mirror of
https://github.com/torvalds/linux.git
synced 2024-12-27 05:11:48 +00:00
88b229c7f7
Following the programming advice laid down in the gcc manual, make sure the case "..." operator has spaces on either side. Signed-off-by: Robert P. J. Day <rpjday@mindspring.com> Cc: "Antonino A. Daplas" <adaplas@pol.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1477 lines
43 KiB
C
1477 lines
43 KiB
C
/*
|
|
* linux/drivers/video/pxafb.c
|
|
*
|
|
* Copyright (C) 1999 Eric A. Thomas.
|
|
* Copyright (C) 2004 Jean-Frederic Clere.
|
|
* Copyright (C) 2004 Ian Campbell.
|
|
* Copyright (C) 2004 Jeff Lackey.
|
|
* Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
|
|
* which in turn is
|
|
* Based on acornfb.c Copyright (C) Russell King.
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file COPYING in the main directory of this archive for
|
|
* more details.
|
|
*
|
|
* Intel PXA250/210 LCD Controller Frame Buffer Driver
|
|
*
|
|
* Please direct your questions and comments on this driver to the following
|
|
* email address:
|
|
*
|
|
* linux-arm-kernel@lists.arm.linux.org.uk
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/fb.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include <asm/hardware.h>
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/div64.h>
|
|
#include <asm/arch/pxa-regs.h>
|
|
#include <asm/arch/bitfield.h>
|
|
#include <asm/arch/pxafb.h>
|
|
|
|
/*
|
|
* Complain if VAR is out of range.
|
|
*/
|
|
#define DEBUG_VAR 1
|
|
|
|
#include "pxafb.h"
|
|
|
|
/* Bits which should not be set in machine configuration structures */
|
|
#define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM|LCCR0_BM|LCCR0_QDM|LCCR0_DIS|LCCR0_EFM|LCCR0_IUM|LCCR0_SFM|LCCR0_LDM|LCCR0_ENB)
|
|
#define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP|LCCR3_VSP|LCCR3_PCD|LCCR3_BPP)
|
|
|
|
static void (*pxafb_backlight_power)(int);
|
|
static void (*pxafb_lcd_power)(int, struct fb_var_screeninfo *);
|
|
|
|
static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *);
|
|
static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
|
|
|
|
#ifdef CONFIG_FB_PXA_PARAMETERS
|
|
#define PXAFB_OPTIONS_SIZE 256
|
|
static char g_options[PXAFB_OPTIONS_SIZE] __initdata = "";
|
|
#endif
|
|
|
|
static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
/*
|
|
* We need to handle two requests being made at the same time.
|
|
* There are two important cases:
|
|
* 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
|
|
* We must perform the unblanking, which will do our REENABLE for us.
|
|
* 2. When we are blanking, but immediately unblank before we have
|
|
* blanked. We do the "REENABLE" thing here as well, just to be sure.
|
|
*/
|
|
if (fbi->task_state == C_ENABLE && state == C_REENABLE)
|
|
state = (u_int) -1;
|
|
if (fbi->task_state == C_DISABLE && state == C_ENABLE)
|
|
state = C_REENABLE;
|
|
|
|
if (state != (u_int)-1) {
|
|
fbi->task_state = state;
|
|
schedule_work(&fbi->task);
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
|
|
{
|
|
chan &= 0xffff;
|
|
chan >>= 16 - bf->length;
|
|
return chan << bf->offset;
|
|
}
|
|
|
|
static int
|
|
pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
|
|
u_int trans, struct fb_info *info)
|
|
{
|
|
struct pxafb_info *fbi = (struct pxafb_info *)info;
|
|
u_int val, ret = 1;
|
|
|
|
if (regno < fbi->palette_size) {
|
|
if (fbi->fb.var.grayscale) {
|
|
val = ((blue >> 8) & 0x00ff);
|
|
} else {
|
|
val = ((red >> 0) & 0xf800);
|
|
val |= ((green >> 5) & 0x07e0);
|
|
val |= ((blue >> 11) & 0x001f);
|
|
}
|
|
fbi->palette_cpu[regno] = val;
|
|
ret = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
|
|
u_int trans, struct fb_info *info)
|
|
{
|
|
struct pxafb_info *fbi = (struct pxafb_info *)info;
|
|
unsigned int val;
|
|
int ret = 1;
|
|
|
|
/*
|
|
* If inverse mode was selected, invert all the colours
|
|
* rather than the register number. The register number
|
|
* is what you poke into the framebuffer to produce the
|
|
* colour you requested.
|
|
*/
|
|
if (fbi->cmap_inverse) {
|
|
red = 0xffff - red;
|
|
green = 0xffff - green;
|
|
blue = 0xffff - blue;
|
|
}
|
|
|
|
/*
|
|
* If greyscale is true, then we convert the RGB value
|
|
* to greyscale no matter what visual we are using.
|
|
*/
|
|
if (fbi->fb.var.grayscale)
|
|
red = green = blue = (19595 * red + 38470 * green +
|
|
7471 * blue) >> 16;
|
|
|
|
switch (fbi->fb.fix.visual) {
|
|
case FB_VISUAL_TRUECOLOR:
|
|
/*
|
|
* 16-bit True Colour. We encode the RGB value
|
|
* according to the RGB bitfield information.
|
|
*/
|
|
if (regno < 16) {
|
|
u32 *pal = fbi->fb.pseudo_palette;
|
|
|
|
val = chan_to_field(red, &fbi->fb.var.red);
|
|
val |= chan_to_field(green, &fbi->fb.var.green);
|
|
val |= chan_to_field(blue, &fbi->fb.var.blue);
|
|
|
|
pal[regno] = val;
|
|
ret = 0;
|
|
}
|
|
break;
|
|
|
|
case FB_VISUAL_STATIC_PSEUDOCOLOR:
|
|
case FB_VISUAL_PSEUDOCOLOR:
|
|
ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* pxafb_bpp_to_lccr3():
|
|
* Convert a bits per pixel value to the correct bit pattern for LCCR3
|
|
*/
|
|
static int pxafb_bpp_to_lccr3(struct fb_var_screeninfo *var)
|
|
{
|
|
int ret = 0;
|
|
switch (var->bits_per_pixel) {
|
|
case 1: ret = LCCR3_1BPP; break;
|
|
case 2: ret = LCCR3_2BPP; break;
|
|
case 4: ret = LCCR3_4BPP; break;
|
|
case 8: ret = LCCR3_8BPP; break;
|
|
case 16: ret = LCCR3_16BPP; break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_FREQ
|
|
/*
|
|
* pxafb_display_dma_period()
|
|
* Calculate the minimum period (in picoseconds) between two DMA
|
|
* requests for the LCD controller. If we hit this, it means we're
|
|
* doing nothing but LCD DMA.
|
|
*/
|
|
static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
|
|
{
|
|
/*
|
|
* Period = pixclock * bits_per_byte * bytes_per_transfer
|
|
* / memory_bits_per_pixel;
|
|
*/
|
|
return var->pixclock * 8 * 16 / var->bits_per_pixel;
|
|
}
|
|
|
|
extern unsigned int get_clk_frequency_khz(int info);
|
|
#endif
|
|
|
|
/*
|
|
* Select the smallest mode that allows the desired resolution to be
|
|
* displayed. If desired parameters can be rounded up.
|
|
*/
|
|
static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach, struct fb_var_screeninfo *var)
|
|
{
|
|
struct pxafb_mode_info *mode = NULL;
|
|
struct pxafb_mode_info *modelist = mach->modes;
|
|
unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
|
|
unsigned int i;
|
|
|
|
for (i = 0 ; i < mach->num_modes ; i++) {
|
|
if (modelist[i].xres >= var->xres && modelist[i].yres >= var->yres &&
|
|
modelist[i].xres < best_x && modelist[i].yres < best_y &&
|
|
modelist[i].bpp >= var->bits_per_pixel ) {
|
|
best_x = modelist[i].xres;
|
|
best_y = modelist[i].yres;
|
|
mode = &modelist[i];
|
|
}
|
|
}
|
|
|
|
return mode;
|
|
}
|
|
|
|
static void pxafb_setmode(struct fb_var_screeninfo *var, struct pxafb_mode_info *mode)
|
|
{
|
|
var->xres = mode->xres;
|
|
var->yres = mode->yres;
|
|
var->bits_per_pixel = mode->bpp;
|
|
var->pixclock = mode->pixclock;
|
|
var->hsync_len = mode->hsync_len;
|
|
var->left_margin = mode->left_margin;
|
|
var->right_margin = mode->right_margin;
|
|
var->vsync_len = mode->vsync_len;
|
|
var->upper_margin = mode->upper_margin;
|
|
var->lower_margin = mode->lower_margin;
|
|
var->sync = mode->sync;
|
|
var->grayscale = mode->cmap_greyscale;
|
|
var->xres_virtual = var->xres;
|
|
var->yres_virtual = var->yres;
|
|
}
|
|
|
|
/*
|
|
* pxafb_check_var():
|
|
* Get the video params out of 'var'. If a value doesn't fit, round it up,
|
|
* if it's too big, return -EINVAL.
|
|
*
|
|
* Round up in the following order: bits_per_pixel, xres,
|
|
* yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
|
|
* bitfields, horizontal timing, vertical timing.
|
|
*/
|
|
static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
|
|
{
|
|
struct pxafb_info *fbi = (struct pxafb_info *)info;
|
|
struct pxafb_mach_info *inf = fbi->dev->platform_data;
|
|
|
|
if (var->xres < MIN_XRES)
|
|
var->xres = MIN_XRES;
|
|
if (var->yres < MIN_YRES)
|
|
var->yres = MIN_YRES;
|
|
|
|
if (inf->fixed_modes) {
|
|
struct pxafb_mode_info *mode;
|
|
|
|
mode = pxafb_getmode(inf, var);
|
|
if (!mode)
|
|
return -EINVAL;
|
|
pxafb_setmode(var, mode);
|
|
} else {
|
|
if (var->xres > inf->modes->xres)
|
|
return -EINVAL;
|
|
if (var->yres > inf->modes->yres)
|
|
return -EINVAL;
|
|
if (var->bits_per_pixel > inf->modes->bpp)
|
|
return -EINVAL;
|
|
}
|
|
|
|
var->xres_virtual =
|
|
max(var->xres_virtual, var->xres);
|
|
var->yres_virtual =
|
|
max(var->yres_virtual, var->yres);
|
|
|
|
/*
|
|
* Setup the RGB parameters for this display.
|
|
*
|
|
* The pixel packing format is described on page 7-11 of the
|
|
* PXA2XX Developer's Manual.
|
|
*/
|
|
if (var->bits_per_pixel == 16) {
|
|
var->red.offset = 11; var->red.length = 5;
|
|
var->green.offset = 5; var->green.length = 6;
|
|
var->blue.offset = 0; var->blue.length = 5;
|
|
var->transp.offset = var->transp.length = 0;
|
|
} else {
|
|
var->red.offset = var->green.offset = var->blue.offset = var->transp.offset = 0;
|
|
var->red.length = 8;
|
|
var->green.length = 8;
|
|
var->blue.length = 8;
|
|
var->transp.length = 0;
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_FREQ
|
|
pr_debug("pxafb: dma period = %d ps, clock = %d kHz\n",
|
|
pxafb_display_dma_period(var),
|
|
get_clk_frequency_khz(0));
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void pxafb_set_truecolor(u_int is_true_color)
|
|
{
|
|
pr_debug("pxafb: true_color = %d\n", is_true_color);
|
|
// do your machine-specific setup if needed
|
|
}
|
|
|
|
/*
|
|
* pxafb_set_par():
|
|
* Set the user defined part of the display for the specified console
|
|
*/
|
|
static int pxafb_set_par(struct fb_info *info)
|
|
{
|
|
struct pxafb_info *fbi = (struct pxafb_info *)info;
|
|
struct fb_var_screeninfo *var = &info->var;
|
|
unsigned long palette_mem_size;
|
|
|
|
pr_debug("pxafb: set_par\n");
|
|
|
|
if (var->bits_per_pixel == 16)
|
|
fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
|
|
else if (!fbi->cmap_static)
|
|
fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
|
|
else {
|
|
/*
|
|
* Some people have weird ideas about wanting static
|
|
* pseudocolor maps. I suspect their user space
|
|
* applications are broken.
|
|
*/
|
|
fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
|
|
}
|
|
|
|
fbi->fb.fix.line_length = var->xres_virtual *
|
|
var->bits_per_pixel / 8;
|
|
if (var->bits_per_pixel == 16)
|
|
fbi->palette_size = 0;
|
|
else
|
|
fbi->palette_size = var->bits_per_pixel == 1 ? 4 : 1 << var->bits_per_pixel;
|
|
|
|
palette_mem_size = fbi->palette_size * sizeof(u16);
|
|
|
|
pr_debug("pxafb: palette_mem_size = 0x%08lx\n", palette_mem_size);
|
|
|
|
fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
|
|
fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
|
|
|
|
/*
|
|
* Set (any) board control register to handle new color depth
|
|
*/
|
|
pxafb_set_truecolor(fbi->fb.fix.visual == FB_VISUAL_TRUECOLOR);
|
|
|
|
if (fbi->fb.var.bits_per_pixel == 16)
|
|
fb_dealloc_cmap(&fbi->fb.cmap);
|
|
else
|
|
fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
|
|
|
|
pxafb_activate_var(var, fbi);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Formal definition of the VESA spec:
|
|
* On
|
|
* This refers to the state of the display when it is in full operation
|
|
* Stand-By
|
|
* This defines an optional operating state of minimal power reduction with
|
|
* the shortest recovery time
|
|
* Suspend
|
|
* This refers to a level of power management in which substantial power
|
|
* reduction is achieved by the display. The display can have a longer
|
|
* recovery time from this state than from the Stand-by state
|
|
* Off
|
|
* This indicates that the display is consuming the lowest level of power
|
|
* and is non-operational. Recovery from this state may optionally require
|
|
* the user to manually power on the monitor
|
|
*
|
|
* Now, the fbdev driver adds an additional state, (blank), where they
|
|
* turn off the video (maybe by colormap tricks), but don't mess with the
|
|
* video itself: think of it semantically between on and Stand-By.
|
|
*
|
|
* So here's what we should do in our fbdev blank routine:
|
|
*
|
|
* VESA_NO_BLANKING (mode 0) Video on, front/back light on
|
|
* VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
|
|
* VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
|
|
* VESA_POWERDOWN (mode 3) Video off, front/back light off
|
|
*
|
|
* This will match the matrox implementation.
|
|
*/
|
|
|
|
/*
|
|
* pxafb_blank():
|
|
* Blank the display by setting all palette values to zero. Note, the
|
|
* 16 bpp mode does not really use the palette, so this will not
|
|
* blank the display in all modes.
|
|
*/
|
|
static int pxafb_blank(int blank, struct fb_info *info)
|
|
{
|
|
struct pxafb_info *fbi = (struct pxafb_info *)info;
|
|
int i;
|
|
|
|
pr_debug("pxafb: blank=%d\n", blank);
|
|
|
|
switch (blank) {
|
|
case FB_BLANK_POWERDOWN:
|
|
case FB_BLANK_VSYNC_SUSPEND:
|
|
case FB_BLANK_HSYNC_SUSPEND:
|
|
case FB_BLANK_NORMAL:
|
|
if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
|
|
fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
|
|
for (i = 0; i < fbi->palette_size; i++)
|
|
pxafb_setpalettereg(i, 0, 0, 0, 0, info);
|
|
|
|
pxafb_schedule_work(fbi, C_DISABLE);
|
|
//TODO if (pxafb_blank_helper) pxafb_blank_helper(blank);
|
|
break;
|
|
|
|
case FB_BLANK_UNBLANK:
|
|
//TODO if (pxafb_blank_helper) pxafb_blank_helper(blank);
|
|
if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
|
|
fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
|
|
fb_set_cmap(&fbi->fb.cmap, info);
|
|
pxafb_schedule_work(fbi, C_ENABLE);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int pxafb_mmap(struct fb_info *info,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
struct pxafb_info *fbi = (struct pxafb_info *)info;
|
|
unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
|
|
|
|
if (off < info->fix.smem_len) {
|
|
vma->vm_pgoff += 1;
|
|
return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
|
|
fbi->map_dma, fbi->map_size);
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static struct fb_ops pxafb_ops = {
|
|
.owner = THIS_MODULE,
|
|
.fb_check_var = pxafb_check_var,
|
|
.fb_set_par = pxafb_set_par,
|
|
.fb_setcolreg = pxafb_setcolreg,
|
|
.fb_fillrect = cfb_fillrect,
|
|
.fb_copyarea = cfb_copyarea,
|
|
.fb_imageblit = cfb_imageblit,
|
|
.fb_blank = pxafb_blank,
|
|
.fb_mmap = pxafb_mmap,
|
|
};
|
|
|
|
/*
|
|
* Calculate the PCD value from the clock rate (in picoseconds).
|
|
* We take account of the PPCR clock setting.
|
|
* From PXA Developer's Manual:
|
|
*
|
|
* PixelClock = LCLK
|
|
* -------------
|
|
* 2 ( PCD + 1 )
|
|
*
|
|
* PCD = LCLK
|
|
* ------------- - 1
|
|
* 2(PixelClock)
|
|
*
|
|
* Where:
|
|
* LCLK = LCD/Memory Clock
|
|
* PCD = LCCR3[7:0]
|
|
*
|
|
* PixelClock here is in Hz while the pixclock argument given is the
|
|
* period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
|
|
*
|
|
* The function get_lclk_frequency_10khz returns LCLK in units of
|
|
* 10khz. Calling the result of this function lclk gives us the
|
|
* following
|
|
*
|
|
* PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
|
|
* -------------------------------------- - 1
|
|
* 2
|
|
*
|
|
* Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
|
|
*/
|
|
static inline unsigned int get_pcd(unsigned int pixclock)
|
|
{
|
|
unsigned long long pcd;
|
|
|
|
/* FIXME: Need to take into account Double Pixel Clock mode
|
|
* (DPC) bit? or perhaps set it based on the various clock
|
|
* speeds */
|
|
|
|
pcd = (unsigned long long)get_lcdclk_frequency_10khz() * pixclock;
|
|
do_div(pcd, 100000000 * 2);
|
|
/* no need for this, since we should subtract 1 anyway. they cancel */
|
|
/* pcd += 1; */ /* make up for integer math truncations */
|
|
return (unsigned int)pcd;
|
|
}
|
|
|
|
/*
|
|
* Some touchscreens need hsync information from the video driver to
|
|
* function correctly. We export it here.
|
|
*/
|
|
static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
|
|
{
|
|
unsigned long long htime;
|
|
|
|
if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
|
|
fbi->hsync_time=0;
|
|
return;
|
|
}
|
|
|
|
htime = (unsigned long long)get_lcdclk_frequency_10khz() * 10000;
|
|
do_div(htime, pcd * fbi->fb.var.hsync_len);
|
|
fbi->hsync_time = htime;
|
|
}
|
|
|
|
unsigned long pxafb_get_hsync_time(struct device *dev)
|
|
{
|
|
struct pxafb_info *fbi = dev_get_drvdata(dev);
|
|
|
|
/* If display is blanked/suspended, hsync isn't active */
|
|
if (!fbi || (fbi->state != C_ENABLE))
|
|
return 0;
|
|
|
|
return fbi->hsync_time;
|
|
}
|
|
EXPORT_SYMBOL(pxafb_get_hsync_time);
|
|
|
|
/*
|
|
* pxafb_activate_var():
|
|
* Configures LCD Controller based on entries in var parameter. Settings are
|
|
* only written to the controller if changes were made.
|
|
*/
|
|
static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *fbi)
|
|
{
|
|
struct pxafb_lcd_reg new_regs;
|
|
u_long flags;
|
|
u_int lines_per_panel, pcd = get_pcd(var->pixclock);
|
|
|
|
pr_debug("pxafb: Configuring PXA LCD\n");
|
|
|
|
pr_debug("var: xres=%d hslen=%d lm=%d rm=%d\n",
|
|
var->xres, var->hsync_len,
|
|
var->left_margin, var->right_margin);
|
|
pr_debug("var: yres=%d vslen=%d um=%d bm=%d\n",
|
|
var->yres, var->vsync_len,
|
|
var->upper_margin, var->lower_margin);
|
|
pr_debug("var: pixclock=%d pcd=%d\n", var->pixclock, pcd);
|
|
|
|
#if DEBUG_VAR
|
|
if (var->xres < 16 || var->xres > 1024)
|
|
printk(KERN_ERR "%s: invalid xres %d\n",
|
|
fbi->fb.fix.id, var->xres);
|
|
switch(var->bits_per_pixel) {
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
case 16:
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "%s: invalid bit depth %d\n",
|
|
fbi->fb.fix.id, var->bits_per_pixel);
|
|
break;
|
|
}
|
|
if (var->hsync_len < 1 || var->hsync_len > 64)
|
|
printk(KERN_ERR "%s: invalid hsync_len %d\n",
|
|
fbi->fb.fix.id, var->hsync_len);
|
|
if (var->left_margin < 1 || var->left_margin > 255)
|
|
printk(KERN_ERR "%s: invalid left_margin %d\n",
|
|
fbi->fb.fix.id, var->left_margin);
|
|
if (var->right_margin < 1 || var->right_margin > 255)
|
|
printk(KERN_ERR "%s: invalid right_margin %d\n",
|
|
fbi->fb.fix.id, var->right_margin);
|
|
if (var->yres < 1 || var->yres > 1024)
|
|
printk(KERN_ERR "%s: invalid yres %d\n",
|
|
fbi->fb.fix.id, var->yres);
|
|
if (var->vsync_len < 1 || var->vsync_len > 64)
|
|
printk(KERN_ERR "%s: invalid vsync_len %d\n",
|
|
fbi->fb.fix.id, var->vsync_len);
|
|
if (var->upper_margin < 0 || var->upper_margin > 255)
|
|
printk(KERN_ERR "%s: invalid upper_margin %d\n",
|
|
fbi->fb.fix.id, var->upper_margin);
|
|
if (var->lower_margin < 0 || var->lower_margin > 255)
|
|
printk(KERN_ERR "%s: invalid lower_margin %d\n",
|
|
fbi->fb.fix.id, var->lower_margin);
|
|
#endif
|
|
|
|
new_regs.lccr0 = fbi->lccr0 |
|
|
(LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
|
|
LCCR0_QDM | LCCR0_BM | LCCR0_OUM);
|
|
|
|
new_regs.lccr1 =
|
|
LCCR1_DisWdth(var->xres) +
|
|
LCCR1_HorSnchWdth(var->hsync_len) +
|
|
LCCR1_BegLnDel(var->left_margin) +
|
|
LCCR1_EndLnDel(var->right_margin);
|
|
|
|
/*
|
|
* If we have a dual scan LCD, we need to halve
|
|
* the YRES parameter.
|
|
*/
|
|
lines_per_panel = var->yres;
|
|
if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
|
|
lines_per_panel /= 2;
|
|
|
|
new_regs.lccr2 =
|
|
LCCR2_DisHght(lines_per_panel) +
|
|
LCCR2_VrtSnchWdth(var->vsync_len) +
|
|
LCCR2_BegFrmDel(var->upper_margin) +
|
|
LCCR2_EndFrmDel(var->lower_margin);
|
|
|
|
new_regs.lccr3 = fbi->lccr3 |
|
|
pxafb_bpp_to_lccr3(var) |
|
|
(var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
|
|
(var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
|
|
|
|
if (pcd)
|
|
new_regs.lccr3 |= LCCR3_PixClkDiv(pcd);
|
|
|
|
pr_debug("nlccr0 = 0x%08x\n", new_regs.lccr0);
|
|
pr_debug("nlccr1 = 0x%08x\n", new_regs.lccr1);
|
|
pr_debug("nlccr2 = 0x%08x\n", new_regs.lccr2);
|
|
pr_debug("nlccr3 = 0x%08x\n", new_regs.lccr3);
|
|
|
|
/* Update shadow copy atomically */
|
|
local_irq_save(flags);
|
|
|
|
/* setup dma descriptors */
|
|
fbi->dmadesc_fblow_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 3*16);
|
|
fbi->dmadesc_fbhigh_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 2*16);
|
|
fbi->dmadesc_palette_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 1*16);
|
|
|
|
fbi->dmadesc_fblow_dma = fbi->palette_dma - 3*16;
|
|
fbi->dmadesc_fbhigh_dma = fbi->palette_dma - 2*16;
|
|
fbi->dmadesc_palette_dma = fbi->palette_dma - 1*16;
|
|
|
|
#define BYTES_PER_PANEL (lines_per_panel * fbi->fb.fix.line_length)
|
|
|
|
/* populate descriptors */
|
|
fbi->dmadesc_fblow_cpu->fdadr = fbi->dmadesc_fblow_dma;
|
|
fbi->dmadesc_fblow_cpu->fsadr = fbi->screen_dma + BYTES_PER_PANEL;
|
|
fbi->dmadesc_fblow_cpu->fidr = 0;
|
|
fbi->dmadesc_fblow_cpu->ldcmd = BYTES_PER_PANEL;
|
|
|
|
fbi->fdadr1 = fbi->dmadesc_fblow_dma; /* only used in dual-panel mode */
|
|
|
|
fbi->dmadesc_fbhigh_cpu->fsadr = fbi->screen_dma;
|
|
fbi->dmadesc_fbhigh_cpu->fidr = 0;
|
|
fbi->dmadesc_fbhigh_cpu->ldcmd = BYTES_PER_PANEL;
|
|
|
|
fbi->dmadesc_palette_cpu->fsadr = fbi->palette_dma;
|
|
fbi->dmadesc_palette_cpu->fidr = 0;
|
|
fbi->dmadesc_palette_cpu->ldcmd = (fbi->palette_size * 2) | LDCMD_PAL;
|
|
|
|
if (var->bits_per_pixel == 16) {
|
|
/* palette shouldn't be loaded in true-color mode */
|
|
fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_fbhigh_dma;
|
|
fbi->fdadr0 = fbi->dmadesc_fbhigh_dma; /* no pal just fbhigh */
|
|
/* init it to something, even though we won't be using it */
|
|
fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_palette_dma;
|
|
} else {
|
|
fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_fbhigh_dma;
|
|
fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_palette_dma;
|
|
fbi->fdadr0 = fbi->dmadesc_palette_dma; /* flips back and forth between pal and fbhigh */
|
|
}
|
|
|
|
#if 0
|
|
pr_debug("fbi->dmadesc_fblow_cpu = 0x%p\n", fbi->dmadesc_fblow_cpu);
|
|
pr_debug("fbi->dmadesc_fbhigh_cpu = 0x%p\n", fbi->dmadesc_fbhigh_cpu);
|
|
pr_debug("fbi->dmadesc_palette_cpu = 0x%p\n", fbi->dmadesc_palette_cpu);
|
|
pr_debug("fbi->dmadesc_fblow_dma = 0x%x\n", fbi->dmadesc_fblow_dma);
|
|
pr_debug("fbi->dmadesc_fbhigh_dma = 0x%x\n", fbi->dmadesc_fbhigh_dma);
|
|
pr_debug("fbi->dmadesc_palette_dma = 0x%x\n", fbi->dmadesc_palette_dma);
|
|
|
|
pr_debug("fbi->dmadesc_fblow_cpu->fdadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fdadr);
|
|
pr_debug("fbi->dmadesc_fbhigh_cpu->fdadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fdadr);
|
|
pr_debug("fbi->dmadesc_palette_cpu->fdadr = 0x%x\n", fbi->dmadesc_palette_cpu->fdadr);
|
|
|
|
pr_debug("fbi->dmadesc_fblow_cpu->fsadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fsadr);
|
|
pr_debug("fbi->dmadesc_fbhigh_cpu->fsadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fsadr);
|
|
pr_debug("fbi->dmadesc_palette_cpu->fsadr = 0x%x\n", fbi->dmadesc_palette_cpu->fsadr);
|
|
|
|
pr_debug("fbi->dmadesc_fblow_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fblow_cpu->ldcmd);
|
|
pr_debug("fbi->dmadesc_fbhigh_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fbhigh_cpu->ldcmd);
|
|
pr_debug("fbi->dmadesc_palette_cpu->ldcmd = 0x%x\n", fbi->dmadesc_palette_cpu->ldcmd);
|
|
#endif
|
|
|
|
fbi->reg_lccr0 = new_regs.lccr0;
|
|
fbi->reg_lccr1 = new_regs.lccr1;
|
|
fbi->reg_lccr2 = new_regs.lccr2;
|
|
fbi->reg_lccr3 = new_regs.lccr3;
|
|
set_hsync_time(fbi, pcd);
|
|
local_irq_restore(flags);
|
|
|
|
/*
|
|
* Only update the registers if the controller is enabled
|
|
* and something has changed.
|
|
*/
|
|
if ((LCCR0 != fbi->reg_lccr0) || (LCCR1 != fbi->reg_lccr1) ||
|
|
(LCCR2 != fbi->reg_lccr2) || (LCCR3 != fbi->reg_lccr3) ||
|
|
(FDADR0 != fbi->fdadr0) || (FDADR1 != fbi->fdadr1))
|
|
pxafb_schedule_work(fbi, C_REENABLE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* NOTE! The following functions are purely helpers for set_ctrlr_state.
|
|
* Do not call them directly; set_ctrlr_state does the correct serialisation
|
|
* to ensure that things happen in the right way 100% of time time.
|
|
* -- rmk
|
|
*/
|
|
static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
|
|
{
|
|
pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
|
|
|
|
if (pxafb_backlight_power)
|
|
pxafb_backlight_power(on);
|
|
}
|
|
|
|
static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
|
|
{
|
|
pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
|
|
|
|
if (pxafb_lcd_power)
|
|
pxafb_lcd_power(on, &fbi->fb.var);
|
|
}
|
|
|
|
static void pxafb_setup_gpio(struct pxafb_info *fbi)
|
|
{
|
|
int gpio, ldd_bits;
|
|
unsigned int lccr0 = fbi->lccr0;
|
|
|
|
/*
|
|
* setup is based on type of panel supported
|
|
*/
|
|
|
|
/* 4 bit interface */
|
|
if ((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
|
|
(lccr0 & LCCR0_SDS) == LCCR0_Sngl &&
|
|
(lccr0 & LCCR0_DPD) == LCCR0_4PixMono)
|
|
ldd_bits = 4;
|
|
|
|
/* 8 bit interface */
|
|
else if (((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
|
|
((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_DPD) == LCCR0_8PixMono)) ||
|
|
((lccr0 & LCCR0_CMS) == LCCR0_Color &&
|
|
(lccr0 & LCCR0_PAS) == LCCR0_Pas && (lccr0 & LCCR0_SDS) == LCCR0_Sngl))
|
|
ldd_bits = 8;
|
|
|
|
/* 16 bit interface */
|
|
else if ((lccr0 & LCCR0_CMS) == LCCR0_Color &&
|
|
((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_PAS) == LCCR0_Act))
|
|
ldd_bits = 16;
|
|
|
|
else {
|
|
printk(KERN_ERR "pxafb_setup_gpio: unable to determine bits per pixel\n");
|
|
return;
|
|
}
|
|
|
|
for (gpio = 58; ldd_bits; gpio++, ldd_bits--)
|
|
pxa_gpio_mode(gpio | GPIO_ALT_FN_2_OUT);
|
|
pxa_gpio_mode(GPIO74_LCD_FCLK_MD);
|
|
pxa_gpio_mode(GPIO75_LCD_LCLK_MD);
|
|
pxa_gpio_mode(GPIO76_LCD_PCLK_MD);
|
|
pxa_gpio_mode(GPIO77_LCD_ACBIAS_MD);
|
|
}
|
|
|
|
static void pxafb_enable_controller(struct pxafb_info *fbi)
|
|
{
|
|
pr_debug("pxafb: Enabling LCD controller\n");
|
|
pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr0);
|
|
pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr1);
|
|
pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
|
|
pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
|
|
pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
|
|
pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
|
|
|
|
/* enable LCD controller clock */
|
|
pxa_set_cken(CKEN_LCD, 1);
|
|
|
|
/* Sequence from 11.7.10 */
|
|
LCCR3 = fbi->reg_lccr3;
|
|
LCCR2 = fbi->reg_lccr2;
|
|
LCCR1 = fbi->reg_lccr1;
|
|
LCCR0 = fbi->reg_lccr0 & ~LCCR0_ENB;
|
|
|
|
FDADR0 = fbi->fdadr0;
|
|
FDADR1 = fbi->fdadr1;
|
|
LCCR0 |= LCCR0_ENB;
|
|
|
|
pr_debug("FDADR0 0x%08x\n", (unsigned int) FDADR0);
|
|
pr_debug("FDADR1 0x%08x\n", (unsigned int) FDADR1);
|
|
pr_debug("LCCR0 0x%08x\n", (unsigned int) LCCR0);
|
|
pr_debug("LCCR1 0x%08x\n", (unsigned int) LCCR1);
|
|
pr_debug("LCCR2 0x%08x\n", (unsigned int) LCCR2);
|
|
pr_debug("LCCR3 0x%08x\n", (unsigned int) LCCR3);
|
|
}
|
|
|
|
static void pxafb_disable_controller(struct pxafb_info *fbi)
|
|
{
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
pr_debug("pxafb: disabling LCD controller\n");
|
|
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&fbi->ctrlr_wait, &wait);
|
|
|
|
LCSR = 0xffffffff; /* Clear LCD Status Register */
|
|
LCCR0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */
|
|
LCCR0 |= LCCR0_DIS; /* Disable LCD Controller */
|
|
|
|
schedule_timeout(200 * HZ / 1000);
|
|
remove_wait_queue(&fbi->ctrlr_wait, &wait);
|
|
|
|
/* disable LCD controller clock */
|
|
pxa_set_cken(CKEN_LCD, 0);
|
|
}
|
|
|
|
/*
|
|
* pxafb_handle_irq: Handle 'LCD DONE' interrupts.
|
|
*/
|
|
static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
|
|
{
|
|
struct pxafb_info *fbi = dev_id;
|
|
unsigned int lcsr = LCSR;
|
|
|
|
if (lcsr & LCSR_LDD) {
|
|
LCCR0 |= LCCR0_LDM;
|
|
wake_up(&fbi->ctrlr_wait);
|
|
}
|
|
|
|
LCSR = lcsr;
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* This function must be called from task context only, since it will
|
|
* sleep when disabling the LCD controller, or if we get two contending
|
|
* processes trying to alter state.
|
|
*/
|
|
static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
|
|
{
|
|
u_int old_state;
|
|
|
|
down(&fbi->ctrlr_sem);
|
|
|
|
old_state = fbi->state;
|
|
|
|
/*
|
|
* Hack around fbcon initialisation.
|
|
*/
|
|
if (old_state == C_STARTUP && state == C_REENABLE)
|
|
state = C_ENABLE;
|
|
|
|
switch (state) {
|
|
case C_DISABLE_CLKCHANGE:
|
|
/*
|
|
* Disable controller for clock change. If the
|
|
* controller is already disabled, then do nothing.
|
|
*/
|
|
if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
|
|
fbi->state = state;
|
|
//TODO __pxafb_lcd_power(fbi, 0);
|
|
pxafb_disable_controller(fbi);
|
|
}
|
|
break;
|
|
|
|
case C_DISABLE_PM:
|
|
case C_DISABLE:
|
|
/*
|
|
* Disable controller
|
|
*/
|
|
if (old_state != C_DISABLE) {
|
|
fbi->state = state;
|
|
__pxafb_backlight_power(fbi, 0);
|
|
__pxafb_lcd_power(fbi, 0);
|
|
if (old_state != C_DISABLE_CLKCHANGE)
|
|
pxafb_disable_controller(fbi);
|
|
}
|
|
break;
|
|
|
|
case C_ENABLE_CLKCHANGE:
|
|
/*
|
|
* Enable the controller after clock change. Only
|
|
* do this if we were disabled for the clock change.
|
|
*/
|
|
if (old_state == C_DISABLE_CLKCHANGE) {
|
|
fbi->state = C_ENABLE;
|
|
pxafb_enable_controller(fbi);
|
|
//TODO __pxafb_lcd_power(fbi, 1);
|
|
}
|
|
break;
|
|
|
|
case C_REENABLE:
|
|
/*
|
|
* Re-enable the controller only if it was already
|
|
* enabled. This is so we reprogram the control
|
|
* registers.
|
|
*/
|
|
if (old_state == C_ENABLE) {
|
|
__pxafb_lcd_power(fbi, 0);
|
|
pxafb_disable_controller(fbi);
|
|
pxafb_setup_gpio(fbi);
|
|
pxafb_enable_controller(fbi);
|
|
__pxafb_lcd_power(fbi, 1);
|
|
}
|
|
break;
|
|
|
|
case C_ENABLE_PM:
|
|
/*
|
|
* Re-enable the controller after PM. This is not
|
|
* perfect - think about the case where we were doing
|
|
* a clock change, and we suspended half-way through.
|
|
*/
|
|
if (old_state != C_DISABLE_PM)
|
|
break;
|
|
/* fall through */
|
|
|
|
case C_ENABLE:
|
|
/*
|
|
* Power up the LCD screen, enable controller, and
|
|
* turn on the backlight.
|
|
*/
|
|
if (old_state != C_ENABLE) {
|
|
fbi->state = C_ENABLE;
|
|
pxafb_setup_gpio(fbi);
|
|
pxafb_enable_controller(fbi);
|
|
__pxafb_lcd_power(fbi, 1);
|
|
__pxafb_backlight_power(fbi, 1);
|
|
}
|
|
break;
|
|
}
|
|
up(&fbi->ctrlr_sem);
|
|
}
|
|
|
|
/*
|
|
* Our LCD controller task (which is called when we blank or unblank)
|
|
* via keventd.
|
|
*/
|
|
static void pxafb_task(struct work_struct *work)
|
|
{
|
|
struct pxafb_info *fbi =
|
|
container_of(work, struct pxafb_info, task);
|
|
u_int state = xchg(&fbi->task_state, -1);
|
|
|
|
set_ctrlr_state(fbi, state);
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_FREQ
|
|
/*
|
|
* CPU clock speed change handler. We need to adjust the LCD timing
|
|
* parameters when the CPU clock is adjusted by the power management
|
|
* subsystem.
|
|
*
|
|
* TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
|
|
*/
|
|
static int
|
|
pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
|
|
{
|
|
struct pxafb_info *fbi = TO_INF(nb, freq_transition);
|
|
//TODO struct cpufreq_freqs *f = data;
|
|
u_int pcd;
|
|
|
|
switch (val) {
|
|
case CPUFREQ_PRECHANGE:
|
|
set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
|
|
break;
|
|
|
|
case CPUFREQ_POSTCHANGE:
|
|
pcd = get_pcd(fbi->fb.var.pixclock);
|
|
set_hsync_time(fbi, pcd);
|
|
fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
|
|
set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
|
|
{
|
|
struct pxafb_info *fbi = TO_INF(nb, freq_policy);
|
|
struct fb_var_screeninfo *var = &fbi->fb.var;
|
|
struct cpufreq_policy *policy = data;
|
|
|
|
switch (val) {
|
|
case CPUFREQ_ADJUST:
|
|
case CPUFREQ_INCOMPATIBLE:
|
|
printk(KERN_DEBUG "min dma period: %d ps, "
|
|
"new clock %d kHz\n", pxafb_display_dma_period(var),
|
|
policy->max);
|
|
// TODO: fill in min/max values
|
|
break;
|
|
#if 0
|
|
case CPUFREQ_NOTIFY:
|
|
printk(KERN_ERR "%s: got CPUFREQ_NOTIFY\n", __FUNCTION__);
|
|
do {} while(0);
|
|
/* todo: panic if min/max values aren't fulfilled
|
|
* [can't really happen unless there's a bug in the
|
|
* CPU policy verification process *
|
|
*/
|
|
break;
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_PM
|
|
/*
|
|
* Power management hooks. Note that we won't be called from IRQ context,
|
|
* unlike the blank functions above, so we may sleep.
|
|
*/
|
|
static int pxafb_suspend(struct platform_device *dev, pm_message_t state)
|
|
{
|
|
struct pxafb_info *fbi = platform_get_drvdata(dev);
|
|
|
|
set_ctrlr_state(fbi, C_DISABLE_PM);
|
|
return 0;
|
|
}
|
|
|
|
static int pxafb_resume(struct platform_device *dev)
|
|
{
|
|
struct pxafb_info *fbi = platform_get_drvdata(dev);
|
|
|
|
set_ctrlr_state(fbi, C_ENABLE_PM);
|
|
return 0;
|
|
}
|
|
#else
|
|
#define pxafb_suspend NULL
|
|
#define pxafb_resume NULL
|
|
#endif
|
|
|
|
/*
|
|
* pxafb_map_video_memory():
|
|
* Allocates the DRAM memory for the frame buffer. This buffer is
|
|
* remapped into a non-cached, non-buffered, memory region to
|
|
* allow palette and pixel writes to occur without flushing the
|
|
* cache. Once this area is remapped, all virtual memory
|
|
* access to the video memory should occur at the new region.
|
|
*/
|
|
static int __init pxafb_map_video_memory(struct pxafb_info *fbi)
|
|
{
|
|
u_long palette_mem_size;
|
|
|
|
/*
|
|
* We reserve one page for the palette, plus the size
|
|
* of the framebuffer.
|
|
*/
|
|
fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
|
|
fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
|
|
&fbi->map_dma, GFP_KERNEL);
|
|
|
|
if (fbi->map_cpu) {
|
|
/* prevent initial garbage on screen */
|
|
memset(fbi->map_cpu, 0, fbi->map_size);
|
|
fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
|
|
fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
|
|
/*
|
|
* FIXME: this is actually the wrong thing to place in
|
|
* smem_start. But fbdev suffers from the problem that
|
|
* it needs an API which doesn't exist (in this case,
|
|
* dma_writecombine_mmap)
|
|
*/
|
|
fbi->fb.fix.smem_start = fbi->screen_dma;
|
|
|
|
fbi->palette_size = fbi->fb.var.bits_per_pixel == 8 ? 256 : 16;
|
|
|
|
palette_mem_size = fbi->palette_size * sizeof(u16);
|
|
pr_debug("pxafb: palette_mem_size = 0x%08lx\n", palette_mem_size);
|
|
|
|
fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
|
|
fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
|
|
}
|
|
|
|
return fbi->map_cpu ? 0 : -ENOMEM;
|
|
}
|
|
|
|
static struct pxafb_info * __init pxafb_init_fbinfo(struct device *dev)
|
|
{
|
|
struct pxafb_info *fbi;
|
|
void *addr;
|
|
struct pxafb_mach_info *inf = dev->platform_data;
|
|
struct pxafb_mode_info *mode = inf->modes;
|
|
int i, smemlen;
|
|
|
|
/* Alloc the pxafb_info and pseudo_palette in one step */
|
|
fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL);
|
|
if (!fbi)
|
|
return NULL;
|
|
|
|
memset(fbi, 0, sizeof(struct pxafb_info));
|
|
fbi->dev = dev;
|
|
|
|
strcpy(fbi->fb.fix.id, PXA_NAME);
|
|
|
|
fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
|
|
fbi->fb.fix.type_aux = 0;
|
|
fbi->fb.fix.xpanstep = 0;
|
|
fbi->fb.fix.ypanstep = 0;
|
|
fbi->fb.fix.ywrapstep = 0;
|
|
fbi->fb.fix.accel = FB_ACCEL_NONE;
|
|
|
|
fbi->fb.var.nonstd = 0;
|
|
fbi->fb.var.activate = FB_ACTIVATE_NOW;
|
|
fbi->fb.var.height = -1;
|
|
fbi->fb.var.width = -1;
|
|
fbi->fb.var.accel_flags = 0;
|
|
fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
|
|
|
|
fbi->fb.fbops = &pxafb_ops;
|
|
fbi->fb.flags = FBINFO_DEFAULT;
|
|
fbi->fb.node = -1;
|
|
|
|
addr = fbi;
|
|
addr = addr + sizeof(struct pxafb_info);
|
|
fbi->fb.pseudo_palette = addr;
|
|
|
|
pxafb_setmode(&fbi->fb.var, mode);
|
|
|
|
fbi->cmap_inverse = inf->cmap_inverse;
|
|
fbi->cmap_static = inf->cmap_static;
|
|
|
|
fbi->lccr0 = inf->lccr0;
|
|
fbi->lccr3 = inf->lccr3;
|
|
fbi->state = C_STARTUP;
|
|
fbi->task_state = (u_char)-1;
|
|
|
|
for (i = 0; i < inf->num_modes; i++) {
|
|
smemlen = mode[i].xres * mode[i].yres * mode[i].bpp / 8;
|
|
if (smemlen > fbi->fb.fix.smem_len)
|
|
fbi->fb.fix.smem_len = smemlen;
|
|
}
|
|
|
|
init_waitqueue_head(&fbi->ctrlr_wait);
|
|
INIT_WORK(&fbi->task, pxafb_task);
|
|
init_MUTEX(&fbi->ctrlr_sem);
|
|
|
|
return fbi;
|
|
}
|
|
|
|
#ifdef CONFIG_FB_PXA_PARAMETERS
|
|
static int __init pxafb_parse_options(struct device *dev, char *options)
|
|
{
|
|
struct pxafb_mach_info *inf = dev->platform_data;
|
|
char *this_opt;
|
|
|
|
if (!options || !*options)
|
|
return 0;
|
|
|
|
dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
|
|
|
|
/* could be made table driven or similar?... */
|
|
while ((this_opt = strsep(&options, ",")) != NULL) {
|
|
if (!strncmp(this_opt, "mode:", 5)) {
|
|
const char *name = this_opt+5;
|
|
unsigned int namelen = strlen(name);
|
|
int res_specified = 0, bpp_specified = 0;
|
|
unsigned int xres = 0, yres = 0, bpp = 0;
|
|
int yres_specified = 0;
|
|
int i;
|
|
for (i = namelen-1; i >= 0; i--) {
|
|
switch (name[i]) {
|
|
case '-':
|
|
namelen = i;
|
|
if (!bpp_specified && !yres_specified) {
|
|
bpp = simple_strtoul(&name[i+1], NULL, 0);
|
|
bpp_specified = 1;
|
|
} else
|
|
goto done;
|
|
break;
|
|
case 'x':
|
|
if (!yres_specified) {
|
|
yres = simple_strtoul(&name[i+1], NULL, 0);
|
|
yres_specified = 1;
|
|
} else
|
|
goto done;
|
|
break;
|
|
case '0' ... '9':
|
|
break;
|
|
default:
|
|
goto done;
|
|
}
|
|
}
|
|
if (i < 0 && yres_specified) {
|
|
xres = simple_strtoul(name, NULL, 0);
|
|
res_specified = 1;
|
|
}
|
|
done:
|
|
if (res_specified) {
|
|
dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
|
|
inf->modes[0].xres = xres; inf->modes[0].yres = yres;
|
|
}
|
|
if (bpp_specified)
|
|
switch (bpp) {
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
case 16:
|
|
inf->modes[0].bpp = bpp;
|
|
dev_info(dev, "overriding bit depth: %d\n", bpp);
|
|
break;
|
|
default:
|
|
dev_err(dev, "Depth %d is not valid\n", bpp);
|
|
}
|
|
} else if (!strncmp(this_opt, "pixclock:", 9)) {
|
|
inf->modes[0].pixclock = simple_strtoul(this_opt+9, NULL, 0);
|
|
dev_info(dev, "override pixclock: %ld\n", inf->modes[0].pixclock);
|
|
} else if (!strncmp(this_opt, "left:", 5)) {
|
|
inf->modes[0].left_margin = simple_strtoul(this_opt+5, NULL, 0);
|
|
dev_info(dev, "override left: %u\n", inf->modes[0].left_margin);
|
|
} else if (!strncmp(this_opt, "right:", 6)) {
|
|
inf->modes[0].right_margin = simple_strtoul(this_opt+6, NULL, 0);
|
|
dev_info(dev, "override right: %u\n", inf->modes[0].right_margin);
|
|
} else if (!strncmp(this_opt, "upper:", 6)) {
|
|
inf->modes[0].upper_margin = simple_strtoul(this_opt+6, NULL, 0);
|
|
dev_info(dev, "override upper: %u\n", inf->modes[0].upper_margin);
|
|
} else if (!strncmp(this_opt, "lower:", 6)) {
|
|
inf->modes[0].lower_margin = simple_strtoul(this_opt+6, NULL, 0);
|
|
dev_info(dev, "override lower: %u\n", inf->modes[0].lower_margin);
|
|
} else if (!strncmp(this_opt, "hsynclen:", 9)) {
|
|
inf->modes[0].hsync_len = simple_strtoul(this_opt+9, NULL, 0);
|
|
dev_info(dev, "override hsynclen: %u\n", inf->modes[0].hsync_len);
|
|
} else if (!strncmp(this_opt, "vsynclen:", 9)) {
|
|
inf->modes[0].vsync_len = simple_strtoul(this_opt+9, NULL, 0);
|
|
dev_info(dev, "override vsynclen: %u\n", inf->modes[0].vsync_len);
|
|
} else if (!strncmp(this_opt, "hsync:", 6)) {
|
|
if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
|
|
dev_info(dev, "override hsync: Active Low\n");
|
|
inf->modes[0].sync &= ~FB_SYNC_HOR_HIGH_ACT;
|
|
} else {
|
|
dev_info(dev, "override hsync: Active High\n");
|
|
inf->modes[0].sync |= FB_SYNC_HOR_HIGH_ACT;
|
|
}
|
|
} else if (!strncmp(this_opt, "vsync:", 6)) {
|
|
if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
|
|
dev_info(dev, "override vsync: Active Low\n");
|
|
inf->modes[0].sync &= ~FB_SYNC_VERT_HIGH_ACT;
|
|
} else {
|
|
dev_info(dev, "override vsync: Active High\n");
|
|
inf->modes[0].sync |= FB_SYNC_VERT_HIGH_ACT;
|
|
}
|
|
} else if (!strncmp(this_opt, "dpc:", 4)) {
|
|
if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
|
|
dev_info(dev, "override double pixel clock: false\n");
|
|
inf->lccr3 &= ~LCCR3_DPC;
|
|
} else {
|
|
dev_info(dev, "override double pixel clock: true\n");
|
|
inf->lccr3 |= LCCR3_DPC;
|
|
}
|
|
} else if (!strncmp(this_opt, "outputen:", 9)) {
|
|
if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
|
|
dev_info(dev, "override output enable: active low\n");
|
|
inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
|
|
} else {
|
|
dev_info(dev, "override output enable: active high\n");
|
|
inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
|
|
}
|
|
} else if (!strncmp(this_opt, "pixclockpol:", 12)) {
|
|
if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
|
|
dev_info(dev, "override pixel clock polarity: falling edge\n");
|
|
inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
|
|
} else {
|
|
dev_info(dev, "override pixel clock polarity: rising edge\n");
|
|
inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
|
|
}
|
|
} else if (!strncmp(this_opt, "color", 5)) {
|
|
inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
|
|
} else if (!strncmp(this_opt, "mono", 4)) {
|
|
inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
|
|
} else if (!strncmp(this_opt, "active", 6)) {
|
|
inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
|
|
} else if (!strncmp(this_opt, "passive", 7)) {
|
|
inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
|
|
} else if (!strncmp(this_opt, "single", 6)) {
|
|
inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
|
|
} else if (!strncmp(this_opt, "dual", 4)) {
|
|
inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
|
|
} else if (!strncmp(this_opt, "4pix", 4)) {
|
|
inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
|
|
} else if (!strncmp(this_opt, "8pix", 4)) {
|
|
inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
|
|
} else {
|
|
dev_err(dev, "unknown option: %s\n", this_opt);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
}
|
|
#endif
|
|
|
|
int __init pxafb_probe(struct platform_device *dev)
|
|
{
|
|
struct pxafb_info *fbi;
|
|
struct pxafb_mach_info *inf;
|
|
int ret;
|
|
|
|
dev_dbg(&dev->dev, "pxafb_probe\n");
|
|
|
|
inf = dev->dev.platform_data;
|
|
ret = -ENOMEM;
|
|
fbi = NULL;
|
|
if (!inf)
|
|
goto failed;
|
|
|
|
#ifdef CONFIG_FB_PXA_PARAMETERS
|
|
ret = pxafb_parse_options(&dev->dev, g_options);
|
|
if (ret < 0)
|
|
goto failed;
|
|
#endif
|
|
|
|
#ifdef DEBUG_VAR
|
|
/* Check for various illegal bit-combinations. Currently only
|
|
* a warning is given. */
|
|
|
|
if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
|
|
dev_warn(&dev->dev, "machine LCCR0 setting contains illegal bits: %08x\n",
|
|
inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
|
|
if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
|
|
dev_warn(&dev->dev, "machine LCCR3 setting contains illegal bits: %08x\n",
|
|
inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
|
|
if (inf->lccr0 & LCCR0_DPD &&
|
|
((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
|
|
(inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
|
|
(inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
|
|
dev_warn(&dev->dev, "Double Pixel Data (DPD) mode is only valid in passive mono"
|
|
" single panel mode\n");
|
|
if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
|
|
(inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
|
|
dev_warn(&dev->dev, "Dual panel only valid in passive mode\n");
|
|
if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
|
|
(inf->modes->upper_margin || inf->modes->lower_margin))
|
|
dev_warn(&dev->dev, "Upper and lower margins must be 0 in passive mode\n");
|
|
#endif
|
|
|
|
dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",inf->modes->xres, inf->modes->yres, inf->modes->bpp);
|
|
if (inf->modes->xres == 0 || inf->modes->yres == 0 || inf->modes->bpp == 0) {
|
|
dev_err(&dev->dev, "Invalid resolution or bit depth\n");
|
|
ret = -EINVAL;
|
|
goto failed;
|
|
}
|
|
pxafb_backlight_power = inf->pxafb_backlight_power;
|
|
pxafb_lcd_power = inf->pxafb_lcd_power;
|
|
fbi = pxafb_init_fbinfo(&dev->dev);
|
|
if (!fbi) {
|
|
dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
|
|
ret = -ENOMEM; // only reason for pxafb_init_fbinfo to fail is kmalloc
|
|
goto failed;
|
|
}
|
|
|
|
/* Initialize video memory */
|
|
ret = pxafb_map_video_memory(fbi);
|
|
if (ret) {
|
|
dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
|
|
ret = -ENOMEM;
|
|
goto failed;
|
|
}
|
|
|
|
ret = request_irq(IRQ_LCD, pxafb_handle_irq, IRQF_DISABLED, "LCD", fbi);
|
|
if (ret) {
|
|
dev_err(&dev->dev, "request_irq failed: %d\n", ret);
|
|
ret = -EBUSY;
|
|
goto failed;
|
|
}
|
|
|
|
/*
|
|
* This makes sure that our colour bitfield
|
|
* descriptors are correctly initialised.
|
|
*/
|
|
pxafb_check_var(&fbi->fb.var, &fbi->fb);
|
|
pxafb_set_par(&fbi->fb);
|
|
|
|
platform_set_drvdata(dev, fbi);
|
|
|
|
ret = register_framebuffer(&fbi->fb);
|
|
if (ret < 0) {
|
|
dev_err(&dev->dev, "Failed to register framebuffer device: %d\n", ret);
|
|
goto failed;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
// TODO
|
|
#endif
|
|
|
|
#ifdef CONFIG_CPU_FREQ
|
|
fbi->freq_transition.notifier_call = pxafb_freq_transition;
|
|
fbi->freq_policy.notifier_call = pxafb_freq_policy;
|
|
cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
|
|
cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
|
|
#endif
|
|
|
|
/*
|
|
* Ok, now enable the LCD controller
|
|
*/
|
|
set_ctrlr_state(fbi, C_ENABLE);
|
|
|
|
return 0;
|
|
|
|
failed:
|
|
platform_set_drvdata(dev, NULL);
|
|
kfree(fbi);
|
|
return ret;
|
|
}
|
|
|
|
static struct platform_driver pxafb_driver = {
|
|
.probe = pxafb_probe,
|
|
#ifdef CONFIG_PM
|
|
.suspend = pxafb_suspend,
|
|
.resume = pxafb_resume,
|
|
#endif
|
|
.driver = {
|
|
.name = "pxa2xx-fb",
|
|
},
|
|
};
|
|
|
|
#ifndef MODULE
|
|
int __devinit pxafb_setup(char *options)
|
|
{
|
|
# ifdef CONFIG_FB_PXA_PARAMETERS
|
|
if (options)
|
|
strlcpy(g_options, options, sizeof(g_options));
|
|
# endif
|
|
return 0;
|
|
}
|
|
#else
|
|
# ifdef CONFIG_FB_PXA_PARAMETERS
|
|
module_param_string(options, g_options, sizeof(g_options), 0);
|
|
MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
|
|
# endif
|
|
#endif
|
|
|
|
int __devinit pxafb_init(void)
|
|
{
|
|
#ifndef MODULE
|
|
char *option = NULL;
|
|
|
|
if (fb_get_options("pxafb", &option))
|
|
return -ENODEV;
|
|
pxafb_setup(option);
|
|
#endif
|
|
return platform_driver_register(&pxafb_driver);
|
|
}
|
|
|
|
module_init(pxafb_init);
|
|
|
|
MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
|
|
MODULE_LICENSE("GPL");
|