
for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
|
|
if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
|
|
continue ;
|
|
|
|
if (is_equal_num(&id[0],&OEMID(smc,0),4))
|
|
return (1) ;
|
|
}
|
|
return (0) ; /* No adapter found. */
|
|
#endif /* MULT_OEM */
|
|
}
|
|
|
|
|
|
int get_board_para(struct s_smc *smc, int slot)
|
|
{
|
|
int i ;
|
|
|
|
if (!exist_board(smc,slot))
|
|
return(0) ;
|
|
|
|
smc->hw.slot = slot ;
|
|
#ifndef MEM_MAPPED_IO /* if defined by the operating system */
|
|
smc->hw.iop = SADDR(slot) ;
|
|
#endif
|
|
|
|
if (!(inp(C0_A(0))&CFG_CARD_EN)) {
|
|
return(2) ; /* CFG_CARD_EN bit not set! */
|
|
}
|
|
|
|
smc->hw.irq = opt_ints[(inp(C1_A(0)) & CFG_IRQ_SEL)] ;
|
|
smc->hw.dma = opt_dmas[((inp(C1_A(0)) & CFG_DRQ_SEL)>>3)] ;
|
|
|
|
if ((i = inp(C2_A(0)) & CFG_EPROM_SEL) != 0x0f)
|
|
smc->hw.eprom = opt_eproms[i] ;
|
|
else
|
|
smc->hw.eprom = 0 ;
|
|
|
|
smc->hw.DmaWriteExtraBytes = 8 ;
|
|
|
|
return(1) ;
|
|
}
|
|
#endif /* EISA */
|
|
|
|
#ifdef ISA
|
|
#ifndef MULT_OEM
|
|
const u_char sklogo[6] = SKLOGO_STR ;
|
|
#define SIZE_SKLOGO(smc) sizeof(sklogo)
|
|
#define SKLOGO(smc,i) sklogo[i]
|
|
#else /* MULT_OEM */
|
|
#define SIZE_SKLOGO(smc) smc->hw.oem_id->oi_logo_len
|
|
#define SKLOGO(smc,i) smc->hw.oem_id->oi_logo[i]
|
|
#endif /* MULT_OEM */
|
|
|
|
|
|
int exist_board(struct s_smc *smc, HW_PTR port)
|
|
{
|
|
int i ;
|
|
#ifdef MULT_OEM
|
|
int bytes_read ;
|
|
u_char board_logo[15] ;
|
|
SK_LOC_DECL(u_char,id[4]) ;
|
|
#endif /* MULT_OEM */
|
|
|
|
/* No longer valid. */
|
|
if (smc == NULL)
|
|
return(0);
|
|
|
|
SK_UNUSED(smc) ;
|
|
#ifndef MULT_OEM
|
|
for (i = SADDRL ; i < (signed) (SADDRL+SIZE_SKLOGO(smc)) ; i++) {
|
|
if ((u_char)inpw((PRA(i)+port)) != SKLOGO(smc,i-SADDRL)) {
|
|
return(0) ;
|
|
}
|
|
}
|
|
|
|
/* check MAC address (S&K or other) */
|
|
for (i = 0 ; i < 3 ; i++) {
|
|
if ((u_char)inpw((PRA(i)+port)) != OEMID(smc,i))
|
|
return(0) ;
|
|
}
|
|
return(1) ;
|
|
#else /* MULT_OEM */
|
|
smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
|
|
board_logo[0] = (u_char)inpw((PRA(SADDRL)+port)) ;
|
|
bytes_read = 1 ;
|
|
|
|
for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
|
|
if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
|
|
continue ;
|
|
|
|
/* Test all read bytes with current OEM_entry */
|
|
/* for (i=0; (i<bytes_read) && (i < SIZE_SKLOGO(smc)); i++) { */
|
|
for (i = 0; i < bytes_read; i++) {
|
|
if (board_logo[i] != SKLOGO(smc,i))
|
|
break ;
|
|
}
|
|
|
|
/* If mismatch, switch to next OEM entry */
|
|
if ((board_logo[i] != SKLOGO(smc,i)) && (i < bytes_read))
|
|
continue ;
|
|
|
|
--i ;
|
|
while (bytes_read < SIZE_SKLOGO(smc)) {
|
|
// inpw next byte SK_Logo
|
|
i++ ;
|
|
board_logo[i] = (u_char)inpw((PRA(SADDRL+i)+port)) ;
|
|
bytes_read++ ;
|
|
if (board_logo[i] != SKLOGO(smc,i))
|
|
break ;
|
|
}
|
|
|
|
for (i = 0 ; i < 3 ; i++)
|
|
id[i] = (u_char)inpw((PRA(i)+port)) ;
|
|
|
|
if ((board_logo[i] == SKLOGO(smc,i))
|
|
&& (bytes_read == SIZE_SKLOGO(smc))) {
|
|
|
|
if (is_equal_num(&id[0],&OEMID(smc,0),3))
|
|
return(1);
|
|
}
|
|
} /* for */
|
|
return(0) ;
|
|
#endif /* MULT_OEM */
|
|
}
|
|
|
|
int get_board_para(struct s_smc *smc, int slot)
|
|
{
|
|
SK_UNUSED(smc) ;
|
|
SK_UNUSED(slot) ;
|
|
return(0) ; /* for ISA not supported */
|
|
}
|
|
#endif /* ISA */
|
|
|
|
#ifdef PCI
|
|
#ifdef USE_BIOS_FUN
|
|
int exist_board(struct s_smc *smc, int slot)
|
|
{
|
|
u_short dev_id ;
|
|
u_short ven_id ;
|
|
int found ;
|
|
int i ;
|
|
|
|
found = FALSE ; /* make sure we returned with adatper not found*/
|
|
/* if an empty oemids.h was included */
|
|
|
|
#ifdef MULT_OEM
|
|
smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ;
|
|
for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) {
|
|
if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status)
|
|
continue ;
|
|
#endif
|
|
ven_id = OEMID(smc,0) + (OEMID(smc,1) << 8) ;
|
|
dev_id = OEMID(smc,2) + (OEMID(smc,3) << 8) ;
|
|
for (i = 0; i < slot; i++) {
|
|
if (pci_find_device(i,&smc->hw.pci_handle,
|
|
dev_id,ven_id) != 0) {
|
|
|
|
found = FALSE ;
|
|
} else {
|
|
found = TRUE ;
|
|
}
|
|
}
|
|
if (found) {
|
|
return(1) ; /* adapter was found */
|
|
}
|
|
#ifdef MULT_OEM
|
|
}
|
|
#endif
|
|
return(0) ; /* adapter was not found */
|
|
}
|
|
#endif /* PCI */
|
|
#endif /* USE_BIOS_FUNC */
|
|
|
|
void driver_get_bia(struct s_smc *smc, struct fddi_addr *bia_addr)
|
|
{
|
|
int i ;
|
|
|
|
for (i = 0 ; i < 6 ; i++)
|
|
bia_addr->a[i] = bitrev8(smc->hw.fddi_phys_addr.a[i]);
|
|
}
|
|
|
|
void smt_start_watchdog(struct s_smc *smc)
|
|
{
|
|
SK_UNUSED(smc) ; /* Make LINT happy. */
|
|
|
|
#ifndef DEBUG
|
|
|
|
#ifdef PCI
|
|
if (smc->hw.wdog_used) {
|
|
outpw(ADDR(B2_WDOG_CRTL),TIM_START) ; /* Start timer. */
|
|
}
|
|
#endif
|
|
|
|
#endif /* DEBUG */
|
|
}
|
|
|
|
static void smt_stop_watchdog(struct s_smc *smc)
|
|
{
|
|
SK_UNUSED(smc) ; /* Make LINT happy. */
|
|
#ifndef DEBUG
|
|
|
|
#ifdef PCI
|
|
if (smc->hw.wdog_used) {
|
|
outpw(ADDR(B2_WDOG_CRTL),TIM_STOP) ; /* Stop timer. */
|
|
}
|
|
#endif
|
|
|
|
#endif /* DEBUG */
|
|
}
|
|
|
|
#ifdef PCI
|
|
|
|
void mac_do_pci_fix(struct s_smc *smc)
|
|
{
|
|
SK_UNUSED(smc) ;
|
|
}
|
|
#endif /* PCI */
|
|
|