linux/include/net/mac80211.h
Michal Kazior 5bcae31d9c mac80211: implement multi-vif in-place reservations
Multi-vif in-place reservations happen when
it is impossible to allocate more channel contexts
as indicated by interface combinations.

Such reservations are not finalized until all
assigned interfaces are ready.

This still doesn't handle all possible cases
(i.e. degradation of number of channels) properly.

Signed-off-by: Michal Kazior <michal.kazior@tieto.com>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2014-06-25 18:06:20 +02:00

4860 lines
189 KiB
C

/*
* mac80211 <-> driver interface
*
* Copyright 2002-2005, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
* Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef MAC80211_H
#define MAC80211_H
#include <linux/bug.h>
#include <linux/kernel.h>
#include <linux/if_ether.h>
#include <linux/skbuff.h>
#include <linux/ieee80211.h>
#include <net/cfg80211.h>
#include <asm/unaligned.h>
/**
* DOC: Introduction
*
* mac80211 is the Linux stack for 802.11 hardware that implements
* only partial functionality in hard- or firmware. This document
* defines the interface between mac80211 and low-level hardware
* drivers.
*/
/**
* DOC: Calling mac80211 from interrupts
*
* Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
* called in hardware interrupt context. The low-level driver must not call any
* other functions in hardware interrupt context. If there is a need for such
* call, the low-level driver should first ACK the interrupt and perform the
* IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
* tasklet function.
*
* NOTE: If the driver opts to use the _irqsafe() functions, it may not also
* use the non-IRQ-safe functions!
*/
/**
* DOC: Warning
*
* If you're reading this document and not the header file itself, it will
* be incomplete because not all documentation has been converted yet.
*/
/**
* DOC: Frame format
*
* As a general rule, when frames are passed between mac80211 and the driver,
* they start with the IEEE 802.11 header and include the same octets that are
* sent over the air except for the FCS which should be calculated by the
* hardware.
*
* There are, however, various exceptions to this rule for advanced features:
*
* The first exception is for hardware encryption and decryption offload
* where the IV/ICV may or may not be generated in hardware.
*
* Secondly, when the hardware handles fragmentation, the frame handed to
* the driver from mac80211 is the MSDU, not the MPDU.
*/
/**
* DOC: mac80211 workqueue
*
* mac80211 provides its own workqueue for drivers and internal mac80211 use.
* The workqueue is a single threaded workqueue and can only be accessed by
* helpers for sanity checking. Drivers must ensure all work added onto the
* mac80211 workqueue should be cancelled on the driver stop() callback.
*
* mac80211 will flushed the workqueue upon interface removal and during
* suspend.
*
* All work performed on the mac80211 workqueue must not acquire the RTNL lock.
*
*/
struct device;
/**
* enum ieee80211_max_queues - maximum number of queues
*
* @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
* @IEEE80211_MAX_QUEUE_MAP: bitmap with maximum queues set
*/
enum ieee80211_max_queues {
IEEE80211_MAX_QUEUES = 16,
IEEE80211_MAX_QUEUE_MAP = BIT(IEEE80211_MAX_QUEUES) - 1,
};
#define IEEE80211_INVAL_HW_QUEUE 0xff
/**
* enum ieee80211_ac_numbers - AC numbers as used in mac80211
* @IEEE80211_AC_VO: voice
* @IEEE80211_AC_VI: video
* @IEEE80211_AC_BE: best effort
* @IEEE80211_AC_BK: background
*/
enum ieee80211_ac_numbers {
IEEE80211_AC_VO = 0,
IEEE80211_AC_VI = 1,
IEEE80211_AC_BE = 2,
IEEE80211_AC_BK = 3,
};
#define IEEE80211_NUM_ACS 4
/**
* struct ieee80211_tx_queue_params - transmit queue configuration
*
* The information provided in this structure is required for QoS
* transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
*
* @aifs: arbitration interframe space [0..255]
* @cw_min: minimum contention window [a value of the form
* 2^n-1 in the range 1..32767]
* @cw_max: maximum contention window [like @cw_min]
* @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
* @acm: is mandatory admission control required for the access category
* @uapsd: is U-APSD mode enabled for the queue
*/
struct ieee80211_tx_queue_params {
u16 txop;
u16 cw_min;
u16 cw_max;
u8 aifs;
bool acm;
bool uapsd;
};
struct ieee80211_low_level_stats {
unsigned int dot11ACKFailureCount;
unsigned int dot11RTSFailureCount;
unsigned int dot11FCSErrorCount;
unsigned int dot11RTSSuccessCount;
};
/**
* enum ieee80211_chanctx_change - change flag for channel context
* @IEEE80211_CHANCTX_CHANGE_WIDTH: The channel width changed
* @IEEE80211_CHANCTX_CHANGE_RX_CHAINS: The number of RX chains changed
* @IEEE80211_CHANCTX_CHANGE_RADAR: radar detection flag changed
* @IEEE80211_CHANCTX_CHANGE_CHANNEL: switched to another operating channel,
* this is used only with channel switching with CSA
* @IEEE80211_CHANCTX_CHANGE_MIN_WIDTH: The min required channel width changed
*/
enum ieee80211_chanctx_change {
IEEE80211_CHANCTX_CHANGE_WIDTH = BIT(0),
IEEE80211_CHANCTX_CHANGE_RX_CHAINS = BIT(1),
IEEE80211_CHANCTX_CHANGE_RADAR = BIT(2),
IEEE80211_CHANCTX_CHANGE_CHANNEL = BIT(3),
IEEE80211_CHANCTX_CHANGE_MIN_WIDTH = BIT(4),
};
/**
* struct ieee80211_chanctx_conf - channel context that vifs may be tuned to
*
* This is the driver-visible part. The ieee80211_chanctx
* that contains it is visible in mac80211 only.
*
* @def: the channel definition
* @min_def: the minimum channel definition currently required.
* @rx_chains_static: The number of RX chains that must always be
* active on the channel to receive MIMO transmissions
* @rx_chains_dynamic: The number of RX chains that must be enabled
* after RTS/CTS handshake to receive SMPS MIMO transmissions;
* this will always be >= @rx_chains_static.
* @radar_enabled: whether radar detection is enabled on this channel.
* @drv_priv: data area for driver use, will always be aligned to
* sizeof(void *), size is determined in hw information.
*/
struct ieee80211_chanctx_conf {
struct cfg80211_chan_def def;
struct cfg80211_chan_def min_def;
u8 rx_chains_static, rx_chains_dynamic;
bool radar_enabled;
u8 drv_priv[0] __aligned(sizeof(void *));
};
/**
* enum ieee80211_chanctx_switch_mode - channel context switch mode
* @CHANCTX_SWMODE_REASSIGN_VIF: Both old and new contexts already
* exist (and will continue to exist), but the virtual interface
* needs to be switched from one to the other.
* @CHANCTX_SWMODE_SWAP_CONTEXTS: The old context exists but will stop
* to exist with this call, the new context doesn't exist but
* will be active after this call, the virtual interface switches
* from the old to the new (note that the driver may of course
* implement this as an on-the-fly chandef switch of the existing
* hardware context, but the mac80211 pointer for the old context
* will cease to exist and only the new one will later be used
* for changes/removal.)
*/
enum ieee80211_chanctx_switch_mode {
CHANCTX_SWMODE_REASSIGN_VIF,
CHANCTX_SWMODE_SWAP_CONTEXTS,
};
/**
* struct ieee80211_vif_chanctx_switch - vif chanctx switch information
*
* This is structure is used to pass information about a vif that
* needs to switch from one chanctx to another. The
* &ieee80211_chanctx_switch_mode defines how the switch should be
* done.
*
* @vif: the vif that should be switched from old_ctx to new_ctx
* @old_ctx: the old context to which the vif was assigned
* @new_ctx: the new context to which the vif must be assigned
*/
struct ieee80211_vif_chanctx_switch {
struct ieee80211_vif *vif;
struct ieee80211_chanctx_conf *old_ctx;
struct ieee80211_chanctx_conf *new_ctx;
};
/**
* enum ieee80211_bss_change - BSS change notification flags
*
* These flags are used with the bss_info_changed() callback
* to indicate which BSS parameter changed.
*
* @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
* also implies a change in the AID.
* @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
* @BSS_CHANGED_ERP_PREAMBLE: preamble changed
* @BSS_CHANGED_ERP_SLOT: slot timing changed
* @BSS_CHANGED_HT: 802.11n parameters changed
* @BSS_CHANGED_BASIC_RATES: Basic rateset changed
* @BSS_CHANGED_BEACON_INT: Beacon interval changed
* @BSS_CHANGED_BSSID: BSSID changed, for whatever
* reason (IBSS and managed mode)
* @BSS_CHANGED_BEACON: Beacon data changed, retrieve
* new beacon (beaconing modes)
* @BSS_CHANGED_BEACON_ENABLED: Beaconing should be
* enabled/disabled (beaconing modes)
* @BSS_CHANGED_CQM: Connection quality monitor config changed
* @BSS_CHANGED_IBSS: IBSS join status changed
* @BSS_CHANGED_ARP_FILTER: Hardware ARP filter address list or state changed.
* @BSS_CHANGED_QOS: QoS for this association was enabled/disabled. Note
* that it is only ever disabled for station mode.
* @BSS_CHANGED_IDLE: Idle changed for this BSS/interface.
* @BSS_CHANGED_SSID: SSID changed for this BSS (AP and IBSS mode)
* @BSS_CHANGED_AP_PROBE_RESP: Probe Response changed for this BSS (AP mode)
* @BSS_CHANGED_PS: PS changed for this BSS (STA mode)
* @BSS_CHANGED_TXPOWER: TX power setting changed for this interface
* @BSS_CHANGED_P2P_PS: P2P powersave settings (CTWindow, opportunistic PS)
* changed (currently only in P2P client mode, GO mode will be later)
* @BSS_CHANGED_BEACON_INFO: Data from the AP's beacon became available:
* currently dtim_period only is under consideration.
* @BSS_CHANGED_BANDWIDTH: The bandwidth used by this interface changed,
* note that this is only called when it changes after the channel
* context had been assigned.
*/
enum ieee80211_bss_change {
BSS_CHANGED_ASSOC = 1<<0,
BSS_CHANGED_ERP_CTS_PROT = 1<<1,
BSS_CHANGED_ERP_PREAMBLE = 1<<2,
BSS_CHANGED_ERP_SLOT = 1<<3,
BSS_CHANGED_HT = 1<<4,
BSS_CHANGED_BASIC_RATES = 1<<5,
BSS_CHANGED_BEACON_INT = 1<<6,
BSS_CHANGED_BSSID = 1<<7,
BSS_CHANGED_BEACON = 1<<8,
BSS_CHANGED_BEACON_ENABLED = 1<<9,
BSS_CHANGED_CQM = 1<<10,
BSS_CHANGED_IBSS = 1<<11,
BSS_CHANGED_ARP_FILTER = 1<<12,
BSS_CHANGED_QOS = 1<<13,
BSS_CHANGED_IDLE = 1<<14,
BSS_CHANGED_SSID = 1<<15,
BSS_CHANGED_AP_PROBE_RESP = 1<<16,
BSS_CHANGED_PS = 1<<17,
BSS_CHANGED_TXPOWER = 1<<18,
BSS_CHANGED_P2P_PS = 1<<19,
BSS_CHANGED_BEACON_INFO = 1<<20,
BSS_CHANGED_BANDWIDTH = 1<<21,
/* when adding here, make sure to change ieee80211_reconfig */
};
/*
* The maximum number of IPv4 addresses listed for ARP filtering. If the number
* of addresses for an interface increase beyond this value, hardware ARP
* filtering will be disabled.
*/
#define IEEE80211_BSS_ARP_ADDR_LIST_LEN 4
/**
* enum ieee80211_rssi_event - RSSI threshold event
* An indicator for when RSSI goes below/above a certain threshold.
* @RSSI_EVENT_HIGH: AP's rssi crossed the high threshold set by the driver.
* @RSSI_EVENT_LOW: AP's rssi crossed the low threshold set by the driver.
*/
enum ieee80211_rssi_event {
RSSI_EVENT_HIGH,
RSSI_EVENT_LOW,
};
/**
* struct ieee80211_bss_conf - holds the BSS's changing parameters
*
* This structure keeps information about a BSS (and an association
* to that BSS) that can change during the lifetime of the BSS.
*
* @assoc: association status
* @ibss_joined: indicates whether this station is part of an IBSS
* or not
* @ibss_creator: indicates if a new IBSS network is being created
* @aid: association ID number, valid only when @assoc is true
* @use_cts_prot: use CTS protection
* @use_short_preamble: use 802.11b short preamble;
* if the hardware cannot handle this it must set the
* IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
* @use_short_slot: use short slot time (only relevant for ERP);
* if the hardware cannot handle this it must set the
* IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
* @dtim_period: num of beacons before the next DTIM, for beaconing,
* valid in station mode only if after the driver was notified
* with the %BSS_CHANGED_BEACON_INFO flag, will be non-zero then.
* @sync_tsf: last beacon's/probe response's TSF timestamp (could be old
* as it may have been received during scanning long ago). If the
* HW flag %IEEE80211_HW_TIMING_BEACON_ONLY is set, then this can
* only come from a beacon, but might not become valid until after
* association when a beacon is received (which is notified with the
* %BSS_CHANGED_DTIM flag.)
* @sync_device_ts: the device timestamp corresponding to the sync_tsf,
* the driver/device can use this to calculate synchronisation
* (see @sync_tsf)
* @sync_dtim_count: Only valid when %IEEE80211_HW_TIMING_BEACON_ONLY
* is requested, see @sync_tsf/@sync_device_ts.
* @beacon_int: beacon interval
* @assoc_capability: capabilities taken from assoc resp
* @basic_rates: bitmap of basic rates, each bit stands for an
* index into the rate table configured by the driver in
* the current band.
* @beacon_rate: associated AP's beacon TX rate
* @mcast_rate: per-band multicast rate index + 1 (0: disabled)
* @bssid: The BSSID for this BSS
* @enable_beacon: whether beaconing should be enabled or not
* @chandef: Channel definition for this BSS -- the hardware might be
* configured a higher bandwidth than this BSS uses, for example.
* @ht_operation_mode: HT operation mode like in &struct ieee80211_ht_operation.
* This field is only valid when the channel type is one of the HT types.
* @cqm_rssi_thold: Connection quality monitor RSSI threshold, a zero value
* implies disabled
* @cqm_rssi_hyst: Connection quality monitor RSSI hysteresis
* @arp_addr_list: List of IPv4 addresses for hardware ARP filtering. The
* may filter ARP queries targeted for other addresses than listed here.
* The driver must allow ARP queries targeted for all address listed here
* to pass through. An empty list implies no ARP queries need to pass.
* @arp_addr_cnt: Number of addresses currently on the list. Note that this
* may be larger than %IEEE80211_BSS_ARP_ADDR_LIST_LEN (the arp_addr_list
* array size), it's up to the driver what to do in that case.
* @qos: This is a QoS-enabled BSS.
* @idle: This interface is idle. There's also a global idle flag in the
* hardware config which may be more appropriate depending on what
* your driver/device needs to do.
* @ps: power-save mode (STA only). This flag is NOT affected by
* offchannel/dynamic_ps operations.
* @ssid: The SSID of the current vif. Valid in AP and IBSS mode.
* @ssid_len: Length of SSID given in @ssid.
* @hidden_ssid: The SSID of the current vif is hidden. Only valid in AP-mode.
* @txpower: TX power in dBm
* @p2p_noa_attr: P2P NoA attribute for P2P powersave
*/
struct ieee80211_bss_conf {
const u8 *bssid;
/* association related data */
bool assoc, ibss_joined;
bool ibss_creator;
u16 aid;
/* erp related data */
bool use_cts_prot;
bool use_short_preamble;
bool use_short_slot;
bool enable_beacon;
u8 dtim_period;
u16 beacon_int;
u16 assoc_capability;
u64 sync_tsf;
u32 sync_device_ts;
u8 sync_dtim_count;
u32 basic_rates;
struct ieee80211_rate *beacon_rate;
int mcast_rate[IEEE80211_NUM_BANDS];
u16 ht_operation_mode;
s32 cqm_rssi_thold;
u32 cqm_rssi_hyst;
struct cfg80211_chan_def chandef;
__be32 arp_addr_list[IEEE80211_BSS_ARP_ADDR_LIST_LEN];
int arp_addr_cnt;
bool qos;
bool idle;
bool ps;
u8 ssid[IEEE80211_MAX_SSID_LEN];
size_t ssid_len;
bool hidden_ssid;
int txpower;
struct ieee80211_p2p_noa_attr p2p_noa_attr;
};
/**
* enum mac80211_tx_info_flags - flags to describe transmission information/status
*
* These flags are used with the @flags member of &ieee80211_tx_info.
*
* @IEEE80211_TX_CTL_REQ_TX_STATUS: require TX status callback for this frame.
* @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
* number to this frame, taking care of not overwriting the fragment
* number and increasing the sequence number only when the
* IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
* assign sequence numbers to QoS-data frames but cannot do so correctly
* for non-QoS-data and management frames because beacons need them from
* that counter as well and mac80211 cannot guarantee proper sequencing.
* If this flag is set, the driver should instruct the hardware to
* assign a sequence number to the frame or assign one itself. Cf. IEEE
* 802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
* beacons and always be clear for frames without a sequence number field.
* @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
* @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
* station
* @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
* @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
* @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
* @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
* @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
* because the destination STA was in powersave mode. Note that to
* avoid race conditions, the filter must be set by the hardware or
* firmware upon receiving a frame that indicates that the station
* went to sleep (must be done on device to filter frames already on
* the queue) and may only be unset after mac80211 gives the OK for
* that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above),
* since only then is it guaranteed that no more frames are in the
* hardware queue.
* @IEEE80211_TX_STAT_ACK: Frame was acknowledged
* @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
* is for the whole aggregation.
* @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
* so consider using block ack request (BAR).
* @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
* set by rate control algorithms to indicate probe rate, will
* be cleared for fragmented frames (except on the last fragment)
* @IEEE80211_TX_INTFL_OFFCHAN_TX_OK: Internal to mac80211. Used to indicate
* that a frame can be transmitted while the queues are stopped for
* off-channel operation.
* @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
* used to indicate that a pending frame requires TX processing before
* it can be sent out.
* @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211,
* used to indicate that a frame was already retried due to PS
* @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211,
* used to indicate frame should not be encrypted
* @IEEE80211_TX_CTL_NO_PS_BUFFER: This frame is a response to a poll
* frame (PS-Poll or uAPSD) or a non-bufferable MMPDU and must
* be sent although the station is in powersave mode.
* @IEEE80211_TX_CTL_MORE_FRAMES: More frames will be passed to the
* transmit function after the current frame, this can be used
* by drivers to kick the DMA queue only if unset or when the
* queue gets full.
* @IEEE80211_TX_INTFL_RETRANSMISSION: This frame is being retransmitted
* after TX status because the destination was asleep, it must not
* be modified again (no seqno assignment, crypto, etc.)
* @IEEE80211_TX_INTFL_MLME_CONN_TX: This frame was transmitted by the MLME
* code for connection establishment, this indicates that its status
* should kick the MLME state machine.
* @IEEE80211_TX_INTFL_NL80211_FRAME_TX: Frame was requested through nl80211
* MLME command (internal to mac80211 to figure out whether to send TX
* status to user space)
* @IEEE80211_TX_CTL_LDPC: tells the driver to use LDPC for this frame
* @IEEE80211_TX_CTL_STBC: Enables Space-Time Block Coding (STBC) for this
* frame and selects the maximum number of streams that it can use.
* @IEEE80211_TX_CTL_TX_OFFCHAN: Marks this packet to be transmitted on
* the off-channel channel when a remain-on-channel offload is done
* in hardware -- normal packets still flow and are expected to be
* handled properly by the device.
* @IEEE80211_TX_INTFL_TKIP_MIC_FAILURE: Marks this packet to be used for TKIP
* testing. It will be sent out with incorrect Michael MIC key to allow
* TKIP countermeasures to be tested.
* @IEEE80211_TX_CTL_NO_CCK_RATE: This frame will be sent at non CCK rate.
* This flag is actually used for management frame especially for P2P
* frames not being sent at CCK rate in 2GHz band.
* @IEEE80211_TX_STATUS_EOSP: This packet marks the end of service period,
* when its status is reported the service period ends. For frames in
* an SP that mac80211 transmits, it is already set; for driver frames
* the driver may set this flag. It is also used to do the same for
* PS-Poll responses.
* @IEEE80211_TX_CTL_USE_MINRATE: This frame will be sent at lowest rate.
* This flag is used to send nullfunc frame at minimum rate when
* the nullfunc is used for connection monitoring purpose.
* @IEEE80211_TX_CTL_DONTFRAG: Don't fragment this packet even if it
* would be fragmented by size (this is optional, only used for
* monitor injection).
* @IEEE80211_TX_CTL_PS_RESPONSE: This frame is a response to a poll
* frame (PS-Poll or uAPSD).
*
* Note: If you have to add new flags to the enumeration, then don't
* forget to update %IEEE80211_TX_TEMPORARY_FLAGS when necessary.
*/
enum mac80211_tx_info_flags {
IEEE80211_TX_CTL_REQ_TX_STATUS = BIT(0),
IEEE80211_TX_CTL_ASSIGN_SEQ = BIT(1),
IEEE80211_TX_CTL_NO_ACK = BIT(2),
IEEE80211_TX_CTL_CLEAR_PS_FILT = BIT(3),
IEEE80211_TX_CTL_FIRST_FRAGMENT = BIT(4),
IEEE80211_TX_CTL_SEND_AFTER_DTIM = BIT(5),
IEEE80211_TX_CTL_AMPDU = BIT(6),
IEEE80211_TX_CTL_INJECTED = BIT(7),
IEEE80211_TX_STAT_TX_FILTERED = BIT(8),
IEEE80211_TX_STAT_ACK = BIT(9),
IEEE80211_TX_STAT_AMPDU = BIT(10),
IEEE80211_TX_STAT_AMPDU_NO_BACK = BIT(11),
IEEE80211_TX_CTL_RATE_CTRL_PROBE = BIT(12),
IEEE80211_TX_INTFL_OFFCHAN_TX_OK = BIT(13),
IEEE80211_TX_INTFL_NEED_TXPROCESSING = BIT(14),
IEEE80211_TX_INTFL_RETRIED = BIT(15),
IEEE80211_TX_INTFL_DONT_ENCRYPT = BIT(16),
IEEE80211_TX_CTL_NO_PS_BUFFER = BIT(17),
IEEE80211_TX_CTL_MORE_FRAMES = BIT(18),
IEEE80211_TX_INTFL_RETRANSMISSION = BIT(19),
IEEE80211_TX_INTFL_MLME_CONN_TX = BIT(20),
IEEE80211_TX_INTFL_NL80211_FRAME_TX = BIT(21),
IEEE80211_TX_CTL_LDPC = BIT(22),
IEEE80211_TX_CTL_STBC = BIT(23) | BIT(24),
IEEE80211_TX_CTL_TX_OFFCHAN = BIT(25),
IEEE80211_TX_INTFL_TKIP_MIC_FAILURE = BIT(26),
IEEE80211_TX_CTL_NO_CCK_RATE = BIT(27),
IEEE80211_TX_STATUS_EOSP = BIT(28),
IEEE80211_TX_CTL_USE_MINRATE = BIT(29),
IEEE80211_TX_CTL_DONTFRAG = BIT(30),
IEEE80211_TX_CTL_PS_RESPONSE = BIT(31),
};
#define IEEE80211_TX_CTL_STBC_SHIFT 23
/**
* enum mac80211_tx_control_flags - flags to describe transmit control
*
* @IEEE80211_TX_CTRL_PORT_CTRL_PROTO: this frame is a port control
* protocol frame (e.g. EAP)
*
* These flags are used in tx_info->control.flags.
*/
enum mac80211_tx_control_flags {
IEEE80211_TX_CTRL_PORT_CTRL_PROTO = BIT(0),
};
/*
* This definition is used as a mask to clear all temporary flags, which are
* set by the tx handlers for each transmission attempt by the mac80211 stack.
*/
#define IEEE80211_TX_TEMPORARY_FLAGS (IEEE80211_TX_CTL_NO_ACK | \
IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_FIRST_FRAGMENT | \
IEEE80211_TX_CTL_SEND_AFTER_DTIM | IEEE80211_TX_CTL_AMPDU | \
IEEE80211_TX_STAT_TX_FILTERED | IEEE80211_TX_STAT_ACK | \
IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_STAT_AMPDU_NO_BACK | \
IEEE80211_TX_CTL_RATE_CTRL_PROBE | IEEE80211_TX_CTL_NO_PS_BUFFER | \
IEEE80211_TX_CTL_MORE_FRAMES | IEEE80211_TX_CTL_LDPC | \
IEEE80211_TX_CTL_STBC | IEEE80211_TX_STATUS_EOSP)
/**
* enum mac80211_rate_control_flags - per-rate flags set by the
* Rate Control algorithm.
*
* These flags are set by the Rate control algorithm for each rate during tx,
* in the @flags member of struct ieee80211_tx_rate.
*
* @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
* @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
* This is set if the current BSS requires ERP protection.
* @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
* @IEEE80211_TX_RC_MCS: HT rate.
* @IEEE80211_TX_RC_VHT_MCS: VHT MCS rate, in this case the idx field is split
* into a higher 4 bits (Nss) and lower 4 bits (MCS number)
* @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
* Greenfield mode.
* @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
* @IEEE80211_TX_RC_80_MHZ_WIDTH: Indicates 80 MHz transmission
* @IEEE80211_TX_RC_160_MHZ_WIDTH: Indicates 160 MHz transmission
* (80+80 isn't supported yet)
* @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
* adjacent 20 MHz channels, if the current channel type is
* NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
* @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
*/
enum mac80211_rate_control_flags {
IEEE80211_TX_RC_USE_RTS_CTS = BIT(0),
IEEE80211_TX_RC_USE_CTS_PROTECT = BIT(1),
IEEE80211_TX_RC_USE_SHORT_PREAMBLE = BIT(2),
/* rate index is an HT/VHT MCS instead of an index */
IEEE80211_TX_RC_MCS = BIT(3),
IEEE80211_TX_RC_GREEN_FIELD = BIT(4),
IEEE80211_TX_RC_40_MHZ_WIDTH = BIT(5),
IEEE80211_TX_RC_DUP_DATA = BIT(6),
IEEE80211_TX_RC_SHORT_GI = BIT(7),
IEEE80211_TX_RC_VHT_MCS = BIT(8),
IEEE80211_TX_RC_80_MHZ_WIDTH = BIT(9),
IEEE80211_TX_RC_160_MHZ_WIDTH = BIT(10),
};
/* there are 40 bytes if you don't need the rateset to be kept */
#define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
/* if you do need the rateset, then you have less space */
#define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
/* maximum number of rate stages */
#define IEEE80211_TX_MAX_RATES 4
/* maximum number of rate table entries */
#define IEEE80211_TX_RATE_TABLE_SIZE 4
/**
* struct ieee80211_tx_rate - rate selection/status
*
* @idx: rate index to attempt to send with
* @flags: rate control flags (&enum mac80211_rate_control_flags)
* @count: number of tries in this rate before going to the next rate
*
* A value of -1 for @idx indicates an invalid rate and, if used
* in an array of retry rates, that no more rates should be tried.
*
* When used for transmit status reporting, the driver should
* always report the rate along with the flags it used.
*
* &struct ieee80211_tx_info contains an array of these structs
* in the control information, and it will be filled by the rate
* control algorithm according to what should be sent. For example,
* if this array contains, in the format { <idx>, <count> } the
* information
* { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 }
* then this means that the frame should be transmitted
* up to twice at rate 3, up to twice at rate 2, and up to four
* times at rate 1 if it doesn't get acknowledged. Say it gets
* acknowledged by the peer after the fifth attempt, the status
* information should then contain
* { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ...
* since it was transmitted twice at rate 3, twice at rate 2
* and once at rate 1 after which we received an acknowledgement.
*/
struct ieee80211_tx_rate {
s8 idx;
u16 count:5,
flags:11;
} __packed;
#define IEEE80211_MAX_TX_RETRY 31
static inline void ieee80211_rate_set_vht(struct ieee80211_tx_rate *rate,
u8 mcs, u8 nss)
{
WARN_ON(mcs & ~0xF);
WARN_ON((nss - 1) & ~0x7);
rate->idx = ((nss - 1) << 4) | mcs;
}
static inline u8
ieee80211_rate_get_vht_mcs(const struct ieee80211_tx_rate *rate)
{
return rate->idx & 0xF;
}
static inline u8
ieee80211_rate_get_vht_nss(const struct ieee80211_tx_rate *rate)
{
return (rate->idx >> 4) + 1;
}
/**
* struct ieee80211_tx_info - skb transmit information
*
* This structure is placed in skb->cb for three uses:
* (1) mac80211 TX control - mac80211 tells the driver what to do
* (2) driver internal use (if applicable)
* (3) TX status information - driver tells mac80211 what happened
*
* @flags: transmit info flags, defined above
* @band: the band to transmit on (use for checking for races)
* @hw_queue: HW queue to put the frame on, skb_get_queue_mapping() gives the AC
* @ack_frame_id: internal frame ID for TX status, used internally
* @control: union for control data
* @status: union for status data
* @driver_data: array of driver_data pointers
* @ampdu_ack_len: number of acked aggregated frames.
* relevant only if IEEE80211_TX_STAT_AMPDU was set.
* @ampdu_len: number of aggregated frames.
* relevant only if IEEE80211_TX_STAT_AMPDU was set.
* @ack_signal: signal strength of the ACK frame
*/
struct ieee80211_tx_info {
/* common information */
u32 flags;
u8 band;
u8 hw_queue;
u16 ack_frame_id;
union {
struct {
union {
/* rate control */
struct {
struct ieee80211_tx_rate rates[
IEEE80211_TX_MAX_RATES];
s8 rts_cts_rate_idx;
u8 use_rts:1;
u8 use_cts_prot:1;
u8 short_preamble:1;
u8 skip_table:1;
/* 2 bytes free */
};
/* only needed before rate control */
unsigned long jiffies;
};
/* NB: vif can be NULL for injected frames */
struct ieee80211_vif *vif;
struct ieee80211_key_conf *hw_key;
u32 flags;
/* 4 bytes free */
} control;
struct {
struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
s32 ack_signal;
u8 ampdu_ack_len;
u8 ampdu_len;
u8 antenna;
void *status_driver_data[21 / sizeof(void *)];
} status;
struct {
struct ieee80211_tx_rate driver_rates[
IEEE80211_TX_MAX_RATES];
u8 pad[4];
void *rate_driver_data[
IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
};
void *driver_data[
IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
};
};
/**
* struct ieee80211_scan_ies - descriptors for different blocks of IEs
*
* This structure is used to point to different blocks of IEs in HW scan
* and scheduled scan. These blocks contain the IEs passed by userspace
* and the ones generated by mac80211.
*
* @ies: pointers to band specific IEs.
* @len: lengths of band_specific IEs.
* @common_ies: IEs for all bands (especially vendor specific ones)
* @common_ie_len: length of the common_ies
*/
struct ieee80211_scan_ies {
const u8 *ies[IEEE80211_NUM_BANDS];
size_t len[IEEE80211_NUM_BANDS];
const u8 *common_ies;
size_t common_ie_len;
};
static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
{
return (struct ieee80211_tx_info *)skb->cb;
}
static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb)
{
return (struct ieee80211_rx_status *)skb->cb;
}
/**
* ieee80211_tx_info_clear_status - clear TX status
*
* @info: The &struct ieee80211_tx_info to be cleared.
*
* When the driver passes an skb back to mac80211, it must report
* a number of things in TX status. This function clears everything
* in the TX status but the rate control information (it does clear
* the count since you need to fill that in anyway).
*
* NOTE: You can only use this function if you do NOT use
* info->driver_data! Use info->rate_driver_data
* instead if you need only the less space that allows.
*/
static inline void
ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
{
int i;
BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
offsetof(struct ieee80211_tx_info, control.rates));
BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
offsetof(struct ieee80211_tx_info, driver_rates));
BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
/* clear the rate counts */
for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
info->status.rates[i].count = 0;
BUILD_BUG_ON(
offsetof(struct ieee80211_tx_info, status.ack_signal) != 20);
memset(&info->status.ampdu_ack_len, 0,
sizeof(struct ieee80211_tx_info) -
offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
}
/**
* enum mac80211_rx_flags - receive flags
*
* These flags are used with the @flag member of &struct ieee80211_rx_status.
* @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
* Use together with %RX_FLAG_MMIC_STRIPPED.
* @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
* @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
* verification has been done by the hardware.
* @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
* If this flag is set, the stack cannot do any replay detection
* hence the driver or hardware will have to do that.
* @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
* the frame.
* @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
* the frame.
* @RX_FLAG_MACTIME_START: The timestamp passed in the RX status (@mactime
* field) is valid and contains the time the first symbol of the MPDU
* was received. This is useful in monitor mode and for proper IBSS
* merging.
* @RX_FLAG_MACTIME_END: The timestamp passed in the RX status (@mactime
* field) is valid and contains the time the last symbol of the MPDU
* (including FCS) was received.
* @RX_FLAG_SHORTPRE: Short preamble was used for this frame
* @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
* @RX_FLAG_VHT: VHT MCS was used and rate_index is MCS index
* @RX_FLAG_40MHZ: HT40 (40 MHz) was used
* @RX_FLAG_SHORT_GI: Short guard interval was used
* @RX_FLAG_NO_SIGNAL_VAL: The signal strength value is not present.
* Valid only for data frames (mainly A-MPDU)
* @RX_FLAG_HT_GF: This frame was received in a HT-greenfield transmission, if
* the driver fills this value it should add %IEEE80211_RADIOTAP_MCS_HAVE_FMT
* to hw.radiotap_mcs_details to advertise that fact
* @RX_FLAG_AMPDU_DETAILS: A-MPDU details are known, in particular the reference
* number (@ampdu_reference) must be populated and be a distinct number for
* each A-MPDU
* @RX_FLAG_AMPDU_REPORT_ZEROLEN: driver reports 0-length subframes
* @RX_FLAG_AMPDU_IS_ZEROLEN: This is a zero-length subframe, for
* monitoring purposes only
* @RX_FLAG_AMPDU_LAST_KNOWN: last subframe is known, should be set on all
* subframes of a single A-MPDU
* @RX_FLAG_AMPDU_IS_LAST: this subframe is the last subframe of the A-MPDU
* @RX_FLAG_AMPDU_DELIM_CRC_ERROR: A delimiter CRC error has been detected
* on this subframe
* @RX_FLAG_AMPDU_DELIM_CRC_KNOWN: The delimiter CRC field is known (the CRC
* is stored in the @ampdu_delimiter_crc field)
* @RX_FLAG_LDPC: LDPC was used
* @RX_FLAG_STBC_MASK: STBC 2 bit bitmask. 1 - Nss=1, 2 - Nss=2, 3 - Nss=3
* @RX_FLAG_10MHZ: 10 MHz (half channel) was used
* @RX_FLAG_5MHZ: 5 MHz (quarter channel) was used
* @RX_FLAG_AMSDU_MORE: Some drivers may prefer to report separate A-MSDU
* subframes instead of a one huge frame for performance reasons.
* All, but the last MSDU from an A-MSDU should have this flag set. E.g.
* if an A-MSDU has 3 frames, the first 2 must have the flag set, while
* the 3rd (last) one must not have this flag set. The flag is used to
* deal with retransmission/duplication recovery properly since A-MSDU
* subframes share the same sequence number. Reported subframes can be
* either regular MSDU or singly A-MSDUs. Subframes must not be
* interleaved with other frames.
*/
enum mac80211_rx_flags {
RX_FLAG_MMIC_ERROR = BIT(0),
RX_FLAG_DECRYPTED = BIT(1),
RX_FLAG_MMIC_STRIPPED = BIT(3),
RX_FLAG_IV_STRIPPED = BIT(4),
RX_FLAG_FAILED_FCS_CRC = BIT(5),
RX_FLAG_FAILED_PLCP_CRC = BIT(6),
RX_FLAG_MACTIME_START = BIT(7),
RX_FLAG_SHORTPRE = BIT(8),
RX_FLAG_HT = BIT(9),
RX_FLAG_40MHZ = BIT(10),
RX_FLAG_SHORT_GI = BIT(11),
RX_FLAG_NO_SIGNAL_VAL = BIT(12),
RX_FLAG_HT_GF = BIT(13),
RX_FLAG_AMPDU_DETAILS = BIT(14),
RX_FLAG_AMPDU_REPORT_ZEROLEN = BIT(15),
RX_FLAG_AMPDU_IS_ZEROLEN = BIT(16),
RX_FLAG_AMPDU_LAST_KNOWN = BIT(17),
RX_FLAG_AMPDU_IS_LAST = BIT(18),
RX_FLAG_AMPDU_DELIM_CRC_ERROR = BIT(19),
RX_FLAG_AMPDU_DELIM_CRC_KNOWN = BIT(20),
RX_FLAG_MACTIME_END = BIT(21),
RX_FLAG_VHT = BIT(22),
RX_FLAG_LDPC = BIT(23),
RX_FLAG_STBC_MASK = BIT(26) | BIT(27),
RX_FLAG_10MHZ = BIT(28),
RX_FLAG_5MHZ = BIT(29),
RX_FLAG_AMSDU_MORE = BIT(30),
};
#define RX_FLAG_STBC_SHIFT 26
/**
* enum mac80211_rx_vht_flags - receive VHT flags
*
* These flags are used with the @vht_flag member of
* &struct ieee80211_rx_status.
* @RX_VHT_FLAG_80MHZ: 80 MHz was used
* @RX_VHT_FLAG_80P80MHZ: 80+80 MHz was used
* @RX_VHT_FLAG_160MHZ: 160 MHz was used
* @RX_VHT_FLAG_BF: packet was beamformed
*/
enum mac80211_rx_vht_flags {
RX_VHT_FLAG_80MHZ = BIT(0),
RX_VHT_FLAG_80P80MHZ = BIT(1),
RX_VHT_FLAG_160MHZ = BIT(2),
RX_VHT_FLAG_BF = BIT(3),
};
/**
* struct ieee80211_rx_status - receive status
*
* The low-level driver should provide this information (the subset
* supported by hardware) to the 802.11 code with each received
* frame, in the skb's control buffer (cb).
*
* @mactime: value in microseconds of the 64-bit Time Synchronization Function
* (TSF) timer when the first data symbol (MPDU) arrived at the hardware.
* @device_timestamp: arbitrary timestamp for the device, mac80211 doesn't use
* it but can store it and pass it back to the driver for synchronisation
* @band: the active band when this frame was received
* @freq: frequency the radio was tuned to when receiving this frame, in MHz
* @signal: signal strength when receiving this frame, either in dBm, in dB or
* unspecified depending on the hardware capabilities flags
* @IEEE80211_HW_SIGNAL_*
* @chains: bitmask of receive chains for which separate signal strength
* values were filled.
* @chain_signal: per-chain signal strength, in dBm (unlike @signal, doesn't
* support dB or unspecified units)
* @antenna: antenna used
* @rate_idx: index of data rate into band's supported rates or MCS index if
* HT or VHT is used (%RX_FLAG_HT/%RX_FLAG_VHT)
* @vht_nss: number of streams (VHT only)
* @flag: %RX_FLAG_*
* @vht_flag: %RX_VHT_FLAG_*
* @rx_flags: internal RX flags for mac80211
* @ampdu_reference: A-MPDU reference number, must be a different value for
* each A-MPDU but the same for each subframe within one A-MPDU
* @ampdu_delimiter_crc: A-MPDU delimiter CRC
*/
struct ieee80211_rx_status {
u64 mactime;
u32 device_timestamp;
u32 ampdu_reference;
u32 flag;
u16 freq;
u8 vht_flag;
u8 rate_idx;
u8 vht_nss;
u8 rx_flags;
u8 band;
u8 antenna;
s8 signal;
u8 chains;
s8 chain_signal[IEEE80211_MAX_CHAINS];
u8 ampdu_delimiter_crc;
};
/**
* enum ieee80211_conf_flags - configuration flags
*
* Flags to define PHY configuration options
*
* @IEEE80211_CONF_MONITOR: there's a monitor interface present -- use this
* to determine for example whether to calculate timestamps for packets
* or not, do not use instead of filter flags!
* @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only).
* This is the power save mode defined by IEEE 802.11-2007 section 11.2,
* meaning that the hardware still wakes up for beacons, is able to
* transmit frames and receive the possible acknowledgment frames.
* Not to be confused with hardware specific wakeup/sleep states,
* driver is responsible for that. See the section "Powersave support"
* for more.
* @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set
* the driver should be prepared to handle configuration requests but
* may turn the device off as much as possible. Typically, this flag will
* be set when an interface is set UP but not associated or scanning, but
* it can also be unset in that case when monitor interfaces are active.
* @IEEE80211_CONF_OFFCHANNEL: The device is currently not on its main
* operating channel.
*/
enum ieee80211_conf_flags {
IEEE80211_CONF_MONITOR = (1<<0),
IEEE80211_CONF_PS = (1<<1),
IEEE80211_CONF_IDLE = (1<<2),
IEEE80211_CONF_OFFCHANNEL = (1<<3),
};
/**
* enum ieee80211_conf_changed - denotes which configuration changed
*
* @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
* @IEEE80211_CONF_CHANGE_MONITOR: the monitor flag changed
* @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
* @IEEE80211_CONF_CHANGE_POWER: the TX power changed
* @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
* @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
* @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed
* @IEEE80211_CONF_CHANGE_SMPS: Spatial multiplexing powersave mode changed
* Note that this is only valid if channel contexts are not used,
* otherwise each channel context has the number of chains listed.
*/
enum ieee80211_conf_changed {
IEEE80211_CONF_CHANGE_SMPS = BIT(1),
IEEE80211_CONF_CHANGE_LISTEN_INTERVAL = BIT(2),
IEEE80211_CONF_CHANGE_MONITOR = BIT(3),
IEEE80211_CONF_CHANGE_PS = BIT(4),
IEEE80211_CONF_CHANGE_POWER = BIT(5),
IEEE80211_CONF_CHANGE_CHANNEL = BIT(6),
IEEE80211_CONF_CHANGE_RETRY_LIMITS = BIT(7),
IEEE80211_CONF_CHANGE_IDLE = BIT(8),
};
/**
* enum ieee80211_smps_mode - spatial multiplexing power save mode
*
* @IEEE80211_SMPS_AUTOMATIC: automatic
* @IEEE80211_SMPS_OFF: off
* @IEEE80211_SMPS_STATIC: static
* @IEEE80211_SMPS_DYNAMIC: dynamic
* @IEEE80211_SMPS_NUM_MODES: internal, don't use
*/
enum ieee80211_smps_mode {
IEEE80211_SMPS_AUTOMATIC,
IEEE80211_SMPS_OFF,
IEEE80211_SMPS_STATIC,
IEEE80211_SMPS_DYNAMIC,
/* keep last */
IEEE80211_SMPS_NUM_MODES,
};
/**
* struct ieee80211_conf - configuration of the device
*
* This struct indicates how the driver shall configure the hardware.
*
* @flags: configuration flags defined above
*
* @listen_interval: listen interval in units of beacon interval
* @max_sleep_period: the maximum number of beacon intervals to sleep for
* before checking the beacon for a TIM bit (managed mode only); this
* value will be only achievable between DTIM frames, the hardware
* needs to check for the multicast traffic bit in DTIM beacons.
* This variable is valid only when the CONF_PS flag is set.
* @ps_dtim_period: The DTIM period of the AP we're connected to, for use
* in power saving. Power saving will not be enabled until a beacon
* has been received and the DTIM period is known.
* @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
* powersave documentation below. This variable is valid only when
* the CONF_PS flag is set.
*
* @power_level: requested transmit power (in dBm), backward compatibility
* value only that is set to the minimum of all interfaces
*
* @chandef: the channel definition to tune to
* @radar_enabled: whether radar detection is enabled
*
* @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
* (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
* but actually means the number of transmissions not the number of retries
* @short_frame_max_tx_count: Maximum number of transmissions for a "short"
* frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
* number of transmissions not the number of retries
*
* @smps_mode: spatial multiplexing powersave mode; note that
* %IEEE80211_SMPS_STATIC is used when the device is not
* configured for an HT channel.
* Note that this is only valid if channel contexts are not used,
* otherwise each channel context has the number of chains listed.
*/
struct ieee80211_conf {
u32 flags;
int power_level, dynamic_ps_timeout;
int max_sleep_period;
u16 listen_interval;
u8 ps_dtim_period;
u8 long_frame_max_tx_count, short_frame_max_tx_count;
struct cfg80211_chan_def chandef;
bool radar_enabled;
enum ieee80211_smps_mode smps_mode;
};
/**
* struct ieee80211_channel_switch - holds the channel switch data
*
* The information provided in this structure is required for channel switch
* operation.
*
* @timestamp: value in microseconds of the 64-bit Time Synchronization
* Function (TSF) timer when the frame containing the channel switch
* announcement was received. This is simply the rx.mactime parameter
* the driver passed into mac80211.
* @block_tx: Indicates whether transmission must be blocked before the
* scheduled channel switch, as indicated by the AP.
* @chandef: the new channel to switch to
* @count: the number of TBTT's until the channel switch event
*/
struct ieee80211_channel_switch {
u64 timestamp;
bool block_tx;
struct cfg80211_chan_def chandef;
u8 count;
};
/**
* enum ieee80211_vif_flags - virtual interface flags
*
* @IEEE80211_VIF_BEACON_FILTER: the device performs beacon filtering
* on this virtual interface to avoid unnecessary CPU wakeups
* @IEEE80211_VIF_SUPPORTS_CQM_RSSI: the device can do connection quality
* monitoring on this virtual interface -- i.e. it can monitor
* connection quality related parameters, such as the RSSI level and
* provide notifications if configured trigger levels are reached.
*/
enum ieee80211_vif_flags {
IEEE80211_VIF_BEACON_FILTER = BIT(0),
IEEE80211_VIF_SUPPORTS_CQM_RSSI = BIT(1),
};
/**
* struct ieee80211_vif - per-interface data
*
* Data in this structure is continually present for driver
* use during the life of a virtual interface.
*
* @type: type of this virtual interface
* @bss_conf: BSS configuration for this interface, either our own
* or the BSS we're associated to
* @addr: address of this interface
* @p2p: indicates whether this AP or STA interface is a p2p
* interface, i.e. a GO or p2p-sta respectively
* @csa_active: marks whether a channel switch is going on. Internally it is
* write-protected by sdata_lock and local->mtx so holding either is fine
* for read access.
* @driver_flags: flags/capabilities the driver has for this interface,
* these need to be set (or cleared) when the interface is added
* or, if supported by the driver, the interface type is changed
* at runtime, mac80211 will never touch this field
* @hw_queue: hardware queue for each AC
* @cab_queue: content-after-beacon (DTIM beacon really) queue, AP mode only
* @chanctx_conf: The channel context this interface is assigned to, or %NULL
* when it is not assigned. This pointer is RCU-protected due to the TX
* path needing to access it; even though the netdev carrier will always
* be off when it is %NULL there can still be races and packets could be
* processed after it switches back to %NULL.
* @debugfs_dir: debugfs dentry, can be used by drivers to create own per
* interface debug files. Note that it will be NULL for the virtual
* monitor interface (if that is requested.)
* @drv_priv: data area for driver use, will always be aligned to
* sizeof(void *).
*/
struct ieee80211_vif {
enum nl80211_iftype type;
struct ieee80211_bss_conf bss_conf;
u8 addr[ETH_ALEN];
bool p2p;
bool csa_active;
u8 cab_queue;
u8 hw_queue[IEEE80211_NUM_ACS];
struct ieee80211_chanctx_conf __rcu *chanctx_conf;
u32 driver_flags;
#ifdef CONFIG_MAC80211_DEBUGFS
struct dentry *debugfs_dir;
#endif
/* must be last */
u8 drv_priv[0] __aligned(sizeof(void *));
};
static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
{
#ifdef CONFIG_MAC80211_MESH
return vif->type == NL80211_IFTYPE_MESH_POINT;
#endif
return false;
}
/**
* wdev_to_ieee80211_vif - return a vif struct from a wdev
* @wdev: the wdev to get the vif for
*
* This can be used by mac80211 drivers with direct cfg80211 APIs
* (like the vendor commands) that get a wdev.
*
* Note that this function may return %NULL if the given wdev isn't
* associated with a vif that the driver knows about (e.g. monitor
* or AP_VLAN interfaces.)
*/
struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev);
/**
* enum ieee80211_key_flags - key flags
*
* These flags are used for communication about keys between the driver
* and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
*
* @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
* driver to indicate that it requires IV generation for this
* particular key.
* @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
* the driver for a TKIP key if it requires Michael MIC
* generation in software.
* @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
* that the key is pairwise rather then a shared key.
* @IEEE80211_KEY_FLAG_SW_MGMT_TX: This flag should be set by the driver for a
* CCMP key if it requires CCMP encryption of management frames (MFP) to
* be done in software.
* @IEEE80211_KEY_FLAG_PUT_IV_SPACE: This flag should be set by the driver
* if space should be prepared for the IV, but the IV
* itself should not be generated. Do not set together with
* @IEEE80211_KEY_FLAG_GENERATE_IV on the same key.
* @IEEE80211_KEY_FLAG_RX_MGMT: This key will be used to decrypt received
* management frames. The flag can help drivers that have a hardware
* crypto implementation that doesn't deal with management frames
* properly by allowing them to not upload the keys to hardware and
* fall back to software crypto. Note that this flag deals only with
* RX, if your crypto engine can't deal with TX you can also set the
* %IEEE80211_KEY_FLAG_SW_MGMT_TX flag to encrypt such frames in SW.
* @IEEE80211_KEY_FLAG_GENERATE_IV_MGMT: This flag should be set by the
* driver for a CCMP key to indicate that is requires IV generation
* only for managment frames (MFP).
*/
enum ieee80211_key_flags {
IEEE80211_KEY_FLAG_GENERATE_IV_MGMT = BIT(0),
IEEE80211_KEY_FLAG_GENERATE_IV = BIT(1),
IEEE80211_KEY_FLAG_GENERATE_MMIC = BIT(2),
IEEE80211_KEY_FLAG_PAIRWISE = BIT(3),
IEEE80211_KEY_FLAG_SW_MGMT_TX = BIT(4),
IEEE80211_KEY_FLAG_PUT_IV_SPACE = BIT(5),
IEEE80211_KEY_FLAG_RX_MGMT = BIT(6),
};
/**
* struct ieee80211_key_conf - key information
*
* This key information is given by mac80211 to the driver by
* the set_key() callback in &struct ieee80211_ops.
*
* @hw_key_idx: To be set by the driver, this is the key index the driver
* wants to be given when a frame is transmitted and needs to be
* encrypted in hardware.
* @cipher: The key's cipher suite selector.
* @flags: key flags, see &enum ieee80211_key_flags.
* @keyidx: the key index (0-3)
* @keylen: key material length
* @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
* data block:
* - Temporal Encryption Key (128 bits)
* - Temporal Authenticator Tx MIC Key (64 bits)
* - Temporal Authenticator Rx MIC Key (64 bits)
* @icv_len: The ICV length for this key type
* @iv_len: The IV length for this key type
*/
struct ieee80211_key_conf {
u32 cipher;
u8 icv_len;
u8 iv_len;
u8 hw_key_idx;
u8 flags;
s8 keyidx;
u8 keylen;
u8 key[0];
};
/**
* struct ieee80211_cipher_scheme - cipher scheme
*
* This structure contains a cipher scheme information defining
* the secure packet crypto handling.
*
* @cipher: a cipher suite selector
* @iftype: a cipher iftype bit mask indicating an allowed cipher usage
* @hdr_len: a length of a security header used the cipher
* @pn_len: a length of a packet number in the security header
* @pn_off: an offset of pn from the beginning of the security header
* @key_idx_off: an offset of key index byte in the security header
* @key_idx_mask: a bit mask of key_idx bits
* @key_idx_shift: a bit shift needed to get key_idx
* key_idx value calculation:
* (sec_header_base[key_idx_off] & key_idx_mask) >> key_idx_shift
* @mic_len: a mic length in bytes
*/
struct ieee80211_cipher_scheme {
u32 cipher;
u16 iftype;
u8 hdr_len;
u8 pn_len;
u8 pn_off;
u8 key_idx_off;
u8 key_idx_mask;
u8 key_idx_shift;
u8 mic_len;
};
/**
* enum set_key_cmd - key command
*
* Used with the set_key() callback in &struct ieee80211_ops, this
* indicates whether a key is being removed or added.
*
* @SET_KEY: a key is set
* @DISABLE_KEY: a key must be disabled
*/
enum set_key_cmd {
SET_KEY, DISABLE_KEY,
};
/**
* enum ieee80211_sta_state - station state
*
* @IEEE80211_STA_NOTEXIST: station doesn't exist at all,
* this is a special state for add/remove transitions
* @IEEE80211_STA_NONE: station exists without special state
* @IEEE80211_STA_AUTH: station is authenticated
* @IEEE80211_STA_ASSOC: station is associated
* @IEEE80211_STA_AUTHORIZED: station is authorized (802.1X)
*/
enum ieee80211_sta_state {
/* NOTE: These need to be ordered correctly! */
IEEE80211_STA_NOTEXIST,
IEEE80211_STA_NONE,
IEEE80211_STA_AUTH,
IEEE80211_STA_ASSOC,
IEEE80211_STA_AUTHORIZED,
};
/**
* enum ieee80211_sta_rx_bandwidth - station RX bandwidth
* @IEEE80211_STA_RX_BW_20: station can only receive 20 MHz
* @IEEE80211_STA_RX_BW_40: station can receive up to 40 MHz
* @IEEE80211_STA_RX_BW_80: station can receive up to 80 MHz
* @IEEE80211_STA_RX_BW_160: station can receive up to 160 MHz
* (including 80+80 MHz)
*
* Implementation note: 20 must be zero to be initialized
* correctly, the values must be sorted.
*/
enum ieee80211_sta_rx_bandwidth {
IEEE80211_STA_RX_BW_20 = 0,
IEEE80211_STA_RX_BW_40,
IEEE80211_STA_RX_BW_80,
IEEE80211_STA_RX_BW_160,
};
/**
* struct ieee80211_sta_rates - station rate selection table
*
* @rcu_head: RCU head used for freeing the table on update
* @rate: transmit rates/flags to be used by default.
* Overriding entries per-packet is possible by using cb tx control.
*/
struct ieee80211_sta_rates {
struct rcu_head rcu_head;
struct {
s8 idx;
u8 count;
u8 count_cts;
u8 count_rts;
u16 flags;
} rate[IEEE80211_TX_RATE_TABLE_SIZE];
};
/**
* struct ieee80211_sta - station table entry
*
* A station table entry represents a station we are possibly
* communicating with. Since stations are RCU-managed in
* mac80211, any ieee80211_sta pointer you get access to must
* either be protected by rcu_read_lock() explicitly or implicitly,
* or you must take good care to not use such a pointer after a
* call to your sta_remove callback that removed it.
*
* @addr: MAC address
* @aid: AID we assigned to the station if we're an AP
* @supp_rates: Bitmap of supported rates (per band)
* @ht_cap: HT capabilities of this STA; restricted to our own capabilities
* @vht_cap: VHT capabilities of this STA; restricted to our own capabilities
* @wme: indicates whether the STA supports WME. Only valid during AP-mode.
* @drv_priv: data area for driver use, will always be aligned to
* sizeof(void *), size is determined in hw information.
* @uapsd_queues: bitmap of queues configured for uapsd. Only valid
* if wme is supported.
* @max_sp: max Service Period. Only valid if wme is supported.
* @bandwidth: current bandwidth the station can receive with
* @rx_nss: in HT/VHT, the maximum number of spatial streams the
* station can receive at the moment, changed by operating mode
* notifications and capabilities. The value is only valid after
* the station moves to associated state.
* @smps_mode: current SMPS mode (off, static or dynamic)
* @rates: rate control selection table
* @tdls: indicates whether the STA is a TDLS peer
*/
struct ieee80211_sta {
u32 supp_rates[IEEE80211_NUM_BANDS];
u8 addr[ETH_ALEN];
u16 aid;
struct ieee80211_sta_ht_cap ht_cap;
struct ieee80211_sta_vht_cap vht_cap;
bool wme;
u8 uapsd_queues;
u8 max_sp;
u8 rx_nss;
enum ieee80211_sta_rx_bandwidth bandwidth;
enum ieee80211_smps_mode smps_mode;
struct ieee80211_sta_rates __rcu *rates;
bool tdls;
/* must be last */
u8 drv_priv[0] __aligned(sizeof(void *));
};
/**
* enum sta_notify_cmd - sta notify command
*
* Used with the sta_notify() callback in &struct ieee80211_ops, this
* indicates if an associated station made a power state transition.
*
* @STA_NOTIFY_SLEEP: a station is now sleeping
* @STA_NOTIFY_AWAKE: a sleeping station woke up
*/
enum sta_notify_cmd {
STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
};
/**
* struct ieee80211_tx_control - TX control data
*
* @sta: station table entry, this sta pointer may be NULL and
* it is not allowed to copy the pointer, due to RCU.
*/
struct ieee80211_tx_control {
struct ieee80211_sta *sta;
};
/**
* enum ieee80211_hw_flags - hardware flags
*
* These flags are used to indicate hardware capabilities to
* the stack. Generally, flags here should have their meaning
* done in a way that the simplest hardware doesn't need setting
* any particular flags. There are some exceptions to this rule,
* however, so you are advised to review these flags carefully.
*
* @IEEE80211_HW_HAS_RATE_CONTROL:
* The hardware or firmware includes rate control, and cannot be
* controlled by the stack. As such, no rate control algorithm
* should be instantiated, and the TX rate reported to userspace
* will be taken from the TX status instead of the rate control
* algorithm.
* Note that this requires that the driver implement a number of
* callbacks so it has the correct information, it needs to have
* the @set_rts_threshold callback and must look at the BSS config
* @use_cts_prot for G/N protection, @use_short_slot for slot
* timing in 2.4 GHz and @use_short_preamble for preambles for
* CCK frames.
*
* @IEEE80211_HW_RX_INCLUDES_FCS:
* Indicates that received frames passed to the stack include
* the FCS at the end.
*
* @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
* Some wireless LAN chipsets buffer broadcast/multicast frames
* for power saving stations in the hardware/firmware and others
* rely on the host system for such buffering. This option is used
* to configure the IEEE 802.11 upper layer to buffer broadcast and
* multicast frames when there are power saving stations so that
* the driver can fetch them with ieee80211_get_buffered_bc().
*
* @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
* Hardware is not capable of short slot operation on the 2.4 GHz band.
*
* @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
* Hardware is not capable of receiving frames with short preamble on
* the 2.4 GHz band.
*
* @IEEE80211_HW_SIGNAL_UNSPEC:
* Hardware can provide signal values but we don't know its units. We
* expect values between 0 and @max_signal.
* If possible please provide dB or dBm instead.
*
* @IEEE80211_HW_SIGNAL_DBM:
* Hardware gives signal values in dBm, decibel difference from
* one milliwatt. This is the preferred method since it is standardized
* between different devices. @max_signal does not need to be set.
*
* @IEEE80211_HW_SPECTRUM_MGMT:
* Hardware supports spectrum management defined in 802.11h
* Measurement, Channel Switch, Quieting, TPC
*
* @IEEE80211_HW_AMPDU_AGGREGATION:
* Hardware supports 11n A-MPDU aggregation.
*
* @IEEE80211_HW_SUPPORTS_PS:
* Hardware has power save support (i.e. can go to sleep).
*
* @IEEE80211_HW_PS_NULLFUNC_STACK:
* Hardware requires nullfunc frame handling in stack, implies
* stack support for dynamic PS.
*
* @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
* Hardware has support for dynamic PS.
*
* @IEEE80211_HW_MFP_CAPABLE:
* Hardware supports management frame protection (MFP, IEEE 802.11w).
*
* @IEEE80211_HW_SUPPORTS_STATIC_SMPS:
* Hardware supports static spatial multiplexing powersave,
* ie. can turn off all but one chain even on HT connections
* that should be using more chains.
*
* @IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS:
* Hardware supports dynamic spatial multiplexing powersave,
* ie. can turn off all but one chain and then wake the rest
* up as required after, for example, rts/cts handshake.
*
* @IEEE80211_HW_SUPPORTS_UAPSD:
* Hardware supports Unscheduled Automatic Power Save Delivery
* (U-APSD) in managed mode. The mode is configured with
* conf_tx() operation.
*
* @IEEE80211_HW_REPORTS_TX_ACK_STATUS:
* Hardware can provide ack status reports of Tx frames to
* the stack.
*
* @IEEE80211_HW_CONNECTION_MONITOR:
* The hardware performs its own connection monitoring, including
* periodic keep-alives to the AP and probing the AP on beacon loss.
*
* @IEEE80211_HW_NEED_DTIM_BEFORE_ASSOC:
* This device needs to get data from beacon before association (i.e.
* dtim_period).
*
* @IEEE80211_HW_SUPPORTS_PER_STA_GTK: The device's crypto engine supports
* per-station GTKs as used by IBSS RSN or during fast transition. If
* the device doesn't support per-station GTKs, but can be asked not
* to decrypt group addressed frames, then IBSS RSN support is still
* possible but software crypto will be used. Advertise the wiphy flag
* only in that case.
*
* @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device
* autonomously manages the PS status of connected stations. When
* this flag is set mac80211 will not trigger PS mode for connected
* stations based on the PM bit of incoming frames.
* Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure
* the PS mode of connected stations.
*
* @IEEE80211_HW_TX_AMPDU_SETUP_IN_HW: The device handles TX A-MPDU session
* setup strictly in HW. mac80211 should not attempt to do this in
* software.
*
* @IEEE80211_HW_WANT_MONITOR_VIF: The driver would like to be informed of
* a virtual monitor interface when monitor interfaces are the only
* active interfaces.
*
* @IEEE80211_HW_QUEUE_CONTROL: The driver wants to control per-interface
* queue mapping in order to use different queues (not just one per AC)
* for different virtual interfaces. See the doc section on HW queue
* control for more details.
*
* @IEEE80211_HW_SUPPORTS_RC_TABLE: The driver supports using a rate
* selection table provided by the rate control algorithm.
*
* @IEEE80211_HW_P2P_DEV_ADDR_FOR_INTF: Use the P2P Device address for any
* P2P Interface. This will be honoured even if more than one interface
* is supported.
*
* @IEEE80211_HW_TIMING_BEACON_ONLY: Use sync timing from beacon frames
* only, to allow getting TBTT of a DTIM beacon.
*
* @IEEE80211_HW_SUPPORTS_HT_CCK_RATES: Hardware supports mixing HT/CCK rates
* and can cope with CCK rates in an aggregation session (e.g. by not
* using aggregation for such frames.)
*
* @IEEE80211_HW_CHANCTX_STA_CSA: Support 802.11h based channel-switch (CSA)
* for a single active channel while using channel contexts. When support
* is not enabled the default action is to disconnect when getting the
* CSA frame.
*
* @IEEE80211_SINGLE_HW_SCAN_ON_ALL_BANDS: The HW supports scanning on all bands
* in one command, mac80211 doesn't have to run separate scans per band.
*/
enum ieee80211_hw_flags {
IEEE80211_HW_HAS_RATE_CONTROL = 1<<0,
IEEE80211_HW_RX_INCLUDES_FCS = 1<<1,
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING = 1<<2,
IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE = 1<<3,
IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE = 1<<4,
IEEE80211_HW_SIGNAL_UNSPEC = 1<<5,
IEEE80211_HW_SIGNAL_DBM = 1<<6,
IEEE80211_HW_NEED_DTIM_BEFORE_ASSOC = 1<<7,
IEEE80211_HW_SPECTRUM_MGMT = 1<<8,
IEEE80211_HW_AMPDU_AGGREGATION = 1<<9,
IEEE80211_HW_SUPPORTS_PS = 1<<10,
IEEE80211_HW_PS_NULLFUNC_STACK = 1<<11,
IEEE80211_HW_SUPPORTS_DYNAMIC_PS = 1<<12,
IEEE80211_HW_MFP_CAPABLE = 1<<13,
IEEE80211_HW_WANT_MONITOR_VIF = 1<<14,
IEEE80211_HW_SUPPORTS_STATIC_SMPS = 1<<15,
IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS = 1<<16,
IEEE80211_HW_SUPPORTS_UAPSD = 1<<17,
IEEE80211_HW_REPORTS_TX_ACK_STATUS = 1<<18,
IEEE80211_HW_CONNECTION_MONITOR = 1<<19,
IEEE80211_HW_QUEUE_CONTROL = 1<<20,
IEEE80211_HW_SUPPORTS_PER_STA_GTK = 1<<21,
IEEE80211_HW_AP_LINK_PS = 1<<22,
IEEE80211_HW_TX_AMPDU_SETUP_IN_HW = 1<<23,
IEEE80211_HW_SUPPORTS_RC_TABLE = 1<<24,
IEEE80211_HW_P2P_DEV_ADDR_FOR_INTF = 1<<25,
IEEE80211_HW_TIMING_BEACON_ONLY = 1<<26,
IEEE80211_HW_SUPPORTS_HT_CCK_RATES = 1<<27,
IEEE80211_HW_CHANCTX_STA_CSA = 1<<28,
/* bit 29 unused */
IEEE80211_SINGLE_HW_SCAN_ON_ALL_BANDS = 1<<30,
};
/**
* struct ieee80211_hw - hardware information and state
*
* This structure contains the configuration and hardware
* information for an 802.11 PHY.
*
* @wiphy: This points to the &struct wiphy allocated for this
* 802.11 PHY. You must fill in the @perm_addr and @dev
* members of this structure using SET_IEEE80211_DEV()
* and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
* bands (with channels, bitrates) are registered here.
*
* @conf: &struct ieee80211_conf, device configuration, don't use.
*
* @priv: pointer to private area that was allocated for driver use
* along with this structure.
*
* @flags: hardware flags, see &enum ieee80211_hw_flags.
*
* @extra_tx_headroom: headroom to reserve in each transmit skb
* for use by the driver (e.g. for transmit headers.)
*
* @extra_beacon_tailroom: tailroom to reserve in each beacon tx skb.
* Can be used by drivers to add extra IEs.
*
* @max_signal: Maximum value for signal (rssi) in RX information, used
* only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
*
* @max_listen_interval: max listen interval in units of beacon interval
* that HW supports
*
* @queues: number of available hardware transmit queues for
* data packets. WMM/QoS requires at least four, these
* queues need to have configurable access parameters.
*
* @rate_control_algorithm: rate control algorithm for this hardware.
* If unset (NULL), the default algorithm will be used. Must be
* set before calling ieee80211_register_hw().
*
* @vif_data_size: size (in bytes) of the drv_priv data area
* within &struct ieee80211_vif.
* @sta_data_size: size (in bytes) of the drv_priv data area
* within &struct ieee80211_sta.
* @chanctx_data_size: size (in bytes) of the drv_priv data area
* within &struct ieee80211_chanctx_conf.
*
* @max_rates: maximum number of alternate rate retry stages the hw
* can handle.
* @max_report_rates: maximum number of alternate rate retry stages
* the hw can report back.
* @max_rate_tries: maximum number of tries for each stage
*
* @max_rx_aggregation_subframes: maximum buffer size (number of
* sub-frames) to be used for A-MPDU block ack receiver
* aggregation.
* This is only relevant if the device has restrictions on the
* number of subframes, if it relies on mac80211 to do reordering
* it shouldn't be set.
*
* @max_tx_aggregation_subframes: maximum number of subframes in an
* aggregate an HT driver will transmit, used by the peer as a
* hint to size its reorder buffer.
*
* @offchannel_tx_hw_queue: HW queue ID to use for offchannel TX
* (if %IEEE80211_HW_QUEUE_CONTROL is set)
*
* @radiotap_mcs_details: lists which MCS information can the HW
* reports, by default it is set to _MCS, _GI and _BW but doesn't
* include _FMT. Use %IEEE80211_RADIOTAP_MCS_HAVE_* values, only
* adding _BW is supported today.
*
* @radiotap_vht_details: lists which VHT MCS information the HW reports,
* the default is _GI | _BANDWIDTH.
* Use the %IEEE80211_RADIOTAP_VHT_KNOWN_* values.
*
* @netdev_features: netdev features to be set in each netdev created
* from this HW. Note only HW checksum features are currently
* compatible with mac80211. Other feature bits will be rejected.
*
* @uapsd_queues: This bitmap is included in (re)association frame to indicate
* for each access category if it is uAPSD trigger-enabled and delivery-
* enabled. Use IEEE80211_WMM_IE_STA_QOSINFO_AC_* to set this bitmap.
* Each bit corresponds to different AC. Value '1' in specific bit means
* that corresponding AC is both trigger- and delivery-enabled. '0' means
* neither enabled.
*
* @uapsd_max_sp_len: maximum number of total buffered frames the WMM AP may
* deliver to a WMM STA during any Service Period triggered by the WMM STA.
* Use IEEE80211_WMM_IE_STA_QOSINFO_SP_* for correct values.
*
* @n_cipher_schemes: a size of an array of cipher schemes definitions.
* @cipher_schemes: a pointer to an array of cipher scheme definitions
* supported by HW.
*/
struct ieee80211_hw {
struct ieee80211_conf conf;
struct wiphy *wiphy;
const char *rate_control_algorithm;
void *priv;
u32 flags;
unsigned int extra_tx_headroom;
unsigned int extra_beacon_tailroom;
int vif_data_size;
int sta_data_size;
int chanctx_data_size;
u16 queues;
u16 max_listen_interval;
s8 max_signal;
u8 max_rates;
u8 max_report_rates;
u8 max_rate_tries;
u8 max_rx_aggregation_subframes;
u8 max_tx_aggregation_subframes;
u8 offchannel_tx_hw_queue;
u8 radiotap_mcs_details;
u16 radiotap_vht_details;
netdev_features_t netdev_features;
u8 uapsd_queues;
u8 uapsd_max_sp_len;
u8 n_cipher_schemes;
const struct ieee80211_cipher_scheme *cipher_schemes;
};
/**
* struct ieee80211_scan_request - hw scan request
*
* @ies: pointers different parts of IEs (in req.ie)
* @req: cfg80211 request.
*/
struct ieee80211_scan_request {
struct ieee80211_scan_ies ies;
/* Keep last */
struct cfg80211_scan_request req;
};
/**
* wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
*
* @wiphy: the &struct wiphy which we want to query
*
* mac80211 drivers can use this to get to their respective
* &struct ieee80211_hw. Drivers wishing to get to their own private
* structure can then access it via hw->priv. Note that mac802111 drivers should
* not use wiphy_priv() to try to get their private driver structure as this
* is already used internally by mac80211.
*
* Return: The mac80211 driver hw struct of @wiphy.
*/
struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
/**
* SET_IEEE80211_DEV - set device for 802.11 hardware
*
* @hw: the &struct ieee80211_hw to set the device for
* @dev: the &struct device of this 802.11 device
*/
static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
{
set_wiphy_dev(hw->wiphy, dev);
}
/**
* SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
*
* @hw: the &struct ieee80211_hw to set the MAC address for
* @addr: the address to set
*/
static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
{
memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
}
static inline struct ieee80211_rate *
ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
const struct ieee80211_tx_info *c)
{
if (WARN_ON_ONCE(c->control.rates[0].idx < 0))
return NULL;
return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
}
static inline struct ieee80211_rate *
ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
const struct ieee80211_tx_info *c)
{
if (c->control.rts_cts_rate_idx < 0)
return NULL;
return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
}
static inline struct ieee80211_rate *
ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
const struct ieee80211_tx_info *c, int idx)
{
if (c->control.rates[idx + 1].idx < 0)
return NULL;
return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
}
/**
* ieee80211_free_txskb - free TX skb
* @hw: the hardware
* @skb: the skb
*
* Free a transmit skb. Use this funtion when some failure
* to transmit happened and thus status cannot be reported.
*/
void ieee80211_free_txskb(struct ieee80211_hw *hw, struct sk_buff *skb);
/**
* DOC: Hardware crypto acceleration
*
* mac80211 is capable of taking advantage of many hardware
* acceleration designs for encryption and decryption operations.
*
* The set_key() callback in the &struct ieee80211_ops for a given
* device is called to enable hardware acceleration of encryption and
* decryption. The callback takes a @sta parameter that will be NULL
* for default keys or keys used for transmission only, or point to
* the station information for the peer for individual keys.
* Multiple transmission keys with the same key index may be used when
* VLANs are configured for an access point.
*
* When transmitting, the TX control data will use the @hw_key_idx
* selected by the driver by modifying the &struct ieee80211_key_conf
* pointed to by the @key parameter to the set_key() function.
*
* The set_key() call for the %SET_KEY command should return 0 if
* the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
* added; if you return 0 then hw_key_idx must be assigned to the
* hardware key index, you are free to use the full u8 range.
*
* When the cmd is %DISABLE_KEY then it must succeed.
*
* Note that it is permissible to not decrypt a frame even if a key
* for it has been uploaded to hardware, the stack will not make any
* decision based on whether a key has been uploaded or not but rather
* based on the receive flags.
*
* The &struct ieee80211_key_conf structure pointed to by the @key
* parameter is guaranteed to be valid until another call to set_key()
* removes it, but it can only be used as a cookie to differentiate
* keys.
*
* In TKIP some HW need to be provided a phase 1 key, for RX decryption
* acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
* handler.
* The update_tkip_key() call updates the driver with the new phase 1 key.
* This happens every time the iv16 wraps around (every 65536 packets). The
* set_key() call will happen only once for each key (unless the AP did
* rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
* provided by update_tkip_key only. The trigger that makes mac80211 call this
* handler is software decryption with wrap around of iv16.
*
* The set_default_unicast_key() call updates the default WEP key index
* configured to the hardware for WEP encryption type. This is required
* for devices that support offload of data packets (e.g. ARP responses).
*/
/**
* DOC: Powersave support
*
* mac80211 has support for various powersave implementations.
*
* First, it can support hardware that handles all powersaving by itself,
* such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS hardware
* flag. In that case, it will be told about the desired powersave mode
* with the %IEEE80211_CONF_PS flag depending on the association status.
* The hardware must take care of sending nullfunc frames when necessary,
* i.e. when entering and leaving powersave mode. The hardware is required
* to look at the AID in beacons and signal to the AP that it woke up when
* it finds traffic directed to it.
*
* %IEEE80211_CONF_PS flag enabled means that the powersave mode defined in
* IEEE 802.11-2007 section 11.2 is enabled. This is not to be confused
* with hardware wakeup and sleep states. Driver is responsible for waking
* up the hardware before issuing commands to the hardware and putting it
* back to sleep at appropriate times.
*
* When PS is enabled, hardware needs to wakeup for beacons and receive the
* buffered multicast/broadcast frames after the beacon. Also it must be
* possible to send frames and receive the acknowledment frame.
*
* Other hardware designs cannot send nullfunc frames by themselves and also
* need software support for parsing the TIM bitmap. This is also supported
* by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
* %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
* required to pass up beacons. The hardware is still required to handle
* waking up for multicast traffic; if it cannot the driver must handle that
* as best as it can, mac80211 is too slow to do that.
*
* Dynamic powersave is an extension to normal powersave in which the
* hardware stays awake for a user-specified period of time after sending a
* frame so that reply frames need not be buffered and therefore delayed to
* the next wakeup. It's compromise of getting good enough latency when
* there's data traffic and still saving significantly power in idle
* periods.
*
* Dynamic powersave is simply supported by mac80211 enabling and disabling
* PS based on traffic. Driver needs to only set %IEEE80211_HW_SUPPORTS_PS
* flag and mac80211 will handle everything automatically. Additionally,
* hardware having support for the dynamic PS feature may set the
* %IEEE80211_HW_SUPPORTS_DYNAMIC_PS flag to indicate that it can support
* dynamic PS mode itself. The driver needs to look at the
* @dynamic_ps_timeout hardware configuration value and use it that value
* whenever %IEEE80211_CONF_PS is set. In this case mac80211 will disable
* dynamic PS feature in stack and will just keep %IEEE80211_CONF_PS
* enabled whenever user has enabled powersave.
*
* Driver informs U-APSD client support by enabling
* %IEEE80211_HW_SUPPORTS_UAPSD flag. The mode is configured through the
* uapsd parameter in conf_tx() operation. Hardware needs to send the QoS
* Nullfunc frames and stay awake until the service period has ended. To
* utilize U-APSD, dynamic powersave is disabled for voip AC and all frames
* from that AC are transmitted with powersave enabled.
*
* Note: U-APSD client mode is not yet supported with
* %IEEE80211_HW_PS_NULLFUNC_STACK.
*/
/**
* DOC: Beacon filter support
*
* Some hardware have beacon filter support to reduce host cpu wakeups
* which will reduce system power consumption. It usually works so that
* the firmware creates a checksum of the beacon but omits all constantly
* changing elements (TSF, TIM etc). Whenever the checksum changes the
* beacon is forwarded to the host, otherwise it will be just dropped. That
* way the host will only receive beacons where some relevant information
* (for example ERP protection or WMM settings) have changed.
*
* Beacon filter support is advertised with the %IEEE80211_VIF_BEACON_FILTER
* interface capability. The driver needs to enable beacon filter support
* whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
* power save is enabled, the stack will not check for beacon loss and the
* driver needs to notify about loss of beacons with ieee80211_beacon_loss().
*
* The time (or number of beacons missed) until the firmware notifies the
* driver of a beacon loss event (which in turn causes the driver to call
* ieee80211_beacon_loss()) should be configurable and will be controlled
* by mac80211 and the roaming algorithm in the future.
*
* Since there may be constantly changing information elements that nothing
* in the software stack cares about, we will, in the future, have mac80211
* tell the driver which information elements are interesting in the sense
* that we want to see changes in them. This will include
* - a list of information element IDs
* - a list of OUIs for the vendor information element
*
* Ideally, the hardware would filter out any beacons without changes in the
* requested elements, but if it cannot support that it may, at the expense
* of some efficiency, filter out only a subset. For example, if the device
* doesn't support checking for OUIs it should pass up all changes in all
* vendor information elements.
*
* Note that change, for the sake of simplification, also includes information
* elements appearing or disappearing from the beacon.
*
* Some hardware supports an "ignore list" instead, just make sure nothing
* that was requested is on the ignore list, and include commonly changing
* information element IDs in the ignore list, for example 11 (BSS load) and
* the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
* 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
* it could also include some currently unused IDs.
*
*
* In addition to these capabilities, hardware should support notifying the
* host of changes in the beacon RSSI. This is relevant to implement roaming
* when no traffic is flowing (when traffic is flowing we see the RSSI of
* the received data packets). This can consist in notifying the host when
* the RSSI changes significantly or when it drops below or rises above
* configurable thresholds. In the future these thresholds will also be
* configured by mac80211 (which gets them from userspace) to implement
* them as the roaming algorithm requires.
*
* If the hardware cannot implement this, the driver should ask it to
* periodically pass beacon frames to the host so that software can do the
* signal strength threshold checking.
*/
/**
* DOC: Spatial multiplexing power save
*
* SMPS (Spatial multiplexing power save) is a mechanism to conserve
* power in an 802.11n implementation. For details on the mechanism
* and rationale, please refer to 802.11 (as amended by 802.11n-2009)
* "11.2.3 SM power save".
*
* The mac80211 implementation is capable of sending action frames
* to update the AP about the station's SMPS mode, and will instruct
* the driver to enter the specific mode. It will also announce the
* requested SMPS mode during the association handshake. Hardware
* support for this feature is required, and can be indicated by
* hardware flags.
*
* The default mode will be "automatic", which nl80211/cfg80211
* defines to be dynamic SMPS in (regular) powersave, and SMPS
* turned off otherwise.
*
* To support this feature, the driver must set the appropriate
* hardware support flags, and handle the SMPS flag to the config()
* operation. It will then with this mechanism be instructed to
* enter the requested SMPS mode while associated to an HT AP.
*/
/**
* DOC: Frame filtering
*
* mac80211 requires to see many management frames for proper
* operation, and users may want to see many more frames when
* in monitor mode. However, for best CPU usage and power consumption,
* having as few frames as possible percolate through the stack is
* desirable. Hence, the hardware should filter as much as possible.
*
* To achieve this, mac80211 uses filter flags (see below) to tell
* the driver's configure_filter() function which frames should be
* passed to mac80211 and which should be filtered out.
*
* Before configure_filter() is invoked, the prepare_multicast()
* callback is invoked with the parameters @mc_count and @mc_list
* for the combined multicast address list of all virtual interfaces.
* It's use is optional, and it returns a u64 that is passed to
* configure_filter(). Additionally, configure_filter() has the
* arguments @changed_flags telling which flags were changed and
* @total_flags with the new flag states.
*
* If your device has no multicast address filters your driver will
* need to check both the %FIF_ALLMULTI flag and the @mc_count
* parameter to see whether multicast frames should be accepted
* or dropped.
*
* All unsupported flags in @total_flags must be cleared.
* Hardware does not support a flag if it is incapable of _passing_
* the frame to the stack. Otherwise the driver must ignore
* the flag, but not clear it.
* You must _only_ clear the flag (announce no support for the
* flag to mac80211) if you are not able to pass the packet type
* to the stack (so the hardware always filters it).
* So for example, you should clear @FIF_CONTROL, if your hardware
* always filters control frames. If your hardware always passes
* control frames to the kernel and is incapable of filtering them,
* you do _not_ clear the @FIF_CONTROL flag.
* This rule applies to all other FIF flags as well.
*/
/**
* DOC: AP support for powersaving clients
*
* In order to implement AP and P2P GO modes, mac80211 has support for
* client powersaving, both "legacy" PS (PS-Poll/null data) and uAPSD.
* There currently is no support for sAPSD.
*
* There is one assumption that mac80211 makes, namely that a client
* will not poll with PS-Poll and trigger with uAPSD at the same time.
* Both are supported, and both can be used by the same client, but
* they can't be used concurrently by the same client. This simplifies
* the driver code.
*
* The first thing to keep in mind is that there is a flag for complete
* driver implementation: %IEEE80211_HW_AP_LINK_PS. If this flag is set,
* mac80211 expects the driver to handle most of the state machine for
* powersaving clients and will ignore the PM bit in incoming frames.
* Drivers then use ieee80211_sta_ps_transition() to inform mac80211 of
* stations' powersave transitions. In this mode, mac80211 also doesn't
* handle PS-Poll/uAPSD.
*
* In the mode without %IEEE80211_HW_AP_LINK_PS, mac80211 will check the
* PM bit in incoming frames for client powersave transitions. When a
* station goes to sleep, we will stop transmitting to it. There is,
* however, a race condition: a station might go to sleep while there is
* data buffered on hardware queues. If the device has support for this
* it will reject frames, and the driver should give the frames back to
* mac80211 with the %IEEE80211_TX_STAT_TX_FILTERED flag set which will
* cause mac80211 to retry the frame when the station wakes up. The
* driver is also notified of powersave transitions by calling its
* @sta_notify callback.
*
* When the station is asleep, it has three choices: it can wake up,
* it can PS-Poll, or it can possibly start a uAPSD service period.
* Waking up is implemented by simply transmitting all buffered (and
* filtered) frames to the station. This is the easiest case. When
* the station sends a PS-Poll or a uAPSD trigger frame, mac80211
* will inform the driver of this with the @allow_buffered_frames
* callback; this callback is optional. mac80211 will then transmit
* the frames as usual and set the %IEEE80211_TX_CTL_NO_PS_BUFFER
* on each frame. The last frame in the service period (or the only
* response to a PS-Poll) also has %IEEE80211_TX_STATUS_EOSP set to
* indicate that it ends the service period; as this frame must have
* TX status report it also sets %IEEE80211_TX_CTL_REQ_TX_STATUS.
* When TX status is reported for this frame, the service period is
* marked has having ended and a new one can be started by the peer.
*
* Additionally, non-bufferable MMPDUs can also be transmitted by
* mac80211 with the %IEEE80211_TX_CTL_NO_PS_BUFFER set in them.
*
* Another race condition can happen on some devices like iwlwifi
* when there are frames queued for the station and it wakes up
* or polls; the frames that are already queued could end up being
* transmitted first instead, causing reordering and/or wrong
* processing of the EOSP. The cause is that allowing frames to be
* transmitted to a certain station is out-of-band communication to
* the device. To allow this problem to be solved, the driver can
* call ieee80211_sta_block_awake() if frames are buffered when it
* is notified that the station went to sleep. When all these frames
* have been filtered (see above), it must call the function again
* to indicate that the station is no longer blocked.
*
* If the driver buffers frames in the driver for aggregation in any
* way, it must use the ieee80211_sta_set_buffered() call when it is
* notified of the station going to sleep to inform mac80211 of any
* TIDs that have frames buffered. Note that when a station wakes up
* this information is reset (hence the requirement to call it when
* informed of the station going to sleep). Then, when a service
* period starts for any reason, @release_buffered_frames is called
* with the number of frames to be released and which TIDs they are
* to come from. In this case, the driver is responsible for setting
* the EOSP (for uAPSD) and MORE_DATA bits in the released frames,
* to help the @more_data parameter is passed to tell the driver if
* there is more data on other TIDs -- the TIDs to release frames
* from are ignored since mac80211 doesn't know how many frames the
* buffers for those TIDs contain.
*
* If the driver also implement GO mode, where absence periods may
* shorten service periods (or abort PS-Poll responses), it must
* filter those response frames except in the case of frames that
* are buffered in the driver -- those must remain buffered to avoid
* reordering. Because it is possible that no frames are released
* in this case, the driver must call ieee80211_sta_eosp()
* to indicate to mac80211 that the service period ended anyway.
*
* Finally, if frames from multiple TIDs are released from mac80211
* but the driver might reorder them, it must clear & set the flags
* appropriately (only the last frame may have %IEEE80211_TX_STATUS_EOSP)
* and also take care of the EOSP and MORE_DATA bits in the frame.
* The driver may also use ieee80211_sta_eosp() in this case.
*
* Note that if the driver ever buffers frames other than QoS-data
* frames, it must take care to never send a non-QoS-data frame as
* the last frame in a service period, adding a QoS-nulldata frame
* after a non-QoS-data frame if needed.
*/
/**
* DOC: HW queue control
*
* Before HW queue control was introduced, mac80211 only had a single static
* assignment of per-interface AC software queues to hardware queues. This
* was problematic for a few reasons:
* 1) off-channel transmissions might get stuck behind other frames
* 2) multiple virtual interfaces couldn't be handled correctly
* 3) after-DTIM frames could get stuck behind other frames
*
* To solve this, hardware typically uses multiple different queues for all
* the different usages, and this needs to be propagated into mac80211 so it
* won't have the same problem with the software queues.
*
* Therefore, mac80211 now offers the %IEEE80211_HW_QUEUE_CONTROL capability
* flag that tells it that the driver implements its own queue control. To do
* so, the driver will set up the various queues in each &struct ieee80211_vif
* and the offchannel queue in &struct ieee80211_hw. In response, mac80211 will
* use those queue IDs in the hw_queue field of &struct ieee80211_tx_info and
* if necessary will queue the frame on the right software queue that mirrors
* the hardware queue.
* Additionally, the driver has to then use these HW queue IDs for the queue
* management functions (ieee80211_stop_queue() et al.)
*
* The driver is free to set up the queue mappings as needed, multiple virtual
* interfaces may map to the same hardware queues if needed. The setup has to
* happen during add_interface or change_interface callbacks. For example, a
* driver supporting station+station and station+AP modes might decide to have
* 10 hardware queues to handle different scenarios:
*
* 4 AC HW queues for 1st vif: 0, 1, 2, 3
* 4 AC HW queues for 2nd vif: 4, 5, 6, 7
* after-DTIM queue for AP: 8
* off-channel queue: 9
*
* It would then set up the hardware like this:
* hw.offchannel_tx_hw_queue = 9
*
* and the first virtual interface that is added as follows:
* vif.hw_queue[IEEE80211_AC_VO] = 0
* vif.hw_queue[IEEE80211_AC_VI] = 1
* vif.hw_queue[IEEE80211_AC_BE] = 2
* vif.hw_queue[IEEE80211_AC_BK] = 3
* vif.cab_queue = 8 // if AP mode, otherwise %IEEE80211_INVAL_HW_QUEUE
* and the second virtual interface with 4-7.
*
* If queue 6 gets full, for example, mac80211 would only stop the second
* virtual interface's BE queue since virtual interface queues are per AC.
*
* Note that the vif.cab_queue value should be set to %IEEE80211_INVAL_HW_QUEUE
* whenever the queue is not used (i.e. the interface is not in AP mode) if the
* queue could potentially be shared since mac80211 will look at cab_queue when
* a queue is stopped/woken even if the interface is not in AP mode.
*/
/**
* enum ieee80211_filter_flags - hardware filter flags
*
* These flags determine what the filter in hardware should be
* programmed to let through and what should not be passed to the
* stack. It is always safe to pass more frames than requested,
* but this has negative impact on power consumption.
*
* @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
* think of the BSS as your network segment and then this corresponds
* to the regular ethernet device promiscuous mode.
*
* @FIF_ALLMULTI: pass all multicast frames, this is used if requested
* by the user or if the hardware is not capable of filtering by
* multicast address.
*
* @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
* %RX_FLAG_FAILED_FCS_CRC for them)
*
* @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
* the %RX_FLAG_FAILED_PLCP_CRC for them
*
* @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
* to the hardware that it should not filter beacons or probe responses
* by BSSID. Filtering them can greatly reduce the amount of processing
* mac80211 needs to do and the amount of CPU wakeups, so you should
* honour this flag if possible.
*
* @FIF_CONTROL: pass control frames (except for PS Poll), if PROMISC_IN_BSS
* is not set then only those addressed to this station.
*
* @FIF_OTHER_BSS: pass frames destined to other BSSes
*
* @FIF_PSPOLL: pass PS Poll frames, if PROMISC_IN_BSS is not set then only
* those addressed to this station.
*
* @FIF_PROBE_REQ: pass probe request frames
*/
enum ieee80211_filter_flags {
FIF_PROMISC_IN_BSS = 1<<0,
FIF_ALLMULTI = 1<<1,
FIF_FCSFAIL = 1<<2,
FIF_PLCPFAIL = 1<<3,
FIF_BCN_PRBRESP_PROMISC = 1<<4,
FIF_CONTROL = 1<<5,
FIF_OTHER_BSS = 1<<6,
FIF_PSPOLL = 1<<7,
FIF_PROBE_REQ = 1<<8,
};
/**
* enum ieee80211_ampdu_mlme_action - A-MPDU actions
*
* These flags are used with the ampdu_action() callback in
* &struct ieee80211_ops to indicate which action is needed.
*
* Note that drivers MUST be able to deal with a TX aggregation
* session being stopped even before they OK'ed starting it by
* calling ieee80211_start_tx_ba_cb_irqsafe, because the peer
* might receive the addBA frame and send a delBA right away!
*
* @IEEE80211_AMPDU_RX_START: start RX aggregation
* @IEEE80211_AMPDU_RX_STOP: stop RX aggregation
* @IEEE80211_AMPDU_TX_START: start TX aggregation
* @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
* @IEEE80211_AMPDU_TX_STOP_CONT: stop TX aggregation but continue transmitting
* queued packets, now unaggregated. After all packets are transmitted the
* driver has to call ieee80211_stop_tx_ba_cb_irqsafe().
* @IEEE80211_AMPDU_TX_STOP_FLUSH: stop TX aggregation and flush all packets,
* called when the station is removed. There's no need or reason to call
* ieee80211_stop_tx_ba_cb_irqsafe() in this case as mac80211 assumes the
* session is gone and removes the station.
* @IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: called when TX aggregation is stopped
* but the driver hasn't called ieee80211_stop_tx_ba_cb_irqsafe() yet and
* now the connection is dropped and the station will be removed. Drivers
* should clean up and drop remaining packets when this is called.
*/
enum ieee80211_ampdu_mlme_action {
IEEE80211_AMPDU_RX_START,
IEEE80211_AMPDU_RX_STOP,
IEEE80211_AMPDU_TX_START,
IEEE80211_AMPDU_TX_STOP_CONT,
IEEE80211_AMPDU_TX_STOP_FLUSH,
IEEE80211_AMPDU_TX_STOP_FLUSH_CONT,
IEEE80211_AMPDU_TX_OPERATIONAL,
};
/**
* enum ieee80211_frame_release_type - frame release reason
* @IEEE80211_FRAME_RELEASE_PSPOLL: frame released for PS-Poll
* @IEEE80211_FRAME_RELEASE_UAPSD: frame(s) released due to
* frame received on trigger-enabled AC
*/
enum ieee80211_frame_release_type {
IEEE80211_FRAME_RELEASE_PSPOLL,
IEEE80211_FRAME_RELEASE_UAPSD,
};
/**
* enum ieee80211_rate_control_changed - flags to indicate what changed
*
* @IEEE80211_RC_BW_CHANGED: The bandwidth that can be used to transmit
* to this station changed. The actual bandwidth is in the station
* information -- for HT20/40 the IEEE80211_HT_CAP_SUP_WIDTH_20_40
* flag changes, for HT and VHT the bandwidth field changes.
* @IEEE80211_RC_SMPS_CHANGED: The SMPS state of the station changed.
* @IEEE80211_RC_SUPP_RATES_CHANGED: The supported rate set of this peer
* changed (in IBSS mode) due to discovering more information about
* the peer.
* @IEEE80211_RC_NSS_CHANGED: N_SS (number of spatial streams) was changed
* by the peer
*/
enum ieee80211_rate_control_changed {
IEEE80211_RC_BW_CHANGED = BIT(0),
IEEE80211_RC_SMPS_CHANGED = BIT(1),
IEEE80211_RC_SUPP_RATES_CHANGED = BIT(2),
IEEE80211_RC_NSS_CHANGED = BIT(3),
};
/**
* enum ieee80211_roc_type - remain on channel type
*
* With the support for multi channel contexts and multi channel operations,
* remain on channel operations might be limited/deferred/aborted by other
* flows/operations which have higher priority (and vise versa).
* Specifying the ROC type can be used by devices to prioritize the ROC
* operations compared to other operations/flows.
*
* @IEEE80211_ROC_TYPE_NORMAL: There are no special requirements for this ROC.
* @IEEE80211_ROC_TYPE_MGMT_TX: The remain on channel request is required
* for sending managment frames offchannel.
*/
enum ieee80211_roc_type {
IEEE80211_ROC_TYPE_NORMAL = 0,
IEEE80211_ROC_TYPE_MGMT_TX,
};
/**
* struct ieee80211_ops - callbacks from mac80211 to the driver
*
* This structure contains various callbacks that the driver may
* handle or, in some cases, must handle, for example to configure
* the hardware to a new channel or to transmit a frame.
*
* @tx: Handler that 802.11 module calls for each transmitted frame.
* skb contains the buffer starting from the IEEE 802.11 header.
* The low-level driver should send the frame out based on
* configuration in the TX control data. This handler should,
* preferably, never fail and stop queues appropriately.
* Must be atomic.
*
* @start: Called before the first netdevice attached to the hardware
* is enabled. This should turn on the hardware and must turn on
* frame reception (for possibly enabled monitor interfaces.)
* Returns negative error codes, these may be seen in userspace,
* or zero.
* When the device is started it should not have a MAC address
* to avoid acknowledging frames before a non-monitor device
* is added.
* Must be implemented and can sleep.
*
* @stop: Called after last netdevice attached to the hardware
* is disabled. This should turn off the hardware (at least
* it must turn off frame reception.)
* May be called right after add_interface if that rejects
* an interface. If you added any work onto the mac80211 workqueue
* you should ensure to cancel it on this callback.
* Must be implemented and can sleep.
*
* @suspend: Suspend the device; mac80211 itself will quiesce before and
* stop transmitting and doing any other configuration, and then
* ask the device to suspend. This is only invoked when WoWLAN is
* configured, otherwise the device is deconfigured completely and
* reconfigured at resume time.
* The driver may also impose special conditions under which it
* wants to use the "normal" suspend (deconfigure), say if it only
* supports WoWLAN when the device is associated. In this case, it
* must return 1 from this function.
*
* @resume: If WoWLAN was configured, this indicates that mac80211 is
* now resuming its operation, after this the device must be fully
* functional again. If this returns an error, the only way out is
* to also unregister the device. If it returns 1, then mac80211
* will also go through the regular complete restart on resume.
*
* @set_wakeup: Enable or disable wakeup when WoWLAN configuration is
* modified. The reason is that device_set_wakeup_enable() is
* supposed to be called when the configuration changes, not only
* in suspend().
*
* @add_interface: Called when a netdevice attached to the hardware is
* enabled. Because it is not called for monitor mode devices, @start
* and @stop must be implemented.
* The driver should perform any initialization it needs before
* the device can be enabled. The initial configuration for the
* interface is given in the conf parameter.
* The callback may refuse to add an interface by returning a
* negative error code (which will be seen in userspace.)
* Must be implemented and can sleep.
*
* @change_interface: Called when a netdevice changes type. This callback
* is optional, but only if it is supported can interface types be
* switched while the interface is UP. The callback may sleep.
* Note that while an interface is being switched, it will not be
* found by the interface iteration callbacks.
*
* @remove_interface: Notifies a driver that an interface is going down.
* The @stop callback is called after this if it is the last interface
* and no monitor interfaces are present.
* When all interfaces are removed, the MAC address in the hardware
* must be cleared so the device no longer acknowledges packets,
* the mac_addr member of the conf structure is, however, set to the
* MAC address of the device going away.
* Hence, this callback must be implemented. It can sleep.
*
* @config: Handler for configuration requests. IEEE 802.11 code calls this
* function to change hardware configuration, e.g., channel.
* This function should never fail but returns a negative error code
* if it does. The callback can sleep.
*
* @bss_info_changed: Handler for configuration requests related to BSS
* parameters that may vary during BSS's lifespan, and may affect low
* level driver (e.g. assoc/disassoc status, erp parameters).
* This function should not be used if no BSS has been set, unless
* for association indication. The @changed parameter indicates which
* of the bss parameters has changed when a call is made. The callback
* can sleep.
*
* @prepare_multicast: Prepare for multicast filter configuration.
* This callback is optional, and its return value is passed
* to configure_filter(). This callback must be atomic.
*
* @configure_filter: Configure the device's RX filter.
* See the section "Frame filtering" for more information.
* This callback must be implemented and can sleep.
*
* @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
* must be set or cleared for a given STA. Must be atomic.
*
* @set_key: See the section "Hardware crypto acceleration"
* This callback is only called between add_interface and
* remove_interface calls, i.e. while the given virtual interface
* is enabled.
* Returns a negative error code if the key can't be added.
* The callback can sleep.
*
* @update_tkip_key: See the section "Hardware crypto acceleration"
* This callback will be called in the context of Rx. Called for drivers
* which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
* The callback must be atomic.
*
* @set_rekey_data: If the device supports GTK rekeying, for example while the
* host is suspended, it can assign this callback to retrieve the data
* necessary to do GTK rekeying, this is the KEK, KCK and replay counter.
* After rekeying was done it should (for example during resume) notify
* userspace of the new replay counter using ieee80211_gtk_rekey_notify().
*
* @set_default_unicast_key: Set the default (unicast) key index, useful for
* WEP when the device sends data packets autonomously, e.g. for ARP
* offloading. The index can be 0-3, or -1 for unsetting it.
*
* @hw_scan: Ask the hardware to service the scan request, no need to start
* the scan state machine in stack. The scan must honour the channel
* configuration done by the regulatory agent in the wiphy's
* registered bands. The hardware (or the driver) needs to make sure
* that power save is disabled.
* The @req ie/ie_len members are rewritten by mac80211 to contain the
* entire IEs after the SSID, so that drivers need not look at these
* at all but just send them after the SSID -- mac80211 includes the
* (extended) supported rates and HT information (where applicable).
* When the scan finishes, ieee80211_scan_completed() must be called;
* note that it also must be called when the scan cannot finish due to
* any error unless this callback returned a negative error code.
* The callback can sleep.
*
* @cancel_hw_scan: Ask the low-level tp cancel the active hw scan.
* The driver should ask the hardware to cancel the scan (if possible),
* but the scan will be completed only after the driver will call
* ieee80211_scan_completed().
* This callback is needed for wowlan, to prevent enqueueing a new
* scan_work after the low-level driver was already suspended.
* The callback can sleep.
*
* @sched_scan_start: Ask the hardware to start scanning repeatedly at
* specific intervals. The driver must call the
* ieee80211_sched_scan_results() function whenever it finds results.
* This process will continue until sched_scan_stop is called.
*
* @sched_scan_stop: Tell the hardware to stop an ongoing scheduled scan.
* In this case, ieee80211_sched_scan_stopped() must not be called.
*
* @sw_scan_start: Notifier function that is called just before a software scan
* is started. Can be NULL, if the driver doesn't need this notification.
* The callback can sleep.
*
* @sw_scan_complete: Notifier function that is called just after a
* software scan finished. Can be NULL, if the driver doesn't need
* this notification.
* The callback can sleep.
*
* @get_stats: Return low-level statistics.
* Returns zero if statistics are available.
* The callback can sleep.
*
* @get_tkip_seq: If your device implements TKIP encryption in hardware this
* callback should be provided to read the TKIP transmit IVs (both IV32
* and IV16) for the given key from hardware.
* The callback must be atomic.
*
* @set_frag_threshold: Configuration of fragmentation threshold. Assign this
* if the device does fragmentation by itself; if this callback is
* implemented then the stack will not do fragmentation.
* The callback can sleep.
*
* @set_rts_threshold: Configuration of RTS threshold (if device needs it)
* The callback can sleep.
*
* @sta_add: Notifies low level driver about addition of an associated station,
* AP, IBSS/WDS/mesh peer etc. This callback can sleep.
*
* @sta_remove: Notifies low level driver about removal of an associated
* station, AP, IBSS/WDS/mesh peer etc. Note that after the callback
* returns it isn't safe to use the pointer, not even RCU protected;
* no RCU grace period is guaranteed between returning here and freeing
* the station. See @sta_pre_rcu_remove if needed.
* This callback can sleep.
*
* @sta_add_debugfs: Drivers can use this callback to add debugfs files
* when a station is added to mac80211's station list. This callback
* and @sta_remove_debugfs should be within a CONFIG_MAC80211_DEBUGFS
* conditional. This callback can sleep.
*
* @sta_remove_debugfs: Remove the debugfs files which were added using
* @sta_add_debugfs. This callback can sleep.
*
* @sta_notify: Notifies low level driver about power state transition of an
* associated station, AP, IBSS/WDS/mesh peer etc. For a VIF operating
* in AP mode, this callback will not be called when the flag
* %IEEE80211_HW_AP_LINK_PS is set. Must be atomic.
*
* @sta_state: Notifies low level driver about state transition of a
* station (which can be the AP, a client, IBSS/WDS/mesh peer etc.)
* This callback is mutually exclusive with @sta_add/@sta_remove.
* It must not fail for down transitions but may fail for transitions
* up the list of states. Also note that after the callback returns it
* isn't safe to use the pointer, not even RCU protected - no RCU grace
* period is guaranteed between returning here and freeing the station.
* See @sta_pre_rcu_remove if needed.
* The callback can sleep.
*
* @sta_pre_rcu_remove: Notify driver about station removal before RCU
* synchronisation. This is useful if a driver needs to have station
* pointers protected using RCU, it can then use this call to clear
* the pointers instead of waiting for an RCU grace period to elapse
* in @sta_state.
* The callback can sleep.
*
* @sta_rc_update: Notifies the driver of changes to the bitrates that can be
* used to transmit to the station. The changes are advertised with bits
* from &enum ieee80211_rate_control_changed and the values are reflected
* in the station data. This callback should only be used when the driver
* uses hardware rate control (%IEEE80211_HW_HAS_RATE_CONTROL) since
* otherwise the rate control algorithm is notified directly.
* Must be atomic.
*
* @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
* bursting) for a hardware TX queue.
* Returns a negative error code on failure.
* The callback can sleep.
*
* @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
* this is only used for IBSS mode BSSID merging and debugging. Is not a
* required function.
* The callback can sleep.
*
* @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
* Currently, this is only used for IBSS mode debugging. Is not a
* required function.
* The callback can sleep.
*
* @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
* with other STAs in the IBSS. This is only used in IBSS mode. This
* function is optional if the firmware/hardware takes full care of
* TSF synchronization.
* The callback can sleep.
*
* @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
* This is needed only for IBSS mode and the result of this function is
* used to determine whether to reply to Probe Requests.
* Returns non-zero if this device sent the last beacon.
* The callback can sleep.
*
* @ampdu_action: Perform a certain A-MPDU action
* The RA/TID combination determines the destination and TID we want
* the ampdu action to be performed for. The action is defined through
* ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
* is the first frame we expect to perform the action on. Notice
* that TX/RX_STOP can pass NULL for this parameter.
* The @buf_size parameter is only valid when the action is set to
* %IEEE80211_AMPDU_TX_OPERATIONAL and indicates the peer's reorder
* buffer size (number of subframes) for this session -- the driver
* may neither send aggregates containing more subframes than this
* nor send aggregates in a way that lost frames would exceed the
* buffer size. If just limiting the aggregate size, this would be
* possible with a buf_size of 8:
* - TX: 1.....7
* - RX: 2....7 (lost frame #1)
* - TX: 8..1...
* which is invalid since #1 was now re-transmitted well past the
* buffer size of 8. Correct ways to retransmit #1 would be:
* - TX: 1 or 18 or 81
* Even "189" would be wrong since 1 could be lost again.
*
* Returns a negative error code on failure.
* The callback can sleep.
*
* @get_survey: Return per-channel survey information
*
* @rfkill_poll: Poll rfkill hardware state. If you need this, you also
* need to set wiphy->rfkill_poll to %true before registration,
* and need to call wiphy_rfkill_set_hw_state() in the callback.
* The callback can sleep.
*
* @set_coverage_class: Set slot time for given coverage class as specified
* in IEEE 802.11-2007 section 17.3.8.6 and modify ACK timeout
* accordingly. This callback is not required and may sleep.
*
* @testmode_cmd: Implement a cfg80211 test mode command. The passed @vif may
* be %NULL. The callback can sleep.
* @testmode_dump: Implement a cfg80211 test mode dump. The callback can sleep.
*
* @flush: Flush all pending frames from the hardware queue, making sure
* that the hardware queues are empty. The @queues parameter is a bitmap
* of queues to flush, which is useful if different virtual interfaces
* use different hardware queues; it may also indicate all queues.
* If the parameter @drop is set to %true, pending frames may be dropped.
* Note that vif can be NULL.
* The callback can sleep.
*
* @channel_switch: Drivers that need (or want) to offload the channel
* switch operation for CSAs received from the AP may implement this
* callback. They must then call ieee80211_chswitch_done() to indicate
* completion of the channel switch.
*
* @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device.
* Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may
* reject TX/RX mask combinations they cannot support by returning -EINVAL
* (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX).
*
* @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant).
*
* @remain_on_channel: Starts an off-channel period on the given channel, must
* call back to ieee80211_ready_on_channel() when on that channel. Note
* that normal channel traffic is not stopped as this is intended for hw
* offload. Frames to transmit on the off-channel channel are transmitted
* normally except for the %IEEE80211_TX_CTL_TX_OFFCHAN flag. When the
* duration (which will always be non-zero) expires, the driver must call
* ieee80211_remain_on_channel_expired().
* Note that this callback may be called while the device is in IDLE and
* must be accepted in this case.
* This callback may sleep.
* @cancel_remain_on_channel: Requests that an ongoing off-channel period is
* aborted before it expires. This callback may sleep.
*
* @set_ringparam: Set tx and rx ring sizes.
*
* @get_ringparam: Get tx and rx ring current and maximum sizes.
*
* @tx_frames_pending: Check if there is any pending frame in the hardware
* queues before entering power save.
*
* @set_bitrate_mask: Set a mask of rates to be used for rate control selection
* when transmitting a frame. Currently only legacy rates are handled.
* The callback can sleep.
* @rssi_callback: Notify driver when the average RSSI goes above/below
* thresholds that were registered previously. The callback can sleep.
*
* @release_buffered_frames: Release buffered frames according to the given
* parameters. In the case where the driver buffers some frames for
* sleeping stations mac80211 will use this callback to tell the driver
* to release some frames, either for PS-poll or uAPSD.
* Note that if the @more_data parameter is %false the driver must check
* if there are more frames on the given TIDs, and if there are more than
* the frames being released then it must still set the more-data bit in
* the frame. If the @more_data parameter is %true, then of course the
* more-data bit must always be set.
* The @tids parameter tells the driver which TIDs to release frames
* from, for PS-poll it will always have only a single bit set.
* In the case this is used for a PS-poll initiated release, the
* @num_frames parameter will always be 1 so code can be shared. In
* this case the driver must also set %IEEE80211_TX_STATUS_EOSP flag
* on the TX status (and must report TX status) so that the PS-poll
* period is properly ended. This is used to avoid sending multiple
* responses for a retried PS-poll frame.
* In the case this is used for uAPSD, the @num_frames parameter may be
* bigger than one, but the driver may send fewer frames (it must send
* at least one, however). In this case it is also responsible for
* setting the EOSP flag in the QoS header of the frames. Also, when the
* service period ends, the driver must set %IEEE80211_TX_STATUS_EOSP
* on the last frame in the SP. Alternatively, it may call the function
* ieee80211_sta_eosp() to inform mac80211 of the end of the SP.
* This callback must be atomic.
* @allow_buffered_frames: Prepare device to allow the given number of frames
* to go out to the given station. The frames will be sent by mac80211
* via the usual TX path after this call. The TX information for frames
* released will also have the %IEEE80211_TX_CTL_NO_PS_BUFFER flag set
* and the last one will also have %IEEE80211_TX_STATUS_EOSP set. In case
* frames from multiple TIDs are released and the driver might reorder
* them between the TIDs, it must set the %IEEE80211_TX_STATUS_EOSP flag
* on the last frame and clear it on all others and also handle the EOSP
* bit in the QoS header correctly. Alternatively, it can also call the
* ieee80211_sta_eosp() function.
* The @tids parameter is a bitmap and tells the driver which TIDs the
* frames will be on; it will at most have two bits set.
* This callback must be atomic.
*
* @get_et_sset_count: Ethtool API to get string-set count.
*
* @get_et_stats: Ethtool API to get a set of u64 stats.
*
* @get_et_strings: Ethtool API to get a set of strings to describe stats
* and perhaps other supported types of ethtool data-sets.
*
* @get_rssi: Get current signal strength in dBm, the function is optional
* and can sleep.
*
* @mgd_prepare_tx: Prepare for transmitting a management frame for association
* before associated. In multi-channel scenarios, a virtual interface is
* bound to a channel before it is associated, but as it isn't associated
* yet it need not necessarily be given airtime, in particular since any
* transmission to a P2P GO needs to be synchronized against the GO's
* powersave state. mac80211 will call this function before transmitting a
* management frame prior to having successfully associated to allow the
* driver to give it channel time for the transmission, to get a response
* and to be able to synchronize with the GO.
* The callback will be called before each transmission and upon return
* mac80211 will transmit the frame right away.
* The callback is optional and can (should!) sleep.
*
* @mgd_protect_tdls_discover: Protect a TDLS discovery session. After sending
* a TDLS discovery-request, we expect a reply to arrive on the AP's
* channel. We must stay on the channel (no PSM, scan, etc.), since a TDLS
* setup-response is a direct packet not buffered by the AP.
* mac80211 will call this function just before the transmission of a TDLS
* discovery-request. The recommended period of protection is at least
* 2 * (DTIM period).
* The callback is optional and can sleep.
*
* @add_chanctx: Notifies device driver about new channel context creation.
* @remove_chanctx: Notifies device driver about channel context destruction.
* @change_chanctx: Notifies device driver about channel context changes that
* may happen when combining different virtual interfaces on the same
* channel context with different settings
* @assign_vif_chanctx: Notifies device driver about channel context being bound
* to vif. Possible use is for hw queue remapping.
* @unassign_vif_chanctx: Notifies device driver about channel context being
* unbound from vif.
* @switch_vif_chanctx: switch a number of vifs from one chanctx to
* another, as specified in the list of
* @ieee80211_vif_chanctx_switch passed to the driver, according
* to the mode defined in &ieee80211_chanctx_switch_mode.
*
* @start_ap: Start operation on the AP interface, this is called after all the
* information in bss_conf is set and beacon can be retrieved. A channel
* context is bound before this is called. Note that if the driver uses
* software scan or ROC, this (and @stop_ap) isn't called when the AP is
* just "paused" for scanning/ROC, which is indicated by the beacon being
* disabled/enabled via @bss_info_changed.
* @stop_ap: Stop operation on the AP interface.
*
* @restart_complete: Called after a call to ieee80211_restart_hw(), when the
* reconfiguration has completed. This can help the driver implement the
* reconfiguration step. Also called when reconfiguring because the
* driver's resume function returned 1, as this is just like an "inline"
* hardware restart. This callback may sleep.
*
* @ipv6_addr_change: IPv6 address assignment on the given interface changed.
* Currently, this is only called for managed or P2P client interfaces.
* This callback is optional; it must not sleep.
*
* @channel_switch_beacon: Starts a channel switch to a new channel.
* Beacons are modified to include CSA or ECSA IEs before calling this
* function. The corresponding count fields in these IEs must be
* decremented, and when they reach 1 the driver must call
* ieee80211_csa_finish(). Drivers which use ieee80211_beacon_get()
* get the csa counter decremented by mac80211, but must check if it is
* 1 using ieee80211_csa_is_complete() after the beacon has been
* transmitted and then call ieee80211_csa_finish().
* If the CSA count starts as zero or 1, this function will not be called,
* since there won't be any time to beacon before the switch anyway.
*
* @join_ibss: Join an IBSS (on an IBSS interface); this is called after all
* information in bss_conf is set up and the beacon can be retrieved. A
* channel context is bound before this is called.
* @leave_ibss: Leave the IBSS again.
*
* @get_expected_throughput: extract the expected throughput towards the
* specified station. The returned value is expressed in Kbps. It returns 0
* if the RC algorithm does not have proper data to provide.
*/
struct ieee80211_ops {
void (*tx)(struct ieee80211_hw *hw,
struct ieee80211_tx_control *control,
struct sk_buff *skb);
int (*start)(struct ieee80211_hw *hw);
void (*stop)(struct ieee80211_hw *hw);
#ifdef CONFIG_PM
int (*suspend)(struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan);
int (*resume)(struct ieee80211_hw *hw);
void (*set_wakeup)(struct ieee80211_hw *hw, bool enabled);
#endif
int (*add_interface)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
int (*change_interface)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum nl80211_iftype new_type, bool p2p);
void (*remove_interface)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
int (*config)(struct ieee80211_hw *hw, u32 changed);
void (*bss_info_changed)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u32 changed);
int (*start_ap)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
void (*stop_ap)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
u64 (*prepare_multicast)(struct ieee80211_hw *hw,
struct netdev_hw_addr_list *mc_list);
void (*configure_filter)(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,
u64 multicast);
int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
bool set);
int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
struct ieee80211_vif *vif, struct ieee80211_sta *sta,
struct ieee80211_key_conf *key);
void (*update_tkip_key)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_key_conf *conf,
struct ieee80211_sta *sta,
u32 iv32, u16 *phase1key);
void (*set_rekey_data)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct cfg80211_gtk_rekey_data *data);
void (*set_default_unicast_key)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, int idx);
int (*hw_scan)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_scan_request *req);
void (*cancel_hw_scan)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
int (*sched_scan_start)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct cfg80211_sched_scan_request *req,
struct ieee80211_scan_ies *ies);
int (*sched_scan_stop)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
void (*sw_scan_start)(struct ieee80211_hw *hw);
void (*sw_scan_complete)(struct ieee80211_hw *hw);
int (*get_stats)(struct ieee80211_hw *hw,
struct ieee80211_low_level_stats *stats);
void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
u32 *iv32, u16 *iv16);
int (*set_frag_threshold)(struct ieee80211_hw *hw, u32 value);
int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
int (*sta_add)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
int (*sta_remove)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
#ifdef CONFIG_MAC80211_DEBUGFS
void (*sta_add_debugfs)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct dentry *dir);
void (*sta_remove_debugfs)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct dentry *dir);
#endif
void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
enum sta_notify_cmd, struct ieee80211_sta *sta);
int (*sta_state)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
enum ieee80211_sta_state old_state,
enum ieee80211_sta_state new_state);
void (*sta_pre_rcu_remove)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
void (*sta_rc_update)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
u32 changed);
int (*conf_tx)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u16 ac,
const struct ieee80211_tx_queue_params *params);
u64 (*get_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
void (*set_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
u64 tsf);
void (*reset_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
int (*tx_last_beacon)(struct ieee80211_hw *hw);
int (*ampdu_action)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum ieee80211_ampdu_mlme_action action,
struct ieee80211_sta *sta, u16 tid, u16 *ssn,
u8 buf_size);
int (*get_survey)(struct ieee80211_hw *hw, int idx,
struct survey_info *survey);
void (*rfkill_poll)(struct ieee80211_hw *hw);
void (*set_coverage_class)(struct ieee80211_hw *hw, u8 coverage_class);
#ifdef CONFIG_NL80211_TESTMODE
int (*testmode_cmd)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
void *data, int len);
int (*testmode_dump)(struct ieee80211_hw *hw, struct sk_buff *skb,
struct netlink_callback *cb,
void *data, int len);
#endif
void (*flush)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
u32 queues, bool drop);
void (*channel_switch)(struct ieee80211_hw *hw,
struct ieee80211_channel_switch *ch_switch);
int (*set_antenna)(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
int (*get_antenna)(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
int (*remain_on_channel)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_channel *chan,
int duration,
enum ieee80211_roc_type type);
int (*cancel_remain_on_channel)(struct ieee80211_hw *hw);
int (*set_ringparam)(struct ieee80211_hw *hw, u32 tx, u32 rx);
void (*get_ringparam)(struct ieee80211_hw *hw,
u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
bool (*tx_frames_pending)(struct ieee80211_hw *hw);
int (*set_bitrate_mask)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
const struct cfg80211_bitrate_mask *mask);
void (*rssi_callback)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum ieee80211_rssi_event rssi_event);
void (*allow_buffered_frames)(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
u16 tids, int num_frames,
enum ieee80211_frame_release_type reason,
bool more_data);
void (*release_buffered_frames)(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
u16 tids, int num_frames,
enum ieee80211_frame_release_type reason,
bool more_data);
int (*get_et_sset_count)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, int sset);
void (*get_et_stats)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ethtool_stats *stats, u64 *data);
void (*get_et_strings)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
u32 sset, u8 *data);
int (*get_rssi)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_sta *sta, s8 *rssi_dbm);
void (*mgd_prepare_tx)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
void (*mgd_protect_tdls_discover)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
int (*add_chanctx)(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx);
void (*remove_chanctx)(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx);
void (*change_chanctx)(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *ctx,
u32 changed);
int (*assign_vif_chanctx)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_chanctx_conf *ctx);
void (*unassign_vif_chanctx)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_chanctx_conf *ctx);
int (*switch_vif_chanctx)(struct ieee80211_hw *hw,
struct ieee80211_vif_chanctx_switch *vifs,
int n_vifs,
enum ieee80211_chanctx_switch_mode mode);
void (*restart_complete)(struct ieee80211_hw *hw);
#if IS_ENABLED(CONFIG_IPV6)
void (*ipv6_addr_change)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct inet6_dev *idev);
#endif
void (*channel_switch_beacon)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct cfg80211_chan_def *chandef);
int (*join_ibss)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
void (*leave_ibss)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
u32 (*get_expected_throughput)(struct ieee80211_sta *sta);
};
/**
* ieee80211_alloc_hw - Allocate a new hardware device
*
* This must be called once for each hardware device. The returned pointer
* must be used to refer to this device when calling other functions.
* mac80211 allocates a private data area for the driver pointed to by
* @priv in &struct ieee80211_hw, the size of this area is given as
* @priv_data_len.
*
* @priv_data_len: length of private data
* @ops: callbacks for this device
*
* Return: A pointer to the new hardware device, or %NULL on error.
*/
struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
const struct ieee80211_ops *ops);
/**
* ieee80211_register_hw - Register hardware device
*
* You must call this function before any other functions in
* mac80211. Note that before a hardware can be registered, you
* need to fill the contained wiphy's information.
*
* @hw: the device to register as returned by ieee80211_alloc_hw()
*
* Return: 0 on success. An error code otherwise.
*/
int ieee80211_register_hw(struct ieee80211_hw *hw);
/**
* struct ieee80211_tpt_blink - throughput blink description
* @throughput: throughput in Kbit/sec
* @blink_time: blink time in milliseconds
* (full cycle, ie. one off + one on period)
*/
struct ieee80211_tpt_blink {
int throughput;
int blink_time;
};
/**
* enum ieee80211_tpt_led_trigger_flags - throughput trigger flags
* @IEEE80211_TPT_LEDTRIG_FL_RADIO: enable blinking with radio
* @IEEE80211_TPT_LEDTRIG_FL_WORK: enable blinking when working
* @IEEE80211_TPT_LEDTRIG_FL_CONNECTED: enable blinking when at least one
* interface is connected in some way, including being an AP
*/
enum ieee80211_tpt_led_trigger_flags {
IEEE80211_TPT_LEDTRIG_FL_RADIO = BIT(0),
IEEE80211_TPT_LEDTRIG_FL_WORK = BIT(1),
IEEE80211_TPT_LEDTRIG_FL_CONNECTED = BIT(2),
};
#ifdef CONFIG_MAC80211_LEDS
char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
char *__ieee80211_create_tpt_led_trigger(struct ieee80211_hw *hw,
unsigned int flags,
const struct ieee80211_tpt_blink *blink_table,
unsigned int blink_table_len);
#endif
/**
* ieee80211_get_tx_led_name - get name of TX LED
*
* mac80211 creates a transmit LED trigger for each wireless hardware
* that can be used to drive LEDs if your driver registers a LED device.
* This function returns the name (or %NULL if not configured for LEDs)
* of the trigger so you can automatically link the LED device.
*
* @hw: the hardware to get the LED trigger name for
*
* Return: The name of the LED trigger. %NULL if not configured for LEDs.
*/
static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
{
#ifdef CONFIG_MAC80211_LEDS
return __ieee80211_get_tx_led_name(hw);
#else
return NULL;
#endif
}
/**
* ieee80211_get_rx_led_name - get name of RX LED
*
* mac80211 creates a receive LED trigger for each wireless hardware
* that can be used to drive LEDs if your driver registers a LED device.
* This function returns the name (or %NULL if not configured for LEDs)
* of the trigger so you can automatically link the LED device.
*
* @hw: the hardware to get the LED trigger name for
*
* Return: The name of the LED trigger. %NULL if not configured for LEDs.
*/
static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
{
#ifdef CONFIG_MAC80211_LEDS
return __ieee80211_get_rx_led_name(hw);
#else
return NULL;
#endif
}
/**
* ieee80211_get_assoc_led_name - get name of association LED
*
* mac80211 creates a association LED trigger for each wireless hardware
* that can be used to drive LEDs if your driver registers a LED device.
* This function returns the name (or %NULL if not configured for LEDs)
* of the trigger so you can automatically link the LED device.
*
* @hw: the hardware to get the LED trigger name for
*
* Return: The name of the LED trigger. %NULL if not configured for LEDs.
*/
static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
{
#ifdef CONFIG_MAC80211_LEDS
return __ieee80211_get_assoc_led_name(hw);
#else
return NULL;
#endif
}
/**
* ieee80211_get_radio_led_name - get name of radio LED
*
* mac80211 creates a radio change LED trigger for each wireless hardware
* that can be used to drive LEDs if your driver registers a LED device.
* This function returns the name (or %NULL if not configured for LEDs)
* of the trigger so you can automatically link the LED device.
*
* @hw: the hardware to get the LED trigger name for
*
* Return: The name of the LED trigger. %NULL if not configured for LEDs.
*/
static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
{
#ifdef CONFIG_MAC80211_LEDS
return __ieee80211_get_radio_led_name(hw);
#else
return NULL;
#endif
}
/**
* ieee80211_create_tpt_led_trigger - create throughput LED trigger
* @hw: the hardware to create the trigger for
* @flags: trigger flags, see &enum ieee80211_tpt_led_trigger_flags
* @blink_table: the blink table -- needs to be ordered by throughput
* @blink_table_len: size of the blink table
*
* Return: %NULL (in case of error, or if no LED triggers are
* configured) or the name of the new trigger.
*
* Note: This function must be called before ieee80211_register_hw().
*/
static inline char *
ieee80211_create_tpt_led_trigger(struct ieee80211_hw *hw, unsigned int flags,
const struct ieee80211_tpt_blink *blink_table,
unsigned int blink_table_len)
{
#ifdef CONFIG_MAC80211_LEDS
return __ieee80211_create_tpt_led_trigger(hw, flags, blink_table,
blink_table_len);
#else
return NULL;
#endif
}
/**
* ieee80211_unregister_hw - Unregister a hardware device
*
* This function instructs mac80211 to free allocated resources
* and unregister netdevices from the networking subsystem.
*
* @hw: the hardware to unregister
*/
void ieee80211_unregister_hw(struct ieee80211_hw *hw);
/**
* ieee80211_free_hw - free hardware descriptor
*
* This function frees everything that was allocated, including the
* private data for the driver. You must call ieee80211_unregister_hw()
* before calling this function.
*
* @hw: the hardware to free
*/
void ieee80211_free_hw(struct ieee80211_hw *hw);
/**
* ieee80211_restart_hw - restart hardware completely
*
* Call this function when the hardware was restarted for some reason
* (hardware error, ...) and the driver is unable to restore its state
* by itself. mac80211 assumes that at this point the driver/hardware
* is completely uninitialised and stopped, it starts the process by
* calling the ->start() operation. The driver will need to reset all
* internal state that it has prior to calling this function.
*
* @hw: the hardware to restart
*/
void ieee80211_restart_hw(struct ieee80211_hw *hw);
/**
* ieee80211_napi_add - initialize mac80211 NAPI context
* @hw: the hardware to initialize the NAPI context on
* @napi: the NAPI context to initialize
* @napi_dev: dummy NAPI netdevice, here to not waste the space if the
* driver doesn't use NAPI
* @poll: poll function
* @weight: default weight
*
* See also netif_napi_add().
*/
void ieee80211_napi_add(struct ieee80211_hw *hw, struct napi_struct *napi,
struct net_device *napi_dev,
int (*poll)(struct napi_struct *, int),
int weight);
/**
* ieee80211_rx - receive frame
*
* Use this function to hand received frames to mac80211. The receive
* buffer in @skb must start with an IEEE 802.11 header. In case of a
* paged @skb is used, the driver is recommended to put the ieee80211
* header of the frame on the linear part of the @skb to avoid memory
* allocation and/or memcpy by the stack.
*
* This function may not be called in IRQ context. Calls to this function
* for a single hardware must be synchronized against each other. Calls to
* this function, ieee80211_rx_ni() and ieee80211_rx_irqsafe() may not be
* mixed for a single hardware. Must not run concurrently with
* ieee80211_tx_status() or ieee80211_tx_status_ni().
*
* In process context use instead ieee80211_rx_ni().
*
* @hw: the hardware this frame came in on
* @skb: the buffer to receive, owned by mac80211 after this call
*/
void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb);
/**
* ieee80211_rx_irqsafe - receive frame
*
* Like ieee80211_rx() but can be called in IRQ context
* (internally defers to a tasklet.)
*
* Calls to this function, ieee80211_rx() or ieee80211_rx_ni() may not
* be mixed for a single hardware.Must not run concurrently with
* ieee80211_tx_status() or ieee80211_tx_status_ni().
*
* @hw: the hardware this frame came in on
* @skb: the buffer to receive, owned by mac80211 after this call
*/
void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb);
/**
* ieee80211_rx_ni - receive frame (in process context)
*
* Like ieee80211_rx() but can be called in process context
* (internally disables bottom halves).
*
* Calls to this function, ieee80211_rx() and ieee80211_rx_irqsafe() may
* not be mixed for a single hardware. Must not run concurrently with
* ieee80211_tx_status() or ieee80211_tx_status_ni().
*
* @hw: the hardware this frame came in on
* @skb: the buffer to receive, owned by mac80211 after this call
*/
static inline void ieee80211_rx_ni(struct ieee80211_hw *hw,
struct sk_buff *skb)
{
local_bh_disable();
ieee80211_rx(hw, skb);
local_bh_enable();
}
/**
* ieee80211_sta_ps_transition - PS transition for connected sta
*
* When operating in AP mode with the %IEEE80211_HW_AP_LINK_PS
* flag set, use this function to inform mac80211 about a connected station
* entering/leaving PS mode.
*
* This function may not be called in IRQ context or with softirqs enabled.
*
* Calls to this function for a single hardware must be synchronized against
* each other.
*
* @sta: currently connected sta
* @start: start or stop PS
*
* Return: 0 on success. -EINVAL when the requested PS mode is already set.
*/
int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start);
/**
* ieee80211_sta_ps_transition_ni - PS transition for connected sta
* (in process context)
*
* Like ieee80211_sta_ps_transition() but can be called in process context
* (internally disables bottom halves). Concurrent call restriction still
* applies.
*
* @sta: currently connected sta
* @start: start or stop PS
*
* Return: Like ieee80211_sta_ps_transition().
*/
static inline int ieee80211_sta_ps_transition_ni(struct ieee80211_sta *sta,
bool start)
{
int ret;
local_bh_disable();
ret = ieee80211_sta_ps_transition(sta, start);
local_bh_enable();
return ret;
}
/*
* The TX headroom reserved by mac80211 for its own tx_status functions.
* This is enough for the radiotap header.
*/
#define IEEE80211_TX_STATUS_HEADROOM 14
/**
* ieee80211_sta_set_buffered - inform mac80211 about driver-buffered frames
* @sta: &struct ieee80211_sta pointer for the sleeping station
* @tid: the TID that has buffered frames
* @buffered: indicates whether or not frames are buffered for this TID
*
* If a driver buffers frames for a powersave station instead of passing
* them back to mac80211 for retransmission, the station may still need
* to be told that there are buffered frames via the TIM bit.
*
* This function informs mac80211 whether or not there are frames that are
* buffered in the driver for a given TID; mac80211 can then use this data
* to set the TIM bit (NOTE: This may call back into the driver's set_tim
* call! Beware of the locking!)
*
* If all frames are released to the station (due to PS-poll or uAPSD)
* then the driver needs to inform mac80211 that there no longer are
* frames buffered. However, when the station wakes up mac80211 assumes
* that all buffered frames will be transmitted and clears this data,
* drivers need to make sure they inform mac80211 about all buffered
* frames on the sleep transition (sta_notify() with %STA_NOTIFY_SLEEP).
*
* Note that technically mac80211 only needs to know this per AC, not per
* TID, but since driver buffering will inevitably happen per TID (since
* it is related to aggregation) it is easier to make mac80211 map the
* TID to the AC as required instead of keeping track in all drivers that
* use this API.
*/
void ieee80211_sta_set_buffered(struct ieee80211_sta *sta,
u8 tid, bool buffered);
/**
* ieee80211_get_tx_rates - get the selected transmit rates for a packet
*
* Call this function in a driver with per-packet rate selection support
* to combine the rate info in the packet tx info with the most recent
* rate selection table for the station entry.
*
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @sta: the receiver station to which this packet is sent.
* @skb: the frame to be transmitted.
* @dest: buffer for extracted rate/retry information
* @max_rates: maximum number of rates to fetch
*/
void ieee80211_get_tx_rates(struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct sk_buff *skb,
struct ieee80211_tx_rate *dest,
int max_rates);
/**
* ieee80211_tx_status - transmit status callback
*
* Call this function for all transmitted frames after they have been
* transmitted. It is permissible to not call this function for
* multicast frames but this can affect statistics.
*
* This function may not be called in IRQ context. Calls to this function
* for a single hardware must be synchronized against each other. Calls
* to this function, ieee80211_tx_status_ni() and ieee80211_tx_status_irqsafe()
* may not be mixed for a single hardware. Must not run concurrently with
* ieee80211_rx() or ieee80211_rx_ni().
*
* @hw: the hardware the frame was transmitted by
* @skb: the frame that was transmitted, owned by mac80211 after this call
*/
void ieee80211_tx_status(struct ieee80211_hw *hw,
struct sk_buff *skb);
/**
* ieee80211_tx_status_ni - transmit status callback (in process context)
*
* Like ieee80211_tx_status() but can be called in process context.
*
* Calls to this function, ieee80211_tx_status() and
* ieee80211_tx_status_irqsafe() may not be mixed
* for a single hardware.
*
* @hw: the hardware the frame was transmitted by
* @skb: the frame that was transmitted, owned by mac80211 after this call
*/
static inline void ieee80211_tx_status_ni(struct ieee80211_hw *hw,
struct sk_buff *skb)
{
local_bh_disable();
ieee80211_tx_status(hw, skb);
local_bh_enable();
}
/**
* ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
*
* Like ieee80211_tx_status() but can be called in IRQ context
* (internally defers to a tasklet.)
*
* Calls to this function, ieee80211_tx_status() and
* ieee80211_tx_status_ni() may not be mixed for a single hardware.
*
* @hw: the hardware the frame was transmitted by
* @skb: the frame that was transmitted, owned by mac80211 after this call
*/
void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
struct sk_buff *skb);
/**
* ieee80211_report_low_ack - report non-responding station
*
* When operating in AP-mode, call this function to report a non-responding
* connected STA.
*
* @sta: the non-responding connected sta
* @num_packets: number of packets sent to @sta without a response
*/
void ieee80211_report_low_ack(struct ieee80211_sta *sta, u32 num_packets);
#define IEEE80211_MAX_CSA_COUNTERS_NUM 2
/**
* struct ieee80211_mutable_offsets - mutable beacon offsets
* @tim_offset: position of TIM element
* @tim_length: size of TIM element
* @csa_counter_offs: array of IEEE80211_MAX_CSA_COUNTERS_NUM offsets
* to CSA counters. This array can contain zero values which
* should be ignored.
*/
struct ieee80211_mutable_offsets {
u16 tim_offset;
u16 tim_length;
u16 csa_counter_offs[IEEE80211_MAX_CSA_COUNTERS_NUM];
};
/**
* ieee80211_beacon_get_template - beacon template generation function
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @offs: &struct ieee80211_mutable_offsets pointer to struct that will
* receive the offsets that may be updated by the driver.
*
* If the driver implements beaconing modes, it must use this function to
* obtain the beacon template.
*
* This function should be used if the beacon frames are generated by the
* device, and then the driver must use the returned beacon as the template
* The driver or the device are responsible to update the DTIM and, when
* applicable, the CSA count.
*
* The driver is responsible for freeing the returned skb.
*
* Return: The beacon template. %NULL on error.
*/
struct sk_buff *
ieee80211_beacon_get_template(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_mutable_offsets *offs);
/**
* ieee80211_beacon_get_tim - beacon generation function
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @tim_offset: pointer to variable that will receive the TIM IE offset.
* Set to 0 if invalid (in non-AP modes).
* @tim_length: pointer to variable that will receive the TIM IE length,
* (including the ID and length bytes!).
* Set to 0 if invalid (in non-AP modes).
*
* If the driver implements beaconing modes, it must use this function to
* obtain the beacon frame.
*
* If the beacon frames are generated by the host system (i.e., not in
* hardware/firmware), the driver uses this function to get each beacon
* frame from mac80211 -- it is responsible for calling this function exactly
* once before the beacon is needed (e.g. based on hardware interrupt).
*
* The driver is responsible for freeing the returned skb.
*
* Return: The beacon template. %NULL on error.
*/
struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
u16 *tim_offset, u16 *tim_length);
/**
* ieee80211_beacon_get - beacon generation function
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
*
* See ieee80211_beacon_get_tim().
*
* Return: See ieee80211_beacon_get_tim().
*/
static inline struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
return ieee80211_beacon_get_tim(hw, vif, NULL, NULL);
}
/**
* ieee80211_csa_update_counter - request mac80211 to decrement the csa counter
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
*
* The csa counter should be updated after each beacon transmission.
* This function is called implicitly when
* ieee80211_beacon_get/ieee80211_beacon_get_tim are called, however if the
* beacon frames are generated by the device, the driver should call this
* function after each beacon transmission to sync mac80211's csa counters.
*
* Return: new csa counter value
*/
u8 ieee80211_csa_update_counter(struct ieee80211_vif *vif);
/**
* ieee80211_csa_finish - notify mac80211 about channel switch
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
*
* After a channel switch announcement was scheduled and the counter in this
* announcement hits 1, this function must be called by the driver to
* notify mac80211 that the channel can be changed.
*/
void ieee80211_csa_finish(struct ieee80211_vif *vif);
/**
* ieee80211_csa_is_complete - find out if counters reached 1
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
*
* This function returns whether the channel switch counters reached zero.
*/
bool ieee80211_csa_is_complete(struct ieee80211_vif *vif);
/**
* ieee80211_proberesp_get - retrieve a Probe Response template
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
*
* Creates a Probe Response template which can, for example, be uploaded to
* hardware. The destination address should be set by the caller.
*
* Can only be called in AP mode.
*
* Return: The Probe Response template. %NULL on error.
*/
struct sk_buff *ieee80211_proberesp_get(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
/**
* ieee80211_pspoll_get - retrieve a PS Poll template
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
*
* Creates a PS Poll a template which can, for example, uploaded to
* hardware. The template must be updated after association so that correct
* AID, BSSID and MAC address is used.
*
* Note: Caller (or hardware) is responsible for setting the
* &IEEE80211_FCTL_PM bit.
*
* Return: The PS Poll template. %NULL on error.
*/
struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
/**
* ieee80211_nullfunc_get - retrieve a nullfunc template
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
*
* Creates a Nullfunc template which can, for example, uploaded to
* hardware. The template must be updated after association so that correct
* BSSID and address is used.
*
* Note: Caller (or hardware) is responsible for setting the
* &IEEE80211_FCTL_PM bit as well as Duration and Sequence Control fields.
*
* Return: The nullfunc template. %NULL on error.
*/
struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
/**
* ieee80211_probereq_get - retrieve a Probe Request template
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @ssid: SSID buffer
* @ssid_len: length of SSID
* @tailroom: tailroom to reserve at end of SKB for IEs
*
* Creates a Probe Request template which can, for example, be uploaded to
* hardware.
*
* Return: The Probe Request template. %NULL on error.
*/
struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
const u8 *ssid, size_t ssid_len,
size_t tailroom);
/**
* ieee80211_rts_get - RTS frame generation function
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @frame: pointer to the frame that is going to be protected by the RTS.
* @frame_len: the frame length (in octets).
* @frame_txctl: &struct ieee80211_tx_info of the frame.
* @rts: The buffer where to store the RTS frame.
*
* If the RTS frames are generated by the host system (i.e., not in
* hardware/firmware), the low-level driver uses this function to receive
* the next RTS frame from the 802.11 code. The low-level is responsible
* for calling this function before and RTS frame is needed.
*/
void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
const void *frame, size_t frame_len,
const struct ieee80211_tx_info *frame_txctl,
struct ieee80211_rts *rts);
/**
* ieee80211_rts_duration - Get the duration field for an RTS frame
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @frame_len: the length of the frame that is going to be protected by the RTS.
* @frame_txctl: &struct ieee80211_tx_info of the frame.
*
* If the RTS is generated in firmware, but the host system must provide
* the duration field, the low-level driver uses this function to receive
* the duration field value in little-endian byteorder.
*
* Return: The duration.
*/
__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, size_t frame_len,
const struct ieee80211_tx_info *frame_txctl);
/**
* ieee80211_ctstoself_get - CTS-to-self frame generation function
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @frame: pointer to the frame that is going to be protected by the CTS-to-self.
* @frame_len: the frame length (in octets).
* @frame_txctl: &struct ieee80211_tx_info of the frame.
* @cts: The buffer where to store the CTS-to-self frame.
*
* If the CTS-to-self frames are generated by the host system (i.e., not in
* hardware/firmware), the low-level driver uses this function to receive
* the next CTS-to-self frame from the 802.11 code. The low-level is responsible
* for calling this function before and CTS-to-self frame is needed.
*/
void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
const void *frame, size_t frame_len,
const struct ieee80211_tx_info *frame_txctl,
struct ieee80211_cts *cts);
/**
* ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
* @frame_txctl: &struct ieee80211_tx_info of the frame.
*
* If the CTS-to-self is generated in firmware, but the host system must provide
* the duration field, the low-level driver uses this function to receive
* the duration field value in little-endian byteorder.
*
* Return: The duration.
*/
__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
size_t frame_len,
const struct ieee80211_tx_info *frame_txctl);
/**
* ieee80211_generic_frame_duration - Calculate the duration field for a frame
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @band: the band to calculate the frame duration on
* @frame_len: the length of the frame.
* @rate: the rate at which the frame is going to be transmitted.
*
* Calculate the duration field of some generic frame, given its
* length and transmission rate (in 100kbps).
*
* Return: The duration.
*/
__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum ieee80211_band band,
size_t frame_len,
struct ieee80211_rate *rate);
/**
* ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
*
* Function for accessing buffered broadcast and multicast frames. If
* hardware/firmware does not implement buffering of broadcast/multicast
* frames when power saving is used, 802.11 code buffers them in the host
* memory. The low-level driver uses this function to fetch next buffered
* frame. In most cases, this is used when generating beacon frame.
*
* Return: A pointer to the next buffered skb or NULL if no more buffered
* frames are available.
*
* Note: buffered frames are returned only after DTIM beacon frame was
* generated with ieee80211_beacon_get() and the low-level driver must thus
* call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
* NULL if the previous generated beacon was not DTIM, so the low-level driver
* does not need to check for DTIM beacons separately and should be able to
* use common code for all beacons.
*/
struct sk_buff *
ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
/**
* ieee80211_get_tkip_p1k_iv - get a TKIP phase 1 key for IV32
*
* This function returns the TKIP phase 1 key for the given IV32.
*
* @keyconf: the parameter passed with the set key
* @iv32: IV32 to get the P1K for
* @p1k: a buffer to which the key will be written, as 5 u16 values
*/
void ieee80211_get_tkip_p1k_iv(struct ieee80211_key_conf *keyconf,
u32 iv32, u16 *p1k);
/**
* ieee80211_get_tkip_p1k - get a TKIP phase 1 key
*
* This function returns the TKIP phase 1 key for the IV32 taken
* from the given packet.
*
* @keyconf: the parameter passed with the set key
* @skb: the packet to take the IV32 value from that will be encrypted
* with this P1K
* @p1k: a buffer to which the key will be written, as 5 u16 values
*/
static inline void ieee80211_get_tkip_p1k(struct ieee80211_key_conf *keyconf,
struct sk_buff *skb, u16 *p1k)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
const u8 *data = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
u32 iv32 = get_unaligned_le32(&data[4]);
ieee80211_get_tkip_p1k_iv(keyconf, iv32, p1k);
}
/**
* ieee80211_get_tkip_rx_p1k - get a TKIP phase 1 key for RX
*
* This function returns the TKIP phase 1 key for the given IV32
* and transmitter address.
*
* @keyconf: the parameter passed with the set key
* @ta: TA that will be used with the key
* @iv32: IV32 to get the P1K for
* @p1k: a buffer to which the key will be written, as 5 u16 values
*/
void ieee80211_get_tkip_rx_p1k(struct ieee80211_key_conf *keyconf,
const u8 *ta, u32 iv32, u16 *p1k);
/**
* ieee80211_get_tkip_p2k - get a TKIP phase 2 key
*
* This function computes the TKIP RC4 key for the IV values
* in the packet.
*
* @keyconf: the parameter passed with the set key
* @skb: the packet to take the IV32/IV16 values from that will be
* encrypted with this key
* @p2k: a buffer to which the key will be written, 16 bytes
*/
void ieee80211_get_tkip_p2k(struct ieee80211_key_conf *keyconf,
struct sk_buff *skb, u8 *p2k);
/**
* ieee80211_aes_cmac_calculate_k1_k2 - calculate the AES-CMAC sub keys
*
* This function computes the two AES-CMAC sub-keys, based on the
* previously installed master key.
*
* @keyconf: the parameter passed with the set key
* @k1: a buffer to be filled with the 1st sub-key
* @k2: a buffer to be filled with the 2nd sub-key
*/
void ieee80211_aes_cmac_calculate_k1_k2(struct ieee80211_key_conf *keyconf,
u8 *k1, u8 *k2);
/**
* struct ieee80211_key_seq - key sequence counter
*
* @tkip: TKIP data, containing IV32 and IV16 in host byte order
* @ccmp: PN data, most significant byte first (big endian,
* reverse order than in packet)
* @aes_cmac: PN data, most significant byte first (big endian,
* reverse order than in packet)
*/
struct ieee80211_key_seq {
union {
struct {
u32 iv32;
u16 iv16;
} tkip;
struct {
u8 pn[6];
} ccmp;
struct {
u8 pn[6];
} aes_cmac;
};
};
/**
* ieee80211_get_key_tx_seq - get key TX sequence counter
*
* @keyconf: the parameter passed with the set key
* @seq: buffer to receive the sequence data
*
* This function allows a driver to retrieve the current TX IV/PN
* for the given key. It must not be called if IV generation is
* offloaded to the device.
*
* Note that this function may only be called when no TX processing
* can be done concurrently, for example when queues are stopped
* and the stop has been synchronized.
*/
void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
struct ieee80211_key_seq *seq);
/**
* ieee80211_get_key_rx_seq - get key RX sequence counter
*
* @keyconf: the parameter passed with the set key
* @tid: The TID, or -1 for the management frame value (CCMP only);
* the value on TID 0 is also used for non-QoS frames. For
* CMAC, only TID 0 is valid.
* @seq: buffer to receive the sequence data
*
* This function allows a driver to retrieve the current RX IV/PNs
* for the given key. It must not be called if IV checking is done
* by the device and not by mac80211.
*
* Note that this function may only be called when no RX processing
* can be done concurrently.
*/
void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
int tid, struct ieee80211_key_seq *seq);
/**
* ieee80211_set_key_tx_seq - set key TX sequence counter
*
* @keyconf: the parameter passed with the set key
* @seq: new sequence data
*
* This function allows a driver to set the current TX IV/PNs for the
* given key. This is useful when resuming from WoWLAN sleep and the
* device may have transmitted frames using the PTK, e.g. replies to
* ARP requests.
*
* Note that this function may only be called when no TX processing
* can be done concurrently.
*/
void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf,
struct ieee80211_key_seq *seq);
/**
* ieee80211_set_key_rx_seq - set key RX sequence counter
*
* @keyconf: the parameter passed with the set key
* @tid: The TID, or -1 for the management frame value (CCMP only);
* the value on TID 0 is also used for non-QoS frames. For
* CMAC, only TID 0 is valid.
* @seq: new sequence data
*
* This function allows a driver to set the current RX IV/PNs for the
* given key. This is useful when resuming from WoWLAN sleep and GTK
* rekey may have been done while suspended. It should not be called
* if IV checking is done by the device and not by mac80211.
*
* Note that this function may only be called when no RX processing
* can be done concurrently.
*/
void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
int tid, struct ieee80211_key_seq *seq);
/**
* ieee80211_remove_key - remove the given key
* @keyconf: the parameter passed with the set key
*
* Remove the given key. If the key was uploaded to the hardware at the
* time this function is called, it is not deleted in the hardware but
* instead assumed to have been removed already.
*
* Note that due to locking considerations this function can (currently)
* only be called during key iteration (ieee80211_iter_keys().)
*/
void ieee80211_remove_key(struct ieee80211_key_conf *keyconf);
/**
* ieee80211_gtk_rekey_add - add a GTK key from rekeying during WoWLAN
* @vif: the virtual interface to add the key on
* @keyconf: new key data
*
* When GTK rekeying was done while the system was suspended, (a) new
* key(s) will be available. These will be needed by mac80211 for proper
* RX processing, so this function allows setting them.
*
* The function returns the newly allocated key structure, which will
* have similar contents to the passed key configuration but point to
* mac80211-owned memory. In case of errors, the function returns an
* ERR_PTR(), use IS_ERR() etc.
*
* Note that this function assumes the key isn't added to hardware
* acceleration, so no TX will be done with the key. Since it's a GTK
* on managed (station) networks, this is true anyway. If the driver
* calls this function from the resume callback and subsequently uses
* the return code 1 to reconfigure the device, this key will be part
* of the reconfiguration.
*
* Note that the driver should also call ieee80211_set_key_rx_seq()
* for the new key for each TID to set up sequence counters properly.
*
* IMPORTANT: If this replaces a key that is present in the hardware,
* then it will attempt to remove it during this call. In many cases
* this isn't what you want, so call ieee80211_remove_key() first for
* the key that's being replaced.
*/
struct ieee80211_key_conf *
ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
struct ieee80211_key_conf *keyconf);
/**
* ieee80211_gtk_rekey_notify - notify userspace supplicant of rekeying
* @vif: virtual interface the rekeying was done on
* @bssid: The BSSID of the AP, for checking association
* @replay_ctr: the new replay counter after GTK rekeying
* @gfp: allocation flags
*/
void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
const u8 *replay_ctr, gfp_t gfp);
/**
* ieee80211_wake_queue - wake specific queue
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @queue: queue number (counted from zero).
*
* Drivers should use this function instead of netif_wake_queue.
*/
void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
/**
* ieee80211_stop_queue - stop specific queue
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @queue: queue number (counted from zero).
*
* Drivers should use this function instead of netif_stop_queue.
*/
void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
/**
* ieee80211_queue_stopped - test status of the queue
* @hw: pointer as obtained from ieee80211_alloc_hw().
* @queue: queue number (counted from zero).
*
* Drivers should use this function instead of netif_stop_queue.
*
* Return: %true if the queue is stopped. %false otherwise.
*/
int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
/**
* ieee80211_stop_queues - stop all queues
* @hw: pointer as obtained from ieee80211_alloc_hw().
*
* Drivers should use this function instead of netif_stop_queue.
*/
void ieee80211_stop_queues(struct ieee80211_hw *hw);
/**
* ieee80211_wake_queues - wake all queues
* @hw: pointer as obtained from ieee80211_alloc_hw().
*
* Drivers should use this function instead of netif_wake_queue.
*/
void ieee80211_wake_queues(struct ieee80211_hw *hw);
/**
* ieee80211_scan_completed - completed hardware scan
*
* When hardware scan offload is used (i.e. the hw_scan() callback is
* assigned) this function needs to be called by the driver to notify
* mac80211 that the scan finished. This function can be called from
* any context, including hardirq context.
*
* @hw: the hardware that finished the scan
* @aborted: set to true if scan was aborted
*/
void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
/**
* ieee80211_sched_scan_results - got results from scheduled scan
*
* When a scheduled scan is running, this function needs to be called by the
* driver whenever there are new scan results available.
*
* @hw: the hardware that is performing scheduled scans
*/
void ieee80211_sched_scan_results(struct ieee80211_hw *hw);
/**
* ieee80211_sched_scan_stopped - inform that the scheduled scan has stopped
*
* When a scheduled scan is running, this function can be called by
* the driver if it needs to stop the scan to perform another task.
* Usual scenarios are drivers that cannot continue the scheduled scan
* while associating, for instance.
*
* @hw: the hardware that is performing scheduled scans
*/
void ieee80211_sched_scan_stopped(struct ieee80211_hw *hw);
/**
* enum ieee80211_interface_iteration_flags - interface iteration flags
* @IEEE80211_IFACE_ITER_NORMAL: Iterate over all interfaces that have
* been added to the driver; However, note that during hardware
* reconfiguration (after restart_hw) it will iterate over a new
* interface and over all the existing interfaces even if they
* haven't been re-added to the driver yet.
* @IEEE80211_IFACE_ITER_RESUME_ALL: During resume, iterate over all
* interfaces, even if they haven't been re-added to the driver yet.
*/
enum ieee80211_interface_iteration_flags {
IEEE80211_IFACE_ITER_NORMAL = 0,
IEEE80211_IFACE_ITER_RESUME_ALL = BIT(0),
};
/**
* ieee80211_iterate_active_interfaces - iterate active interfaces
*
* This function iterates over the interfaces associated with a given
* hardware that are currently active and calls the callback for them.
* This function allows the iterator function to sleep, when the iterator
* function is atomic @ieee80211_iterate_active_interfaces_atomic can
* be used.
* Does not iterate over a new interface during add_interface().
*
* @hw: the hardware struct of which the interfaces should be iterated over
* @iter_flags: iteration flags, see &enum ieee80211_interface_iteration_flags
* @iterator: the iterator function to call
* @data: first argument of the iterator function
*/
void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
u32 iter_flags,
void (*iterator)(void *data, u8 *mac,
struct ieee80211_vif *vif),
void *data);
/**
* ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
*
* This function iterates over the interfaces associated with a given
* hardware that are currently active and calls the callback for them.
* This function requires the iterator callback function to be atomic,
* if that is not desired, use @ieee80211_iterate_active_interfaces instead.
* Does not iterate over a new interface during add_interface().
*
* @hw: the hardware struct of which the interfaces should be iterated over
* @iter_flags: iteration flags, see &enum ieee80211_interface_iteration_flags
* @iterator: the iterator function to call, cannot sleep
* @data: first argument of the iterator function
*/
void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
u32 iter_flags,
void (*iterator)(void *data,
u8 *mac,
struct ieee80211_vif *vif),
void *data);
/**
* ieee80211_iterate_active_interfaces_rtnl - iterate active interfaces
*
* This function iterates over the interfaces associated with a given
* hardware that are currently active and calls the callback for them.
* This version can only be used while holding the RTNL.
*
* @hw: the hardware struct of which the interfaces should be iterated over
* @iter_flags: iteration flags, see &enum ieee80211_interface_iteration_flags
* @iterator: the iterator function to call, cannot sleep
* @data: first argument of the iterator function
*/
void ieee80211_iterate_active_interfaces_rtnl(struct ieee80211_hw *hw,
u32 iter_flags,
void (*iterator)(void *data,
u8 *mac,
struct ieee80211_vif *vif),
void *data);
/**
* ieee80211_queue_work - add work onto the mac80211 workqueue
*
* Drivers and mac80211 use this to add work onto the mac80211 workqueue.
* This helper ensures drivers are not queueing work when they should not be.
*
* @hw: the hardware struct for the interface we are adding work for
* @work: the work we want to add onto the mac80211 workqueue
*/
void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work);
/**
* ieee80211_queue_delayed_work - add work onto the mac80211 workqueue
*
* Drivers and mac80211 use this to queue delayed work onto the mac80211
* workqueue.
*
* @hw: the hardware struct for the interface we are adding work for
* @dwork: delayable work to queue onto the mac80211 workqueue
* @delay: number of jiffies to wait before queueing
*/
void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
struct delayed_work *dwork,
unsigned long delay);
/**
* ieee80211_start_tx_ba_session - Start a tx Block Ack session.
* @sta: the station for which to start a BA session
* @tid: the TID to BA on.
* @timeout: session timeout value (in TUs)
*
* Return: success if addBA request was sent, failure otherwise
*
* Although mac80211/low level driver/user space application can estimate
* the need to start aggregation on a certain RA/TID, the session level
* will be managed by the mac80211.
*/
int ieee80211_start_tx_ba_session(struct ieee80211_sta *sta, u16 tid,
u16 timeout);
/**
* ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
* @vif: &struct ieee80211_vif pointer from the add_interface callback
* @ra: receiver address of the BA session recipient.
* @tid: the TID to BA on.
*
* This function must be called by low level driver once it has
* finished with preparations for the BA session. It can be called
* from any context.
*/
void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra,
u16 tid);
/**
* ieee80211_stop_tx_ba_session - Stop a Block Ack session.
* @sta: the station whose BA session to stop
* @tid: the TID to stop BA.
*
* Return: negative error if the TID is invalid, or no aggregation active
*
* Although mac80211/low level driver/user space application can estimate
* the need to stop aggregation on a certain RA/TID, the session level
* will be managed by the mac80211.
*/
int ieee80211_stop_tx_ba_session(struct ieee80211_sta *sta, u16 tid);
/**
* ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
* @vif: &struct ieee80211_vif pointer from the add_interface callback
* @ra: receiver address of the BA session recipient.
* @tid: the desired TID to BA on.
*
* This function must be called by low level driver once it has
* finished with preparations for the BA session tear down. It
* can be called from any context.
*/
void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra,
u16 tid);
/**
* ieee80211_find_sta - find a station
*
* @vif: virtual interface to look for station on
* @addr: station's address
*
* Return: The station, if found. %NULL otherwise.
*
* Note: This function must be called under RCU lock and the
* resulting pointer is only valid under RCU lock as well.
*/
struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
const u8 *addr);
/**
* ieee80211_find_sta_by_ifaddr - find a station on hardware
*
* @hw: pointer as obtained from ieee80211_alloc_hw()
* @addr: remote station's address
* @localaddr: local address (vif->sdata->vif.addr). Use NULL for 'any'.
*
* Return: The station, if found. %NULL otherwise.
*
* Note: This function must be called under RCU lock and the
* resulting pointer is only valid under RCU lock as well.
*
* NOTE: You may pass NULL for localaddr, but then you will just get
* the first STA that matches the remote address 'addr'.
* We can have multiple STA associated with multiple
* logical stations (e.g. consider a station connecting to another
* BSSID on the same AP hardware without disconnecting first).
* In this case, the result of this method with localaddr NULL
* is not reliable.
*
* DO NOT USE THIS FUNCTION with localaddr NULL if at all possible.
*/
struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
const u8 *addr,
const u8 *localaddr);
/**
* ieee80211_sta_block_awake - block station from waking up
* @hw: the hardware
* @pubsta: the station
* @block: whether to block or unblock
*
* Some devices require that all frames that are on the queues
* for a specific station that went to sleep are flushed before
* a poll response or frames after the station woke up can be
* delivered to that it. Note that such frames must be rejected
* by the driver as filtered, with the appropriate status flag.
*
* This function allows implementing this mode in a race-free
* manner.
*
* To do this, a driver must keep track of the number of frames
* still enqueued for a specific station. If this number is not
* zero when the station goes to sleep, the driver must call
* this function to force mac80211 to consider the station to
* be asleep regardless of the station's actual state. Once the
* number of outstanding frames reaches zero, the driver must
* call this function again to unblock the station. That will
* cause mac80211 to be able to send ps-poll responses, and if
* the station queried in the meantime then frames will also
* be sent out as a result of this. Additionally, the driver
* will be notified that the station woke up some time after
* it is unblocked, regardless of whether the station actually
* woke up while blocked or not.
*/
void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
struct ieee80211_sta *pubsta, bool block);
/**
* ieee80211_sta_eosp - notify mac80211 about end of SP
* @pubsta: the station
*
* When a device transmits frames in a way that it can't tell
* mac80211 in the TX status about the EOSP, it must clear the
* %IEEE80211_TX_STATUS_EOSP bit and call this function instead.
* This applies for PS-Poll as well as uAPSD.
*
* Note that just like with _tx_status() and _rx() drivers must
* not mix calls to irqsafe/non-irqsafe versions, this function
* must not be mixed with those either. Use the all irqsafe, or
* all non-irqsafe, don't mix!
*
* NB: the _irqsafe version of this function doesn't exist, no
* driver needs it right now. Don't call this function if
* you'd need the _irqsafe version, look at the git history
* and restore the _irqsafe version!
*/
void ieee80211_sta_eosp(struct ieee80211_sta *pubsta);
/**
* ieee80211_iter_keys - iterate keys programmed into the device
* @hw: pointer obtained from ieee80211_alloc_hw()
* @vif: virtual interface to iterate, may be %NULL for all
* @iter: iterator function that will be called for each key
* @iter_data: custom data to pass to the iterator function
*
* This function can be used to iterate all the keys known to
* mac80211, even those that weren't previously programmed into
* the device. This is intended for use in WoWLAN if the device
* needs reprogramming of the keys during suspend. Note that due
* to locking reasons, it is also only safe to call this at few
* spots since it must hold the RTNL and be able to sleep.
*
* The order in which the keys are iterated matches the order
* in which they were originally installed and handed to the
* set_key callback.
*/
void ieee80211_iter_keys(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
void (*iter)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ieee80211_key_conf *key,
void *data),
void *iter_data);
/**
* ieee80211_iter_chan_contexts_atomic - iterate channel contexts
* @hw: pointre obtained from ieee80211_alloc_hw().
* @iter: iterator function
* @iter_data: data passed to iterator function
*
* Iterate all active channel contexts. This function is atomic and
* doesn't acquire any locks internally that might be held in other
* places while calling into the driver.
*
* The iterator will not find a context that's being added (during
* the driver callback to add it) but will find it while it's being
* removed.
*
* Note that during hardware restart, all contexts that existed
* before the restart are considered already present so will be
* found while iterating, whether they've been re-added already
* or not.
*/
void ieee80211_iter_chan_contexts_atomic(
struct ieee80211_hw *hw,
void (*iter)(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *chanctx_conf,
void *data),
void *iter_data);
/**
* ieee80211_ap_probereq_get - retrieve a Probe Request template
* @hw: pointer obtained from ieee80211_alloc_hw().
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
*
* Creates a Probe Request template which can, for example, be uploaded to
* hardware. The template is filled with bssid, ssid and supported rate
* information. This function must only be called from within the
* .bss_info_changed callback function and only in managed mode. The function
* is only useful when the interface is associated, otherwise it will return
* %NULL.
*
* Return: The Probe Request template. %NULL on error.
*/
struct sk_buff *ieee80211_ap_probereq_get(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
/**
* ieee80211_beacon_loss - inform hardware does not receive beacons
*
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
*
* When beacon filtering is enabled with %IEEE80211_VIF_BEACON_FILTER and
* %IEEE80211_CONF_PS is set, the driver needs to inform whenever the
* hardware is not receiving beacons with this function.
*/
void ieee80211_beacon_loss(struct ieee80211_vif *vif);
/**
* ieee80211_connection_loss - inform hardware has lost connection to the AP
*
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
*
* When beacon filtering is enabled with %IEEE80211_VIF_BEACON_FILTER, and
* %IEEE80211_CONF_PS and %IEEE80211_HW_CONNECTION_MONITOR are set, the driver
* needs to inform if the connection to the AP has been lost.
* The function may also be called if the connection needs to be terminated
* for some other reason, even if %IEEE80211_HW_CONNECTION_MONITOR isn't set.
*
* This function will cause immediate change to disassociated state,
* without connection recovery attempts.
*/
void ieee80211_connection_loss(struct ieee80211_vif *vif);
/**
* ieee80211_resume_disconnect - disconnect from AP after resume
*
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
*
* Instructs mac80211 to disconnect from the AP after resume.
* Drivers can use this after WoWLAN if they know that the
* connection cannot be kept up, for example because keys were
* used while the device was asleep but the replay counters or
* similar cannot be retrieved from the device during resume.
*
* Note that due to implementation issues, if the driver uses
* the reconfiguration functionality during resume the interface
* will still be added as associated first during resume and then
* disconnect normally later.
*
* This function can only be called from the resume callback and
* the driver must not be holding any of its own locks while it
* calls this function, or at least not any locks it needs in the
* key configuration paths (if it supports HW crypto).
*/
void ieee80211_resume_disconnect(struct ieee80211_vif *vif);
/**
* ieee80211_cqm_rssi_notify - inform a configured connection quality monitoring
* rssi threshold triggered
*
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @rssi_event: the RSSI trigger event type
* @gfp: context flags
*
* When the %IEEE80211_VIF_SUPPORTS_CQM_RSSI is set, and a connection quality
* monitoring is configured with an rssi threshold, the driver will inform
* whenever the rssi level reaches the threshold.
*/
void ieee80211_cqm_rssi_notify(struct ieee80211_vif *vif,
enum nl80211_cqm_rssi_threshold_event rssi_event,
gfp_t gfp);
/**
* ieee80211_radar_detected - inform that a radar was detected
*
* @hw: pointer as obtained from ieee80211_alloc_hw()
*/
void ieee80211_radar_detected(struct ieee80211_hw *hw);
/**
* ieee80211_chswitch_done - Complete channel switch process
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @success: make the channel switch successful or not
*
* Complete the channel switch post-process: set the new operational channel
* and wake up the suspended queues.
*/
void ieee80211_chswitch_done(struct ieee80211_vif *vif, bool success);
/**
* ieee80211_request_smps - request SM PS transition
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @smps_mode: new SM PS mode
*
* This allows the driver to request an SM PS transition in managed
* mode. This is useful when the driver has more information than
* the stack about possible interference, for example by bluetooth.
*/
void ieee80211_request_smps(struct ieee80211_vif *vif,
enum ieee80211_smps_mode smps_mode);
/**
* ieee80211_ready_on_channel - notification of remain-on-channel start
* @hw: pointer as obtained from ieee80211_alloc_hw()
*/
void ieee80211_ready_on_channel(struct ieee80211_hw *hw);
/**
* ieee80211_remain_on_channel_expired - remain_on_channel duration expired
* @hw: pointer as obtained from ieee80211_alloc_hw()
*/
void ieee80211_remain_on_channel_expired(struct ieee80211_hw *hw);
/**
* ieee80211_stop_rx_ba_session - callback to stop existing BA sessions
*
* in order not to harm the system performance and user experience, the device
* may request not to allow any rx ba session and tear down existing rx ba
* sessions based on system constraints such as periodic BT activity that needs
* to limit wlan activity (eg.sco or a2dp)."
* in such cases, the intention is to limit the duration of the rx ppdu and
* therefore prevent the peer device to use a-mpdu aggregation.
*
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @ba_rx_bitmap: Bit map of open rx ba per tid
* @addr: & to bssid mac address
*/
void ieee80211_stop_rx_ba_session(struct ieee80211_vif *vif, u16 ba_rx_bitmap,
const u8 *addr);
/**
* ieee80211_send_bar - send a BlockAckReq frame
*
* can be used to flush pending frames from the peer's aggregation reorder
* buffer.
*
* @vif: &struct ieee80211_vif pointer from the add_interface callback.
* @ra: the peer's destination address
* @tid: the TID of the aggregation session
* @ssn: the new starting sequence number for the receiver
*/
void ieee80211_send_bar(struct ieee80211_vif *vif, u8 *ra, u16 tid, u16 ssn);
/* Rate control API */
/**
* struct ieee80211_tx_rate_control - rate control information for/from RC algo
*
* @hw: The hardware the algorithm is invoked for.
* @sband: The band this frame is being transmitted on.
* @bss_conf: the current BSS configuration
* @skb: the skb that will be transmitted, the control information in it needs
* to be filled in
* @reported_rate: The rate control algorithm can fill this in to indicate
* which rate should be reported to userspace as the current rate and
* used for rate calculations in the mesh network.
* @rts: whether RTS will be used for this frame because it is longer than the
* RTS threshold
* @short_preamble: whether mac80211 will request short-preamble transmission
* if the selected rate supports it
* @max_rate_idx: user-requested maximum (legacy) rate
* (deprecated; this will be removed once drivers get updated to use
* rate_idx_mask)
* @rate_idx_mask: user-requested (legacy) rate mask
* @rate_idx_mcs_mask: user-requested MCS rate mask (NULL if not in use)
* @bss: whether this frame is sent out in AP or IBSS mode
*/
struct ieee80211_tx_rate_control {
struct ieee80211_hw *hw;
struct ieee80211_supported_band *sband;
struct ieee80211_bss_conf *bss_conf;
struct sk_buff *skb;
struct ieee80211_tx_rate reported_rate;
bool rts, short_preamble;
u8 max_rate_idx;
u32 rate_idx_mask;
u8 *rate_idx_mcs_mask;
bool bss;
};
struct rate_control_ops {
const char *name;
void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
void (*free)(void *priv);
void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
struct cfg80211_chan_def *chandef,
struct ieee80211_sta *sta, void *priv_sta);
void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
struct cfg80211_chan_def *chandef,
struct ieee80211_sta *sta, void *priv_sta,
u32 changed);
void (*free_sta)(void *priv, struct ieee80211_sta *sta,
void *priv_sta);
void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta, void *priv_sta,
struct sk_buff *skb);
void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
struct ieee80211_tx_rate_control *txrc);
void (*add_sta_debugfs)(void *priv, void *priv_sta,
struct dentry *dir);
void (*remove_sta_debugfs)(void *priv, void *priv_sta);
u32 (*get_expected_throughput)(void *priv_sta);
};
static inline int rate_supported(struct ieee80211_sta *sta,
enum ieee80211_band band,
int index)
{
return (sta == NULL || sta->supp_rates[band] & BIT(index));
}
/**
* rate_control_send_low - helper for drivers for management/no-ack frames
*
* Rate control algorithms that agree to use the lowest rate to
* send management frames and NO_ACK data with the respective hw
* retries should use this in the beginning of their mac80211 get_rate
* callback. If true is returned the rate control can simply return.
* If false is returned we guarantee that sta and sta and priv_sta is
* not null.
*
* Rate control algorithms wishing to do more intelligent selection of
* rate for multicast/broadcast frames may choose to not use this.
*
* @sta: &struct ieee80211_sta pointer to the target destination. Note
* that this may be null.
* @priv_sta: private rate control structure. This may be null.
* @txrc: rate control information we sholud populate for mac80211.
*/
bool rate_control_send_low(struct ieee80211_sta *sta,
void *priv_sta,
struct ieee80211_tx_rate_control *txrc);
static inline s8
rate_lowest_index(struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta)
{
int i;
for (i = 0; i < sband->n_bitrates; i++)
if (rate_supported(sta, sband->band, i))
return i;
/* warn when we cannot find a rate. */
WARN_ON_ONCE(1);
/* and return 0 (the lowest index) */
return 0;
}
static inline
bool rate_usable_index_exists(struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta)
{
unsigned int i;
for (i = 0; i < sband->n_bitrates; i++)
if (rate_supported(sta, sband->band, i))
return true;
return false;
}
/**
* rate_control_set_rates - pass the sta rate selection to mac80211/driver
*
* When not doing a rate control probe to test rates, rate control should pass
* its rate selection to mac80211. If the driver supports receiving a station
* rate table, it will use it to ensure that frames are always sent based on
* the most recent rate control module decision.
*
* @hw: pointer as obtained from ieee80211_alloc_hw()
* @pubsta: &struct ieee80211_sta pointer to the target destination.
* @rates: new tx rate set to be used for this station.
*/
int rate_control_set_rates(struct ieee80211_hw *hw,
struct ieee80211_sta *pubsta,
struct ieee80211_sta_rates *rates);
int ieee80211_rate_control_register(const struct rate_control_ops *ops);
void ieee80211_rate_control_unregister(const struct rate_control_ops *ops);
static inline bool
conf_is_ht20(struct ieee80211_conf *conf)
{
return conf->chandef.width == NL80211_CHAN_WIDTH_20;
}
static inline bool
conf_is_ht40_minus(struct ieee80211_conf *conf)
{
return conf->chandef.width == NL80211_CHAN_WIDTH_40 &&
conf->chandef.center_freq1 < conf->chandef.chan->center_freq;
}
static inline bool
conf_is_ht40_plus(struct ieee80211_conf *conf)
{
return conf->chandef.width == NL80211_CHAN_WIDTH_40 &&
conf->chandef.center_freq1 > conf->chandef.chan->center_freq;
}
static inline bool
conf_is_ht40(struct ieee80211_conf *conf)
{
return conf->chandef.width == NL80211_CHAN_WIDTH_40;
}
static inline bool
conf_is_ht(struct ieee80211_conf *conf)
{
return (conf->chandef.width != NL80211_CHAN_WIDTH_5) &&
(conf->chandef.width != NL80211_CHAN_WIDTH_10) &&
(conf->chandef.width != NL80211_CHAN_WIDTH_20_NOHT);
}
static inline enum nl80211_iftype
ieee80211_iftype_p2p(enum nl80211_iftype type, bool p2p)
{
if (p2p) {
switch (type) {
case NL80211_IFTYPE_STATION:
return NL80211_IFTYPE_P2P_CLIENT;
case NL80211_IFTYPE_AP:
return NL80211_IFTYPE_P2P_GO;
default:
break;
}
}
return type;
}
static inline enum nl80211_iftype
ieee80211_vif_type_p2p(struct ieee80211_vif *vif)
{
return ieee80211_iftype_p2p(vif->type, vif->p2p);
}
void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
int rssi_min_thold,
int rssi_max_thold);
void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif);
/**
* ieee80211_ave_rssi - report the average RSSI for the specified interface
*
* @vif: the specified virtual interface
*
* Note: This function assumes that the given vif is valid.
*
* Return: The average RSSI value for the requested interface, or 0 if not
* applicable.
*/
int ieee80211_ave_rssi(struct ieee80211_vif *vif);
/**
* ieee80211_report_wowlan_wakeup - report WoWLAN wakeup
* @vif: virtual interface
* @wakeup: wakeup reason(s)
* @gfp: allocation flags
*
* See cfg80211_report_wowlan_wakeup().
*/
void ieee80211_report_wowlan_wakeup(struct ieee80211_vif *vif,
struct cfg80211_wowlan_wakeup *wakeup,
gfp_t gfp);
/**
* ieee80211_tx_prepare_skb - prepare an 802.11 skb for transmission
* @hw: pointer as obtained from ieee80211_alloc_hw()
* @vif: virtual interface
* @skb: frame to be sent from within the driver
* @band: the band to transmit on
* @sta: optional pointer to get the station to send the frame to
*
* Note: must be called under RCU lock
*/
bool ieee80211_tx_prepare_skb(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, struct sk_buff *skb,
int band, struct ieee80211_sta **sta);
/**
* struct ieee80211_noa_data - holds temporary data for tracking P2P NoA state
*
* @next_tsf: TSF timestamp of the next absent state change
* @has_next_tsf: next absent state change event pending
*
* @absent: descriptor bitmask, set if GO is currently absent
*
* private:
*
* @count: count fields from the NoA descriptors
* @desc: adjusted data from the NoA
*/
struct ieee80211_noa_data {
u32 next_tsf;
bool has_next_tsf;
u8 absent;
u8 count[IEEE80211_P2P_NOA_DESC_MAX];
struct {
u32 start;
u32 duration;
u32 interval;
} desc[IEEE80211_P2P_NOA_DESC_MAX];
};
/**
* ieee80211_parse_p2p_noa - initialize NoA tracking data from P2P IE
*
* @attr: P2P NoA IE
* @data: NoA tracking data
* @tsf: current TSF timestamp
*
* Return: number of successfully parsed descriptors
*/
int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr,
struct ieee80211_noa_data *data, u32 tsf);
/**
* ieee80211_update_p2p_noa - get next pending P2P GO absent state change
*
* @data: NoA tracking data
* @tsf: current TSF timestamp
*/
void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf);
/**
* ieee80211_tdls_oper - request userspace to perform a TDLS operation
* @vif: virtual interface
* @peer: the peer's destination address
* @oper: the requested TDLS operation
* @reason_code: reason code for the operation, valid for TDLS teardown
* @gfp: allocation flags
*
* See cfg80211_tdls_oper_request().
*/
void ieee80211_tdls_oper_request(struct ieee80211_vif *vif, const u8 *peer,
enum nl80211_tdls_operation oper,
u16 reason_code, gfp_t gfp);
#endif /* MAC80211_H */