linux/drivers/net/wireless/ath9k/rc.c
Sujith 5701ed843e ath9k: rc.h cleanup
Use kernel doc syntax for comments and remove a few unused macros.

Signed-off-by: Sujith Manoharan <Sujith.Manoharan@atheros.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-08-29 16:24:10 -04:00

2128 lines
61 KiB
C

/*
* Copyright (c) 2004 Video54 Technologies, Inc.
* Copyright (c) 2004-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Atheros rate control algorithm
*/
#include "core.h"
#include "../net/mac80211/rate.h"
static u32 tx_triglevel_max;
static struct ath_rate_table ar5416_11na_ratetable = {
42,
{
{ TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
5400, 0x0b, 0x00, 12,
0, 2, 1, 0, 0, 0, 0, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
7800, 0x0f, 0x00, 18,
0, 3, 1, 1, 1, 1, 1, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
10000, 0x0a, 0x00, 24,
2, 4, 2, 2, 2, 2, 2, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
13900, 0x0e, 0x00, 36,
2, 6, 2, 3, 3, 3, 3, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
17300, 0x09, 0x00, 48,
4, 10, 3, 4, 4, 4, 4, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
23000, 0x0d, 0x00, 72,
4, 14, 3, 5, 5, 5, 5, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
27400, 0x08, 0x00, 96,
4, 20, 3, 6, 6, 6, 6, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
29300, 0x0c, 0x00, 108,
4, 23, 3, 7, 7, 7, 7, 0 },
{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */
6400, 0x80, 0x00, 0,
0, 2, 3, 8, 24, 8, 24, 3216 },
{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */
12700, 0x81, 0x00, 1,
2, 4, 3, 9, 25, 9, 25, 6434 },
{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */
18800, 0x82, 0x00, 2,
2, 6, 3, 10, 26, 10, 26, 9650 },
{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */
25000, 0x83, 0x00, 3,
4, 10, 3, 11, 27, 11, 27, 12868 },
{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */
36700, 0x84, 0x00, 4,
4, 14, 3, 12, 28, 12, 28, 19304 },
{ FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */
48100, 0x85, 0x00, 5,
4, 20, 3, 13, 29, 13, 29, 25740 },
{ FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */
53500, 0x86, 0x00, 6,
4, 23, 3, 14, 30, 14, 30, 28956 },
{ FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */
59000, 0x87, 0x00, 7,
4, 25, 3, 15, 31, 15, 32, 32180 },
{ FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */
12700, 0x88, 0x00,
8, 0, 2, 3, 16, 33, 16, 33, 6430 },
{ FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */
24800, 0x89, 0x00, 9,
2, 4, 3, 17, 34, 17, 34, 12860 },
{ FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */
36600, 0x8a, 0x00, 10,
2, 6, 3, 18, 35, 18, 35, 19300 },
{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */
48100, 0x8b, 0x00, 11,
4, 10, 3, 19, 36, 19, 36, 25736 },
{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */
69500, 0x8c, 0x00, 12,
4, 14, 3, 20, 37, 20, 37, 38600 },
{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */
89500, 0x8d, 0x00, 13,
4, 20, 3, 21, 38, 21, 38, 51472 },
{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */
98900, 0x8e, 0x00, 14,
4, 23, 3, 22, 39, 22, 39, 57890 },
{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */
108300, 0x8f, 0x00, 15,
4, 25, 3, 23, 40, 23, 41, 64320 },
{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */
13200, 0x80, 0x00, 0,
0, 2, 3, 8, 24, 24, 24, 6684 },
{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */
25900, 0x81, 0x00, 1,
2, 4, 3, 9, 25, 25, 25, 13368 },
{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */
38600, 0x82, 0x00, 2,
2, 6, 3, 10, 26, 26, 26, 20052 },
{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */
49800, 0x83, 0x00, 3,
4, 10, 3, 11, 27, 27, 27, 26738 },
{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */
72200, 0x84, 0x00, 4,
4, 14, 3, 12, 28, 28, 28, 40104 },
{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */
92900, 0x85, 0x00, 5,
4, 20, 3, 13, 29, 29, 29, 53476 },
{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */
102700, 0x86, 0x00, 6,
4, 23, 3, 14, 30, 30, 30, 60156 },
{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */
112000, 0x87, 0x00, 7,
4, 25, 3, 15, 31, 32, 32, 66840 },
{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
122000, 0x87, 0x00, 7,
4, 25, 3, 15, 31, 32, 32, 74200 },
{ FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */
25800, 0x88, 0x00, 8,
0, 2, 3, 16, 33, 33, 33, 13360 },
{ FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */
49800, 0x89, 0x00, 9,
2, 4, 3, 17, 34, 34, 34, 26720 },
{ FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */
71900, 0x8a, 0x00, 10,
2, 6, 3, 18, 35, 35, 35, 40080 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */
92500, 0x8b, 0x00, 11,
4, 10, 3, 19, 36, 36, 36, 53440 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */
130300, 0x8c, 0x00, 12,
4, 14, 3, 20, 37, 37, 37, 80160 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */
162800, 0x8d, 0x00, 13,
4, 20, 3, 21, 38, 38, 38, 106880 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */
178200, 0x8e, 0x00, 14,
4, 23, 3, 22, 39, 39, 39, 120240 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */
192100, 0x8f, 0x00, 15,
4, 25, 3, 23, 40, 41, 41, 133600 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
207000, 0x8f, 0x00, 15,
4, 25, 3, 23, 40, 41, 41, 148400 },
},
50, /* probe interval */
50, /* rssi reduce interval */
WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
};
/* TRUE_ALL - valid for 20/40/Legacy,
* TRUE - Legacy only,
* TRUE_20 - HT 20 only,
* TRUE_40 - HT 40 only */
/* 4ms frame limit not used for NG mode. The values filled
* for HT are the 64K max aggregate limit */
static struct ath_rate_table ar5416_11ng_ratetable = {
46,
{
{ TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 1000, /* 1 Mb */
900, 0x1b, 0x00, 2,
0, 0, 1, 0, 0, 0, 0, 0 },
{ TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 2000, /* 2 Mb */
1900, 0x1a, 0x04, 4,
1, 1, 1, 1, 1, 1, 1, 0 },
{ TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 5500, /* 5.5 Mb */
4900, 0x19, 0x04, 11,
2, 2, 2, 2, 2, 2, 2, 0 },
{ TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 11000, /* 11 Mb */
8100, 0x18, 0x04, 22,
3, 3, 2, 3, 3, 3, 3, 0 },
{ FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
5400, 0x0b, 0x00, 12,
4, 2, 1, 4, 4, 4, 4, 0 },
{ FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
7800, 0x0f, 0x00, 18,
4, 3, 1, 5, 5, 5, 5, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
10100, 0x0a, 0x00, 24,
6, 4, 1, 6, 6, 6, 6, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
14100, 0x0e, 0x00, 36,
6, 6, 2, 7, 7, 7, 7, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
17700, 0x09, 0x00, 48,
8, 10, 3, 8, 8, 8, 8, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
23700, 0x0d, 0x00, 72,
8, 14, 3, 9, 9, 9, 9, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
27400, 0x08, 0x00, 96,
8, 20, 3, 10, 10, 10, 10, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
30900, 0x0c, 0x00, 108,
8, 23, 3, 11, 11, 11, 11, 0 },
{ FALSE, FALSE, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */
6400, 0x80, 0x00, 0,
4, 2, 3, 12, 28, 12, 28, 3216 },
{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */
12700, 0x81, 0x00, 1,
6, 4, 3, 13, 29, 13, 29, 6434 },
{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */
18800, 0x82, 0x00, 2,
6, 6, 3, 14, 30, 14, 30, 9650 },
{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */
25000, 0x83, 0x00, 3,
8, 10, 3, 15, 31, 15, 31, 12868 },
{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */
36700, 0x84, 0x00, 4,
8, 14, 3, 16, 32, 16, 32, 19304 },
{ FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */
48100, 0x85, 0x00, 5,
8, 20, 3, 17, 33, 17, 33, 25740 },
{ FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */
53500, 0x86, 0x00, 6,
8, 23, 3, 18, 34, 18, 34, 28956 },
{ FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */
59000, 0x87, 0x00, 7,
8, 25, 3, 19, 35, 19, 36, 32180 },
{ FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */
12700, 0x88, 0x00, 8,
4, 2, 3, 20, 37, 20, 37, 6430 },
{ FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */
24800, 0x89, 0x00, 9,
6, 4, 3, 21, 38, 21, 38, 12860 },
{ FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */
36600, 0x8a, 0x00, 10,
6, 6, 3, 22, 39, 22, 39, 19300 },
{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */
48100, 0x8b, 0x00, 11,
8, 10, 3, 23, 40, 23, 40, 25736 },
{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */
69500, 0x8c, 0x00, 12,
8, 14, 3, 24, 41, 24, 41, 38600 },
{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */
89500, 0x8d, 0x00, 13,
8, 20, 3, 25, 42, 25, 42, 51472 },
{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */
98900, 0x8e, 0x00, 14,
8, 23, 3, 26, 43, 26, 44, 57890 },
{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */
108300, 0x8f, 0x00, 15,
8, 25, 3, 27, 44, 27, 45, 64320 },
{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */
13200, 0x80, 0x00, 0,
8, 2, 3, 12, 28, 28, 28, 6684 },
{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */
25900, 0x81, 0x00, 1,
8, 4, 3, 13, 29, 29, 29, 13368 },
{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */
38600, 0x82, 0x00, 2,
8, 6, 3, 14, 30, 30, 30, 20052 },
{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */
49800, 0x83, 0x00, 3,
8, 10, 3, 15, 31, 31, 31, 26738 },
{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */
72200, 0x84, 0x00, 4,
8, 14, 3, 16, 32, 32, 32, 40104 },
{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */
92900, 0x85, 0x00, 5,
8, 20, 3, 17, 33, 33, 33, 53476 },
{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */
102700, 0x86, 0x00, 6,
8, 23, 3, 18, 34, 34, 34, 60156 },
{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */
112000, 0x87, 0x00, 7,
8, 23, 3, 19, 35, 36, 36, 66840 },
{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
122000, 0x87, 0x00, 7,
8, 25, 3, 19, 35, 36, 36, 74200 },
{ FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */
25800, 0x88, 0x00, 8,
8, 2, 3, 20, 37, 37, 37, 13360 },
{ FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */
49800, 0x89, 0x00, 9,
8, 4, 3, 21, 38, 38, 38, 26720 },
{ FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */
71900, 0x8a, 0x00, 10,
8, 6, 3, 22, 39, 39, 39, 40080 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */
92500, 0x8b, 0x00, 11,
8, 10, 3, 23, 40, 40, 40, 53440 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */
130300, 0x8c, 0x00, 12,
8, 14, 3, 24, 41, 41, 41, 80160 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */
162800, 0x8d, 0x00, 13,
8, 20, 3, 25, 42, 42, 42, 106880 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */
178200, 0x8e, 0x00, 14,
8, 23, 3, 26, 43, 43, 43, 120240 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */
192100, 0x8f, 0x00, 15,
8, 23, 3, 27, 44, 45, 45, 133600 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
207000, 0x8f, 0x00, 15,
8, 25, 3, 27, 44, 45, 45, 148400 },
},
50, /* probe interval */
50, /* rssi reduce interval */
WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
};
static struct ath_rate_table ar5416_11a_ratetable = {
8,
{
{ TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
5400, 0x0b, 0x00, (0x80|12),
0, 2, 1, 0, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
7800, 0x0f, 0x00, 18,
0, 3, 1, 1, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
10000, 0x0a, 0x00, (0x80|24),
2, 4, 2, 2, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
13900, 0x0e, 0x00, 36,
2, 6, 2, 3, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
17300, 0x09, 0x00, (0x80|48),
4, 10, 3, 4, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
23000, 0x0d, 0x00, 72,
4, 14, 3, 5, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
27400, 0x08, 0x00, 96,
4, 19, 3, 6, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
29300, 0x0c, 0x00, 108,
4, 23, 3, 7, 0 },
},
50, /* probe interval */
50, /* rssi reduce interval */
0, /* Phy rates allowed initially */
};
static struct ath_rate_table ar5416_11a_ratetable_Half = {
8,
{
{ TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 6 Mb */
2700, 0x0b, 0x00, (0x80|6),
0, 2, 1, 0, 0},
{ TRUE, TRUE, WLAN_PHY_OFDM, 4500, /* 9 Mb */
3900, 0x0f, 0x00, 9,
0, 3, 1, 1, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 12 Mb */
5000, 0x0a, 0x00, (0x80|12),
2, 4, 2, 2, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 18 Mb */
6950, 0x0e, 0x00, 18,
2, 6, 2, 3, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 24 Mb */
8650, 0x09, 0x00, (0x80|24),
4, 10, 3, 4, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 36 Mb */
11500, 0x0d, 0x00, 36,
4, 14, 3, 5, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 48 Mb */
13700, 0x08, 0x00, 48,
4, 19, 3, 6, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 27000, /* 54 Mb */
14650, 0x0c, 0x00, 54,
4, 23, 3, 7, 0 },
},
50, /* probe interval */
50, /* rssi reduce interval */
0, /* Phy rates allowed initially */
};
static struct ath_rate_table ar5416_11a_ratetable_Quarter = {
8,
{
{ TRUE, TRUE, WLAN_PHY_OFDM, 1500, /* 6 Mb */
1350, 0x0b, 0x00, (0x80|3),
0, 2, 1, 0, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 2250, /* 9 Mb */
1950, 0x0f, 0x00, 4,
0, 3, 1, 1, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 12 Mb */
2500, 0x0a, 0x00, (0x80|6),
2, 4, 2, 2, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 4500, /* 18 Mb */
3475, 0x0e, 0x00, 9,
2, 6, 2, 3, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 25 Mb */
4325, 0x09, 0x00, (0x80|12),
4, 10, 3, 4, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 36 Mb */
5750, 0x0d, 0x00, 18,
4, 14, 3, 5, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 48 Mb */
6850, 0x08, 0x00, 24,
4, 19, 3, 6, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 13500, /* 54 Mb */
7325, 0x0c, 0x00, 27,
4, 23, 3, 7, 0 },
},
50, /* probe interval */
50, /* rssi reduce interval */
0, /* Phy rates allowed initially */
};
static struct ath_rate_table ar5416_11g_ratetable = {
12,
{
{ TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */
900, 0x1b, 0x00, 2,
0, 0, 1, 0, 0 },
{ TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */
1900, 0x1a, 0x04, 4,
1, 1, 1, 1, 0 },
{ TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */
4900, 0x19, 0x04, 11,
2, 2, 2, 2, 0 },
{ TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */
8100, 0x18, 0x04, 22,
3, 3, 2, 3, 0 },
{ FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
5400, 0x0b, 0x00, 12,
4, 2, 1, 4, 0 },
{ FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
7800, 0x0f, 0x00, 18,
4, 3, 1, 5, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
10000, 0x0a, 0x00, 24,
6, 4, 1, 6, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
13900, 0x0e, 0x00, 36,
6, 6, 2, 7, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
17300, 0x09, 0x00, 48,
8, 10, 3, 8, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
23000, 0x0d, 0x00, 72,
8, 14, 3, 9, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
27400, 0x08, 0x00, 96,
8, 19, 3, 10, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
29300, 0x0c, 0x00, 108,
8, 23, 3, 11, 0 },
},
50, /* probe interval */
50, /* rssi reduce interval */
0, /* Phy rates allowed initially */
};
static struct ath_rate_table ar5416_11b_ratetable = {
4,
{
{ TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */
900, 0x1b, 0x00, (0x80|2),
0, 0, 1, 0, 0 },
{ TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */
1800, 0x1a, 0x04, (0x80|4),
1, 1, 1, 1, 0 },
{ TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */
4300, 0x19, 0x04, (0x80|11),
1, 2, 2, 2, 0 },
{ TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */
7100, 0x18, 0x04, (0x80|22),
1, 4, 100, 3, 0 },
},
100, /* probe interval */
100, /* rssi reduce interval */
0, /* Phy rates allowed initially */
};
static void ar5416_attach_ratetables(struct ath_rate_softc *sc)
{
/*
* Attach rate tables.
*/
sc->hw_rate_table[ATH9K_MODE_11B] = &ar5416_11b_ratetable;
sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable;
sc->hw_rate_table[ATH9K_MODE_11G] = &ar5416_11g_ratetable;
sc->hw_rate_table[ATH9K_MODE_11NA_HT20] = &ar5416_11na_ratetable;
sc->hw_rate_table[ATH9K_MODE_11NG_HT20] = &ar5416_11ng_ratetable;
sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] =
&ar5416_11na_ratetable;
sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] =
&ar5416_11na_ratetable;
sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] =
&ar5416_11ng_ratetable;
sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] =
&ar5416_11ng_ratetable;
}
static void ar5416_setquarter_ratetable(struct ath_rate_softc *sc)
{
sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable_Quarter;
return;
}
static void ar5416_sethalf_ratetable(struct ath_rate_softc *sc)
{
sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable_Half;
return;
}
static void ar5416_setfull_ratetable(struct ath_rate_softc *sc)
{
sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable;
return;
}
/*
* Return the median of three numbers
*/
static inline int8_t median(int8_t a, int8_t b, int8_t c)
{
if (a >= b) {
if (b >= c)
return b;
else if (a > c)
return c;
else
return a;
} else {
if (a >= c)
return a;
else if (b >= c)
return c;
else
return b;
}
}
static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table,
struct ath_tx_ratectrl *rate_ctrl)
{
u8 i, j, idx, idx_next;
for (i = rate_ctrl->max_valid_rate - 1; i > 0; i--) {
for (j = 0; j <= i-1; j++) {
idx = rate_ctrl->valid_rate_index[j];
idx_next = rate_ctrl->valid_rate_index[j+1];
if (rate_table->info[idx].ratekbps >
rate_table->info[idx_next].ratekbps) {
rate_ctrl->valid_rate_index[j] = idx_next;
rate_ctrl->valid_rate_index[j+1] = idx;
}
}
}
}
/* Access functions for valid_txrate_mask */
static void ath_rc_init_valid_txmask(struct ath_tx_ratectrl *rate_ctrl)
{
u8 i;
for (i = 0; i < rate_ctrl->rate_table_size; i++)
rate_ctrl->valid_rate_index[i] = FALSE;
}
static inline void ath_rc_set_valid_txmask(struct ath_tx_ratectrl *rate_ctrl,
u8 index, int valid_tx_rate)
{
ASSERT(index <= rate_ctrl->rate_table_size);
rate_ctrl->valid_rate_index[index] = valid_tx_rate ? TRUE : FALSE;
}
static inline int ath_rc_isvalid_txmask(struct ath_tx_ratectrl *rate_ctrl,
u8 index)
{
ASSERT(index <= rate_ctrl->rate_table_size);
return rate_ctrl->valid_rate_index[index];
}
/* Iterators for valid_txrate_mask */
static inline int
ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
struct ath_tx_ratectrl *rate_ctrl,
u8 cur_valid_txrate,
u8 *next_idx)
{
u8 i;
for (i = 0; i < rate_ctrl->max_valid_rate - 1; i++) {
if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) {
*next_idx = rate_ctrl->valid_rate_index[i+1];
return TRUE;
}
}
/* No more valid rates */
*next_idx = 0;
return FALSE;
}
/* Return true only for single stream */
static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
{
if (WLAN_RC_PHY_HT(phy) & !(capflag & WLAN_RC_HT_FLAG))
return FALSE;
if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
return FALSE;
if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
return FALSE;
if (!ignore_cw && WLAN_RC_PHY_HT(phy))
if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
return FALSE;
if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG))
return FALSE;
return TRUE;
}
static inline int
ath_rc_get_nextlowervalid_txrate(const struct ath_rate_table *rate_table,
struct ath_tx_ratectrl *rate_ctrl,
u8 cur_valid_txrate, u8 *next_idx)
{
int8_t i;
for (i = 1; i < rate_ctrl->max_valid_rate ; i++) {
if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) {
*next_idx = rate_ctrl->valid_rate_index[i-1];
return TRUE;
}
}
return FALSE;
}
/*
* Initialize the Valid Rate Index from valid entries in Rate Table
*/
static u8
ath_rc_sib_init_validrates(struct ath_rate_node *ath_rc_priv,
const struct ath_rate_table *rate_table,
u32 capflag)
{
struct ath_tx_ratectrl *rate_ctrl;
u8 i, hi = 0;
u32 valid;
rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv);
for (i = 0; i < rate_table->rate_cnt; i++) {
valid = (ath_rc_priv->single_stream ?
rate_table->info[i].valid_single_stream :
rate_table->info[i].valid);
if (valid == TRUE) {
u32 phy = rate_table->info[i].phy;
u8 valid_rate_count = 0;
if (!ath_rc_valid_phyrate(phy, capflag, FALSE))
continue;
valid_rate_count = rate_ctrl->valid_phy_ratecnt[phy];
rate_ctrl->valid_phy_rateidx[phy][valid_rate_count] = i;
rate_ctrl->valid_phy_ratecnt[phy] += 1;
ath_rc_set_valid_txmask(rate_ctrl, i, TRUE);
hi = A_MAX(hi, i);
}
}
return hi;
}
/*
* Initialize the Valid Rate Index from Rate Set
*/
static u8
ath_rc_sib_setvalid_rates(struct ath_rate_node *ath_rc_priv,
const struct ath_rate_table *rate_table,
struct ath_rateset *rateset,
u32 capflag)
{
/* XXX: Clean me up and make identation friendly */
u8 i, j, hi = 0;
struct ath_tx_ratectrl *rate_ctrl =
(struct ath_tx_ratectrl *)(ath_rc_priv);
/* Use intersection of working rates and valid rates */
for (i = 0; i < rateset->rs_nrates; i++) {
for (j = 0; j < rate_table->rate_cnt; j++) {
u32 phy = rate_table->info[j].phy;
u32 valid = (ath_rc_priv->single_stream ?
rate_table->info[j].valid_single_stream :
rate_table->info[j].valid);
/* We allow a rate only if its valid and the
* capflag matches one of the validity
* (TRUE/TRUE_20/TRUE_40) flags */
/* XXX: catch the negative of this branch
* first and then continue */
if (((rateset->rs_rates[i] & 0x7F) ==
(rate_table->info[j].dot11rate & 0x7F)) &&
((valid & WLAN_RC_CAP_MODE(capflag)) ==
WLAN_RC_CAP_MODE(capflag)) &&
!WLAN_RC_PHY_HT(phy)) {
u8 valid_rate_count = 0;
if (!ath_rc_valid_phyrate(phy, capflag, FALSE))
continue;
valid_rate_count =
rate_ctrl->valid_phy_ratecnt[phy];
rate_ctrl->valid_phy_rateidx[phy]
[valid_rate_count] = j;
rate_ctrl->valid_phy_ratecnt[phy] += 1;
ath_rc_set_valid_txmask(rate_ctrl, j, TRUE);
hi = A_MAX(hi, j);
}
}
}
return hi;
}
static u8
ath_rc_sib_setvalid_htrates(struct ath_rate_node *ath_rc_priv,
const struct ath_rate_table *rate_table,
u8 *mcs_set, u32 capflag)
{
u8 i, j, hi = 0;
struct ath_tx_ratectrl *rate_ctrl =
(struct ath_tx_ratectrl *)(ath_rc_priv);
/* Use intersection of working rates and valid rates */
for (i = 0; i < ((struct ath_rateset *)mcs_set)->rs_nrates; i++) {
for (j = 0; j < rate_table->rate_cnt; j++) {
u32 phy = rate_table->info[j].phy;
u32 valid = (ath_rc_priv->single_stream ?
rate_table->info[j].valid_single_stream :
rate_table->info[j].valid);
if (((((struct ath_rateset *)
mcs_set)->rs_rates[i] & 0x7F) !=
(rate_table->info[j].dot11rate & 0x7F)) ||
!WLAN_RC_PHY_HT(phy) ||
!WLAN_RC_PHY_HT_VALID(valid, capflag))
continue;
if (!ath_rc_valid_phyrate(phy, capflag, FALSE))
continue;
rate_ctrl->valid_phy_rateidx[phy]
[rate_ctrl->valid_phy_ratecnt[phy]] = j;
rate_ctrl->valid_phy_ratecnt[phy] += 1;
ath_rc_set_valid_txmask(rate_ctrl, j, TRUE);
hi = A_MAX(hi, j);
}
}
return hi;
}
/*
* Attach to a device instance. Setup the public definition
* of how much per-node space we need and setup the private
* phy tables that have rate control parameters.
*/
struct ath_rate_softc *ath_rate_attach(struct ath_hal *ah)
{
struct ath_rate_softc *asc;
/* we are only in user context so we can sleep for memory */
asc = kzalloc(sizeof(struct ath_rate_softc), GFP_KERNEL);
if (asc == NULL)
return NULL;
ar5416_attach_ratetables(asc);
/* Save Maximum TX Trigger Level (used for 11n) */
tx_triglevel_max = ah->ah_caps.tx_triglevel_max;
/* return alias for ath_rate_softc * */
return asc;
}
static struct ath_rate_node *ath_rate_node_alloc(struct ath_vap *avp,
struct ath_rate_softc *rsc,
gfp_t gfp)
{
struct ath_rate_node *anode;
anode = kzalloc(sizeof(struct ath_rate_node), gfp);
if (anode == NULL)
return NULL;
anode->avp = avp;
anode->asc = rsc;
avp->rc_node = anode;
return anode;
}
static void ath_rate_node_free(struct ath_rate_node *anode)
{
if (anode != NULL)
kfree(anode);
}
void ath_rate_detach(struct ath_rate_softc *asc)
{
if (asc != NULL)
kfree(asc);
}
u8 ath_rate_findrateix(struct ath_softc *sc,
u8 dot11rate)
{
const struct ath_rate_table *ratetable;
struct ath_rate_softc *rsc = sc->sc_rc;
int i;
ratetable = rsc->hw_rate_table[sc->sc_curmode];
if (WARN_ON(!ratetable))
return 0;
for (i = 0; i < ratetable->rate_cnt; i++) {
if ((ratetable->info[i].dot11rate & 0x7f) == (dot11rate & 0x7f))
return i;
}
return 0;
}
/*
* Update rate-control state on a device state change. When
* operating as a station this includes associate/reassociate
* with an AP. Otherwise this gets called, for example, when
* the we transition to run state when operating as an AP.
*/
void ath_rate_newstate(struct ath_softc *sc, struct ath_vap *avp)
{
struct ath_rate_softc *asc = sc->sc_rc;
/* For half and quarter rate channles use different
* rate tables
*/
if (sc->sc_ah->ah_curchan->channelFlags & CHANNEL_HALF)
ar5416_sethalf_ratetable(asc);
else if (sc->sc_ah->ah_curchan->channelFlags & CHANNEL_QUARTER)
ar5416_setquarter_ratetable(asc);
else /* full rate */
ar5416_setfull_ratetable(asc);
if (avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE) {
asc->fixedrix =
sc->sc_rixmap[avp->av_config.av_fixed_rateset & 0xff];
/* NB: check the fixed rate exists */
if (asc->fixedrix == 0xff)
asc->fixedrix = IEEE80211_FIXED_RATE_NONE;
} else {
asc->fixedrix = IEEE80211_FIXED_RATE_NONE;
}
}
static u8 ath_rc_ratefind_ht(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv,
const struct ath_rate_table *rate_table,
int probe_allowed, int *is_probing,
int is_retry)
{
u32 dt, best_thruput, this_thruput, now_msec;
u8 rate, next_rate, best_rate, maxindex, minindex;
int8_t rssi_last, rssi_reduce = 0, index = 0;
struct ath_tx_ratectrl *rate_ctrl = NULL;
rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv ?
(ath_rc_priv) : NULL);
*is_probing = FALSE;
rssi_last = median(rate_ctrl->rssi_last,
rate_ctrl->rssi_last_prev,
rate_ctrl->rssi_last_prev2);
/*
* Age (reduce) last ack rssi based on how old it is.
* The bizarre numbers are so the delta is 160msec,
* meaning we divide by 16.
* 0msec <= dt <= 25msec: don't derate
* 25msec <= dt <= 185msec: derate linearly from 0 to 10dB
* 185msec <= dt: derate by 10dB
*/
now_msec = jiffies_to_msecs(jiffies);
dt = now_msec - rate_ctrl->rssi_time;
if (dt >= 185)
rssi_reduce = 10;
else if (dt >= 25)
rssi_reduce = (u8)((dt - 25) >> 4);
/* Now reduce rssi_last by rssi_reduce */
if (rssi_last < rssi_reduce)
rssi_last = 0;
else
rssi_last -= rssi_reduce;
/*
* Now look up the rate in the rssi table and return it.
* If no rates match then we return 0 (lowest rate)
*/
best_thruput = 0;
maxindex = rate_ctrl->max_valid_rate-1;
minindex = 0;
best_rate = minindex;
/*
* Try the higher rate first. It will reduce memory moving time
* if we have very good channel characteristics.
*/
for (index = maxindex; index >= minindex ; index--) {
u8 per_thres;
rate = rate_ctrl->valid_rate_index[index];
if (rate > rate_ctrl->rate_max_phy)
continue;
/*
* For TCP the average collision rate is around 11%,
* so we ignore PERs less than this. This is to
* prevent the rate we are currently using (whose
* PER might be in the 10-15 range because of TCP
* collisions) looking worse than the next lower
* rate whose PER has decayed close to 0. If we
* used to next lower rate, its PER would grow to
* 10-15 and we would be worse off then staying
* at the current rate.
*/
per_thres = rate_ctrl->state[rate].per;
if (per_thres < 12)
per_thres = 12;
this_thruput = rate_table->info[rate].user_ratekbps *
(100 - per_thres);
if (best_thruput <= this_thruput) {
best_thruput = this_thruput;
best_rate = rate;
}
}
rate = best_rate;
/* if we are retrying for more than half the number
* of max retries, use the min rate for the next retry
*/
if (is_retry)
rate = rate_ctrl->valid_rate_index[minindex];
rate_ctrl->rssi_last_lookup = rssi_last;
/*
* Must check the actual rate (ratekbps) to account for
* non-monoticity of 11g's rate table
*/
if (rate >= rate_ctrl->rate_max_phy && probe_allowed) {
rate = rate_ctrl->rate_max_phy;
/* Probe the next allowed phy state */
/* FIXME:XXXX Check to make sure ratMax is checked properly */
if (ath_rc_get_nextvalid_txrate(rate_table,
rate_ctrl, rate, &next_rate) &&
(now_msec - rate_ctrl->probe_time >
rate_table->probe_interval) &&
(rate_ctrl->hw_maxretry_pktcnt >= 1)) {
rate = next_rate;
rate_ctrl->probe_rate = rate;
rate_ctrl->probe_time = now_msec;
rate_ctrl->hw_maxretry_pktcnt = 0;
*is_probing = TRUE;
}
}
/*
* Make sure rate is not higher than the allowed maximum.
* We should also enforce the min, but I suspect the min is
* normally 1 rather than 0 because of the rate 9 vs 6 issue
* in the old code.
*/
if (rate > (rate_ctrl->rate_table_size - 1))
rate = rate_ctrl->rate_table_size - 1;
ASSERT((rate_table->info[rate].valid && !ath_rc_priv->single_stream) ||
(rate_table->info[rate].valid_single_stream &&
ath_rc_priv->single_stream));
return rate;
}
static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table ,
struct ath_rc_series *series,
u8 tries,
u8 rix,
int rtsctsenable)
{
series->tries = tries;
series->flags = (rtsctsenable ? ATH_RC_RTSCTS_FLAG : 0) |
(WLAN_RC_PHY_DS(rate_table->info[rix].phy) ?
ATH_RC_DS_FLAG : 0) |
(WLAN_RC_PHY_40(rate_table->info[rix].phy) ?
ATH_RC_CW40_FLAG : 0) |
(WLAN_RC_PHY_SGI(rate_table->info[rix].phy) ?
ATH_RC_SGI_FLAG : 0);
series->rix = rate_table->info[rix].base_index;
series->max_4ms_framelen = rate_table->info[rix].max_4ms_framelen;
}
static u8 ath_rc_rate_getidx(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv,
const struct ath_rate_table *rate_table,
u8 rix, u16 stepdown,
u16 min_rate)
{
u32 j;
u8 nextindex;
struct ath_tx_ratectrl *rate_ctrl =
(struct ath_tx_ratectrl *)(ath_rc_priv);
if (min_rate) {
for (j = RATE_TABLE_SIZE; j > 0; j--) {
if (ath_rc_get_nextlowervalid_txrate(rate_table,
rate_ctrl, rix, &nextindex))
rix = nextindex;
else
break;
}
} else {
for (j = stepdown; j > 0; j--) {
if (ath_rc_get_nextlowervalid_txrate(rate_table,
rate_ctrl, rix, &nextindex))
rix = nextindex;
else
break;
}
}
return rix;
}
static void ath_rc_ratefind(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv,
int num_tries, int num_rates, unsigned int rcflag,
struct ath_rc_series series[], int *is_probe,
int is_retry)
{
u8 try_per_rate = 0, i = 0, rix, nrix;
struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
struct ath_rate_table *rate_table;
rate_table =
(struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode];
rix = ath_rc_ratefind_ht(sc, ath_rc_priv, rate_table,
(rcflag & ATH_RC_PROBE_ALLOWED) ? 1 : 0,
is_probe, is_retry);
nrix = rix;
if ((rcflag & ATH_RC_PROBE_ALLOWED) && (*is_probe)) {
/* set one try for probe rates. For the
* probes don't enable rts */
ath_rc_rate_set_series(rate_table,
&series[i++], 1, nrix, FALSE);
try_per_rate = (num_tries/num_rates);
/* Get the next tried/allowed rate. No RTS for the next series
* after the probe rate
*/
nrix = ath_rc_rate_getidx(sc,
ath_rc_priv, rate_table, nrix, 1, FALSE);
ath_rc_rate_set_series(rate_table,
&series[i++], try_per_rate, nrix, 0);
} else {
try_per_rate = (num_tries/num_rates);
/* Set the choosen rate. No RTS for first series entry. */
ath_rc_rate_set_series(rate_table,
&series[i++], try_per_rate, nrix, FALSE);
}
/* Fill in the other rates for multirate retry */
for ( ; i < num_rates; i++) {
u8 try_num;
u8 min_rate;
try_num = ((i + 1) == num_rates) ?
num_tries - (try_per_rate * i) : try_per_rate ;
min_rate = (((i + 1) == num_rates) &&
(rcflag & ATH_RC_MINRATE_LASTRATE)) ? 1 : 0;
nrix = ath_rc_rate_getidx(sc, ath_rc_priv,
rate_table, nrix, 1, min_rate);
/* All other rates in the series have RTS enabled */
ath_rc_rate_set_series(rate_table,
&series[i], try_num, nrix, TRUE);
}
/*
* NB:Change rate series to enable aggregation when operating
* at lower MCS rates. When first rate in series is MCS2
* in HT40 @ 2.4GHz, series should look like:
*
* {MCS2, MCS1, MCS0, MCS0}.
*
* When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
* look like:
*
* {MCS3, MCS2, MCS1, MCS1}
*
* So, set fourth rate in series to be same as third one for
* above conditions.
*/
if ((sc->sc_curmode == ATH9K_MODE_11NG_HT20) ||
(sc->sc_curmode == ATH9K_MODE_11NG_HT40PLUS) ||
(sc->sc_curmode == ATH9K_MODE_11NG_HT40MINUS)) {
u8 dot11rate = rate_table->info[rix].dot11rate;
u8 phy = rate_table->info[rix].phy;
if (i == 4 &&
((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
(dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
series[3].rix = series[2].rix;
series[3].flags = series[2].flags;
series[3].max_4ms_framelen = series[2].max_4ms_framelen;
}
}
}
/*
* Return the Tx rate series.
*/
static void ath_rate_findrate(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv,
int num_tries,
int num_rates,
unsigned int rcflag,
struct ath_rc_series series[],
int *is_probe,
int is_retry)
{
struct ath_vap *avp = ath_rc_priv->avp;
DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
if (!num_rates || !num_tries)
return;
if (avp->av_config.av_fixed_rateset == IEEE80211_FIXED_RATE_NONE) {
ath_rc_ratefind(sc, ath_rc_priv, num_tries, num_rates,
rcflag, series, is_probe, is_retry);
} else {
/* Fixed rate */
int idx;
u8 flags;
u32 rix;
struct ath_rate_softc *asc = ath_rc_priv->asc;
struct ath_rate_table *rate_table;
rate_table = (struct ath_rate_table *)
asc->hw_rate_table[sc->sc_curmode];
for (idx = 0; idx < 4; idx++) {
unsigned int mcs;
u8 series_rix = 0;
series[idx].tries = IEEE80211_RATE_IDX_ENTRY(
avp->av_config.av_fixed_retryset, idx);
mcs = IEEE80211_RATE_IDX_ENTRY(
avp->av_config.av_fixed_rateset, idx);
if (idx == 3 && (mcs & 0xf0) == 0x70)
mcs = (mcs & ~0xf0)|0x80;
if (!(mcs & 0x80))
flags = 0;
else
flags = ((ath_rc_priv->ht_cap &
WLAN_RC_DS_FLAG) ?
ATH_RC_DS_FLAG : 0) |
((ath_rc_priv->ht_cap &
WLAN_RC_40_FLAG) ?
ATH_RC_CW40_FLAG : 0) |
((ath_rc_priv->ht_cap &
WLAN_RC_SGI_FLAG) ?
((ath_rc_priv->ht_cap &
WLAN_RC_40_FLAG) ?
ATH_RC_SGI_FLAG : 0) : 0);
series[idx].rix = sc->sc_rixmap[mcs];
series_rix = series[idx].rix;
/* XXX: Give me some cleanup love */
if ((flags & ATH_RC_CW40_FLAG) &&
(flags & ATH_RC_SGI_FLAG))
rix = rate_table->info[series_rix].ht_index;
else if (flags & ATH_RC_SGI_FLAG)
rix = rate_table->info[series_rix].sgi_index;
else if (flags & ATH_RC_CW40_FLAG)
rix = rate_table->info[series_rix].cw40index;
else
rix = rate_table->info[series_rix].base_index;
series[idx].max_4ms_framelen =
rate_table->info[rix].max_4ms_framelen;
series[idx].flags = flags;
}
}
}
static void ath_rc_update_ht(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv,
struct ath_tx_info_priv *info_priv,
int tx_rate, int xretries, int retries)
{
struct ath_tx_ratectrl *rate_ctrl;
u32 now_msec = jiffies_to_msecs(jiffies);
int state_change = FALSE, rate, count;
u8 last_per;
struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
struct ath_rate_table *rate_table =
(struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode];
static u32 nretry_to_per_lookup[10] = {
100 * 0 / 1,
100 * 1 / 4,
100 * 1 / 2,
100 * 3 / 4,
100 * 4 / 5,
100 * 5 / 6,
100 * 6 / 7,
100 * 7 / 8,
100 * 8 / 9,
100 * 9 / 10
};
if (!ath_rc_priv)
return;
rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv);
ASSERT(tx_rate >= 0);
if (tx_rate < 0)
return;
/* To compensate for some imbalance between ctrl and ext. channel */
if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy))
info_priv->tx.ts_rssi =
info_priv->tx.ts_rssi < 3 ? 0 :
info_priv->tx.ts_rssi - 3;
last_per = rate_ctrl->state[tx_rate].per;
if (xretries) {
/* Update the PER. */
if (xretries == 1) {
rate_ctrl->state[tx_rate].per += 30;
if (rate_ctrl->state[tx_rate].per > 100)
rate_ctrl->state[tx_rate].per = 100;
} else {
/* xretries == 2 */
count = sizeof(nretry_to_per_lookup) /
sizeof(nretry_to_per_lookup[0]);
if (retries >= count)
retries = count - 1;
/* new_PER = 7/8*old_PER + 1/8*(currentPER) */
rate_ctrl->state[tx_rate].per =
(u8)(rate_ctrl->state[tx_rate].per -
(rate_ctrl->state[tx_rate].per >> 3) +
((100) >> 3));
}
/* xretries == 1 or 2 */
if (rate_ctrl->probe_rate == tx_rate)
rate_ctrl->probe_rate = 0;
} else { /* xretries == 0 */
/* Update the PER. */
/* Make sure it doesn't index out of array's bounds. */
count = sizeof(nretry_to_per_lookup) /
sizeof(nretry_to_per_lookup[0]);
if (retries >= count)
retries = count - 1;
if (info_priv->n_bad_frames) {
/* new_PER = 7/8*old_PER + 1/8*(currentPER)
* Assuming that n_frames is not 0. The current PER
* from the retries is 100 * retries / (retries+1),
* since the first retries attempts failed, and the
* next one worked. For the one that worked,
* n_bad_frames subframes out of n_frames wored,
* so the PER for that part is
* 100 * n_bad_frames / n_frames, and it contributes
* 100 * n_bad_frames / (n_frames * (retries+1)) to
* the above PER. The expression below is a
* simplified version of the sum of these two terms.
*/
if (info_priv->n_frames > 0)
rate_ctrl->state[tx_rate].per
= (u8)
(rate_ctrl->state[tx_rate].per -
(rate_ctrl->state[tx_rate].per >> 3) +
((100*(retries*info_priv->n_frames +
info_priv->n_bad_frames) /
(info_priv->n_frames *
(retries+1))) >> 3));
} else {
/* new_PER = 7/8*old_PER + 1/8*(currentPER) */
rate_ctrl->state[tx_rate].per = (u8)
(rate_ctrl->state[tx_rate].per -
(rate_ctrl->state[tx_rate].per >> 3) +
(nretry_to_per_lookup[retries] >> 3));
}
rate_ctrl->rssi_last_prev2 = rate_ctrl->rssi_last_prev;
rate_ctrl->rssi_last_prev = rate_ctrl->rssi_last;
rate_ctrl->rssi_last = info_priv->tx.ts_rssi;
rate_ctrl->rssi_time = now_msec;
/*
* If we got at most one retry then increase the max rate if
* this was a probe. Otherwise, ignore the probe.
*/
if (rate_ctrl->probe_rate && rate_ctrl->probe_rate == tx_rate) {
if (retries > 0 || 2 * info_priv->n_bad_frames >
info_priv->n_frames) {
/*
* Since we probed with just a single attempt,
* any retries means the probe failed. Also,
* if the attempt worked, but more than half
* the subframes were bad then also consider
* the probe a failure.
*/
rate_ctrl->probe_rate = 0;
} else {
u8 probe_rate = 0;
rate_ctrl->rate_max_phy = rate_ctrl->probe_rate;
probe_rate = rate_ctrl->probe_rate;
if (rate_ctrl->state[probe_rate].per > 30)
rate_ctrl->state[probe_rate].per = 20;
rate_ctrl->probe_rate = 0;
/*
* Since this probe succeeded, we allow the next
* probe twice as soon. This allows the maxRate
* to move up faster if the probes are
* succesful.
*/
rate_ctrl->probe_time = now_msec -
rate_table->probe_interval / 2;
}
}
if (retries > 0) {
/*
* Don't update anything. We don't know if
* this was because of collisions or poor signal.
*
* Later: if rssi_ack is close to
* rate_ctrl->state[txRate].rssi_thres and we see lots
* of retries, then we could increase
* rate_ctrl->state[txRate].rssi_thres.
*/
rate_ctrl->hw_maxretry_pktcnt = 0;
} else {
/*
* It worked with no retries. First ignore bogus (small)
* rssi_ack values.
*/
if (tx_rate == rate_ctrl->rate_max_phy &&
rate_ctrl->hw_maxretry_pktcnt < 255) {
rate_ctrl->hw_maxretry_pktcnt++;
}
if (info_priv->tx.ts_rssi >=
rate_table->info[tx_rate].rssi_ack_validmin) {
/* Average the rssi */
if (tx_rate != rate_ctrl->rssi_sum_rate) {
rate_ctrl->rssi_sum_rate = tx_rate;
rate_ctrl->rssi_sum =
rate_ctrl->rssi_sum_cnt = 0;
}
rate_ctrl->rssi_sum += info_priv->tx.ts_rssi;
rate_ctrl->rssi_sum_cnt++;
if (rate_ctrl->rssi_sum_cnt > 4) {
int32_t rssi_ackAvg =
(rate_ctrl->rssi_sum + 2) / 4;
int8_t rssi_thres =
rate_ctrl->state[tx_rate].
rssi_thres;
int8_t rssi_ack_vmin =
rate_table->info[tx_rate].
rssi_ack_validmin;
rate_ctrl->rssi_sum =
rate_ctrl->rssi_sum_cnt = 0;
/* Now reduce the current
* rssi threshold. */
if ((rssi_ackAvg < rssi_thres + 2) &&
(rssi_thres > rssi_ack_vmin)) {
rate_ctrl->state[tx_rate].
rssi_thres--;
}
state_change = TRUE;
}
}
}
}
/* For all cases */
/*
* If this rate looks bad (high PER) then stop using it for
* a while (except if we are probing).
*/
if (rate_ctrl->state[tx_rate].per >= 55 && tx_rate > 0 &&
rate_table->info[tx_rate].ratekbps <=
rate_table->info[rate_ctrl->rate_max_phy].ratekbps) {
ath_rc_get_nextlowervalid_txrate(rate_table, rate_ctrl,
(u8) tx_rate, &rate_ctrl->rate_max_phy);
/* Don't probe for a little while. */
rate_ctrl->probe_time = now_msec;
}
if (state_change) {
/*
* Make sure the rates above this have higher rssi thresholds.
* (Note: Monotonicity is kept within the OFDM rates and
* within the CCK rates. However, no adjustment is
* made to keep the rssi thresholds monotonically
* increasing between the CCK and OFDM rates.)
*/
for (rate = tx_rate; rate <
rate_ctrl->rate_table_size - 1; rate++) {
if (rate_table->info[rate+1].phy !=
rate_table->info[tx_rate].phy)
break;
if (rate_ctrl->state[rate].rssi_thres +
rate_table->info[rate].rssi_ack_deltamin >
rate_ctrl->state[rate+1].rssi_thres) {
rate_ctrl->state[rate+1].rssi_thres =
rate_ctrl->state[rate].
rssi_thres +
rate_table->info[rate].
rssi_ack_deltamin;
}
}
/* Make sure the rates below this have lower rssi thresholds. */
for (rate = tx_rate - 1; rate >= 0; rate--) {
if (rate_table->info[rate].phy !=
rate_table->info[tx_rate].phy)
break;
if (rate_ctrl->state[rate].rssi_thres +
rate_table->info[rate].rssi_ack_deltamin >
rate_ctrl->state[rate+1].rssi_thres) {
if (rate_ctrl->state[rate+1].rssi_thres <
rate_table->info[rate].
rssi_ack_deltamin)
rate_ctrl->state[rate].rssi_thres = 0;
else {
rate_ctrl->state[rate].rssi_thres =
rate_ctrl->state[rate+1].
rssi_thres -
rate_table->info[rate].
rssi_ack_deltamin;
}
if (rate_ctrl->state[rate].rssi_thres <
rate_table->info[rate].
rssi_ack_validmin) {
rate_ctrl->state[rate].rssi_thres =
rate_table->info[rate].
rssi_ack_validmin;
}
}
}
}
/* Make sure the rates below this have lower PER */
/* Monotonicity is kept only for rates below the current rate. */
if (rate_ctrl->state[tx_rate].per < last_per) {
for (rate = tx_rate - 1; rate >= 0; rate--) {
if (rate_table->info[rate].phy !=
rate_table->info[tx_rate].phy)
break;
if (rate_ctrl->state[rate].per >
rate_ctrl->state[rate+1].per) {
rate_ctrl->state[rate].per =
rate_ctrl->state[rate+1].per;
}
}
}
/* Maintain monotonicity for rates above the current rate */
for (rate = tx_rate; rate < rate_ctrl->rate_table_size - 1; rate++) {
if (rate_ctrl->state[rate+1].per < rate_ctrl->state[rate].per)
rate_ctrl->state[rate+1].per =
rate_ctrl->state[rate].per;
}
/* Every so often, we reduce the thresholds and
* PER (different for CCK and OFDM). */
if (now_msec - rate_ctrl->rssi_down_time >=
rate_table->rssi_reduce_interval) {
for (rate = 0; rate < rate_ctrl->rate_table_size; rate++) {
if (rate_ctrl->state[rate].rssi_thres >
rate_table->info[rate].rssi_ack_validmin)
rate_ctrl->state[rate].rssi_thres -= 1;
}
rate_ctrl->rssi_down_time = now_msec;
}
/* Every so often, we reduce the thresholds
* and PER (different for CCK and OFDM). */
if (now_msec - rate_ctrl->per_down_time >=
rate_table->rssi_reduce_interval) {
for (rate = 0; rate < rate_ctrl->rate_table_size; rate++) {
rate_ctrl->state[rate].per =
7 * rate_ctrl->state[rate].per / 8;
}
rate_ctrl->per_down_time = now_msec;
}
}
/*
* This routine is called in rate control callback tx_status() to give
* the status of previous frames.
*/
static void ath_rc_update(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv,
struct ath_tx_info_priv *info_priv, int final_ts_idx,
int xretries, int long_retry)
{
struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
struct ath_rate_table *rate_table;
struct ath_tx_ratectrl *rate_ctrl;
struct ath_rc_series rcs[4];
u8 flags;
u32 series = 0, rix;
memcpy(rcs, info_priv->rcs, 4 * sizeof(rcs[0]));
rate_table = (struct ath_rate_table *)
asc->hw_rate_table[sc->sc_curmode];
rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv);
ASSERT(rcs[0].tries != 0);
/*
* If the first rate is not the final index, there
* are intermediate rate failures to be processed.
*/
if (final_ts_idx != 0) {
/* Process intermediate rates that failed.*/
for (series = 0; series < final_ts_idx ; series++) {
if (rcs[series].tries != 0) {
flags = rcs[series].flags;
/* If HT40 and we have switched mode from
* 40 to 20 => don't update */
if ((flags & ATH_RC_CW40_FLAG) &&
(rate_ctrl->rc_phy_mode !=
(flags & ATH_RC_CW40_FLAG)))
return;
if ((flags & ATH_RC_CW40_FLAG) &&
(flags & ATH_RC_SGI_FLAG))
rix = rate_table->info[
rcs[series].rix].ht_index;
else if (flags & ATH_RC_SGI_FLAG)
rix = rate_table->info[
rcs[series].rix].sgi_index;
else if (flags & ATH_RC_CW40_FLAG)
rix = rate_table->info[
rcs[series].rix].cw40index;
else
rix = rate_table->info[
rcs[series].rix].base_index;
ath_rc_update_ht(sc, ath_rc_priv,
info_priv, rix,
xretries ? 1 : 2,
rcs[series].tries);
}
}
} else {
/*
* Handle the special case of MIMO PS burst, where the second
* aggregate is sent out with only one rate and one try.
* Treating it as an excessive retry penalizes the rate
* inordinately.
*/
if (rcs[0].tries == 1 && xretries == 1)
xretries = 2;
}
flags = rcs[series].flags;
/* If HT40 and we have switched mode from 40 to 20 => don't update */
if ((flags & ATH_RC_CW40_FLAG) &&
(rate_ctrl->rc_phy_mode != (flags & ATH_RC_CW40_FLAG)))
return;
if ((flags & ATH_RC_CW40_FLAG) && (flags & ATH_RC_SGI_FLAG))
rix = rate_table->info[rcs[series].rix].ht_index;
else if (flags & ATH_RC_SGI_FLAG)
rix = rate_table->info[rcs[series].rix].sgi_index;
else if (flags & ATH_RC_CW40_FLAG)
rix = rate_table->info[rcs[series].rix].cw40index;
else
rix = rate_table->info[rcs[series].rix].base_index;
ath_rc_update_ht(sc, ath_rc_priv, info_priv, rix,
xretries, long_retry);
}
/*
* Process a tx descriptor for a completed transmit (success or failure).
*/
static void ath_rate_tx_complete(struct ath_softc *sc,
struct ath_node *an,
struct ath_rate_node *rc_priv,
struct ath_tx_info_priv *info_priv)
{
int final_ts_idx = info_priv->tx.ts_rateindex;
int tx_status = 0, is_underrun = 0;
struct ath_vap *avp;
avp = rc_priv->avp;
if ((avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE) ||
(info_priv->tx.ts_status & ATH9K_TXERR_FILT))
return;
if (info_priv->tx.ts_rssi > 0) {
ATH_RSSI_LPF(an->an_chainmask_sel.tx_avgrssi,
info_priv->tx.ts_rssi);
}
/*
* If underrun error is seen assume it as an excessive retry only
* if prefetch trigger level have reached the max (0x3f for 5416)
* Adjust the long retry as if the frame was tried ATH_11N_TXMAXTRY
* times. This affects how ratectrl updates PER for the failed rate.
*/
if (info_priv->tx.ts_flags &
(ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) &&
((sc->sc_ah->ah_txTrigLevel) >= tx_triglevel_max)) {
tx_status = 1;
is_underrun = 1;
}
if ((info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) ||
(info_priv->tx.ts_status & ATH9K_TXERR_FIFO))
tx_status = 1;
ath_rc_update(sc, rc_priv, info_priv, final_ts_idx, tx_status,
(is_underrun) ? ATH_11N_TXMAXTRY :
info_priv->tx.ts_longretry);
}
/*
* Update the SIB's rate control information
*
* This should be called when the supported rates change
* (e.g. SME operation, wireless mode change)
*
* It will determine which rates are valid for use.
*/
static void ath_rc_sib_update(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv,
u32 capflag, int keep_state,
struct ath_rateset *negotiated_rates,
struct ath_rateset *negotiated_htrates)
{
struct ath_rate_table *rate_table = NULL;
struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
struct ath_rateset *rateset = negotiated_rates;
u8 *ht_mcs = (u8 *)negotiated_htrates;
struct ath_tx_ratectrl *rate_ctrl =
(struct ath_tx_ratectrl *)ath_rc_priv;
u8 i, j, k, hi = 0, hthi = 0;
rate_table = (struct ath_rate_table *)
asc->hw_rate_table[sc->sc_curmode];
/* Initial rate table size. Will change depending
* on the working rate set */
rate_ctrl->rate_table_size = MAX_TX_RATE_TBL;
/* Initialize thresholds according to the global rate table */
for (i = 0 ; (i < rate_ctrl->rate_table_size) && (!keep_state); i++) {
rate_ctrl->state[i].rssi_thres =
rate_table->info[i].rssi_ack_validmin;
rate_ctrl->state[i].per = 0;
}
/* Determine the valid rates */
ath_rc_init_valid_txmask(rate_ctrl);
for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
for (j = 0; j < MAX_TX_RATE_PHY; j++)
rate_ctrl->valid_phy_rateidx[i][j] = 0;
rate_ctrl->valid_phy_ratecnt[i] = 0;
}
rate_ctrl->rc_phy_mode = (capflag & WLAN_RC_40_FLAG);
/* Set stream capability */
ath_rc_priv->single_stream = (capflag & WLAN_RC_DS_FLAG) ? 0 : 1;
if (!rateset->rs_nrates) {
/* No working rate, just initialize valid rates */
hi = ath_rc_sib_init_validrates(ath_rc_priv, rate_table,
capflag);
} else {
/* Use intersection of working rates and valid rates */
hi = ath_rc_sib_setvalid_rates(ath_rc_priv, rate_table,
rateset, capflag);
if (capflag & WLAN_RC_HT_FLAG) {
hthi = ath_rc_sib_setvalid_htrates(ath_rc_priv,
rate_table,
ht_mcs,
capflag);
}
hi = A_MAX(hi, hthi);
}
rate_ctrl->rate_table_size = hi + 1;
rate_ctrl->rate_max_phy = 0;
ASSERT(rate_ctrl->rate_table_size <= MAX_TX_RATE_TBL);
for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
for (j = 0; j < rate_ctrl->valid_phy_ratecnt[i]; j++) {
rate_ctrl->valid_rate_index[k++] =
rate_ctrl->valid_phy_rateidx[i][j];
}
if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, TRUE)
|| !rate_ctrl->valid_phy_ratecnt[i])
continue;
rate_ctrl->rate_max_phy = rate_ctrl->valid_phy_rateidx[i][j-1];
}
ASSERT(rate_ctrl->rate_table_size <= MAX_TX_RATE_TBL);
ASSERT(k <= MAX_TX_RATE_TBL);
rate_ctrl->max_valid_rate = k;
/*
* Some third party vendors don't send the supported rate series in
* order. So sorting to make sure its in order, otherwise our RateFind
* Algo will select wrong rates
*/
ath_rc_sort_validrates(rate_table, rate_ctrl);
rate_ctrl->rate_max_phy = rate_ctrl->valid_rate_index[k-4];
}
/*
* Update rate-control state on station associate/reassociate.
*/
static int ath_rate_newassoc(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv,
unsigned int capflag,
struct ath_rateset *negotiated_rates,
struct ath_rateset *negotiated_htrates)
{
ath_rc_priv->ht_cap =
((capflag & ATH_RC_DS_FLAG) ? WLAN_RC_DS_FLAG : 0) |
((capflag & ATH_RC_SGI_FLAG) ? WLAN_RC_SGI_FLAG : 0) |
((capflag & ATH_RC_HT_FLAG) ? WLAN_RC_HT_FLAG : 0) |
((capflag & ATH_RC_CW40_FLAG) ? WLAN_RC_40_FLAG : 0);
ath_rc_sib_update(sc, ath_rc_priv, ath_rc_priv->ht_cap, 0,
negotiated_rates, negotiated_htrates);
return 0;
}
/*
* This routine is called to initialize the rate control parameters
* in the SIB. It is called initially during system initialization
* or when a station is associated with the AP.
*/
static void ath_rc_sib_init(struct ath_rate_node *ath_rc_priv)
{
struct ath_tx_ratectrl *rate_ctrl;
rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv);
rate_ctrl->rssi_down_time = jiffies_to_msecs(jiffies);
}
static void ath_setup_rates(struct ieee80211_local *local, struct sta_info *sta)
{
struct ieee80211_supported_band *sband;
struct ieee80211_hw *hw = local_to_hw(local);
struct ath_softc *sc = hw->priv;
struct ath_rate_node *rc_priv = sta->rate_ctrl_priv;
int i, j = 0;
DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
for (i = 0; i < sband->n_bitrates; i++) {
if (sta->supp_rates[local->hw.conf.channel->band] & BIT(i)) {
rc_priv->neg_rates.rs_rates[j]
= (sband->bitrates[i].bitrate * 2) / 10;
j++;
}
}
rc_priv->neg_rates.rs_nrates = j;
}
void ath_rc_node_update(struct ieee80211_hw *hw, struct ath_rate_node *rc_priv)
{
struct ath_softc *sc = hw->priv;
u32 capflag = 0;
if (hw->conf.ht_conf.ht_supported) {
capflag |= ATH_RC_HT_FLAG | ATH_RC_DS_FLAG;
if (sc->sc_ht_info.tx_chan_width == ATH9K_HT_MACMODE_2040)
capflag |= ATH_RC_CW40_FLAG;
}
ath_rate_newassoc(sc, rc_priv, capflag,
&rc_priv->neg_rates,
&rc_priv->neg_ht_rates);
}
/* Rate Control callbacks */
static void ath_tx_status(void *priv, struct net_device *dev,
struct sk_buff *skb)
{
struct ath_softc *sc = priv;
struct ath_tx_info_priv *tx_info_priv;
struct ath_node *an;
struct sta_info *sta;
struct ieee80211_local *local;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr;
__le16 fc;
local = hw_to_local(sc->hw);
hdr = (struct ieee80211_hdr *)skb->data;
fc = hdr->frame_control;
tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
spin_lock_bh(&sc->node_lock);
an = ath_node_find(sc, hdr->addr1);
spin_unlock_bh(&sc->node_lock);
sta = sta_info_get(local, hdr->addr1);
if (!an || !sta || !ieee80211_is_data(fc)) {
if (tx_info->driver_data[0] != NULL) {
kfree(tx_info->driver_data[0]);
tx_info->driver_data[0] = NULL;
}
return;
}
if (tx_info->driver_data[0] != NULL) {
ath_rate_tx_complete(sc, an, sta->rate_ctrl_priv, tx_info_priv);
kfree(tx_info->driver_data[0]);
tx_info->driver_data[0] = NULL;
}
}
static void ath_tx_aggr_resp(struct ath_softc *sc,
struct sta_info *sta,
struct ath_node *an,
u8 tidno)
{
struct ieee80211_hw *hw = sc->hw;
struct ieee80211_local *local;
struct ath_atx_tid *txtid;
struct ieee80211_supported_band *sband;
u16 buffersize = 0;
int state;
DECLARE_MAC_BUF(mac);
if (!(sc->sc_flags & SC_OP_TXAGGR))
return;
txtid = ATH_AN_2_TID(an, tidno);
if (!txtid->paused)
return;
local = hw_to_local(sc->hw);
sband = hw->wiphy->bands[hw->conf.channel->band];
buffersize = IEEE80211_MIN_AMPDU_BUF <<
sband->ht_info.ampdu_factor; /* FIXME */
state = sta->ampdu_mlme.tid_state_tx[tidno];
if (state & HT_ADDBA_RECEIVED_MSK) {
txtid->addba_exchangecomplete = 1;
txtid->addba_exchangeinprogress = 0;
txtid->baw_size = buffersize;
DPRINTF(sc, ATH_DBG_AGGR,
"%s: Resuming tid, buffersize: %d\n",
__func__,
buffersize);
ath_tx_resume_tid(sc, txtid);
}
}
static void ath_get_rate(void *priv, struct net_device *dev,
struct ieee80211_supported_band *sband,
struct sk_buff *skb,
struct rate_selection *sel)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sta_info *sta;
struct ath_softc *sc = (struct ath_softc *)priv;
struct ieee80211_hw *hw = sc->hw;
struct ath_tx_info_priv *tx_info_priv;
struct ath_rate_node *ath_rc_priv;
struct ath_node *an;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
int is_probe = FALSE, chk, ret;
s8 lowest_idx;
__le16 fc = hdr->frame_control;
u8 *qc, tid;
DECLARE_MAC_BUF(mac);
DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
/* allocate driver private area of tx_info */
tx_info->driver_data[0] = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC);
ASSERT(tx_info->driver_data[0] != NULL);
tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
sta = sta_info_get(local, hdr->addr1);
lowest_idx = rate_lowest_index(local, sband, sta);
tx_info_priv->min_rate = (sband->bitrates[lowest_idx].bitrate * 2) / 10;
/* lowest rate for management and multicast/broadcast frames */
if (!ieee80211_is_data(fc) ||
is_multicast_ether_addr(hdr->addr1) || !sta) {
sel->rate_idx = lowest_idx;
return;
}
ath_rc_priv = sta->rate_ctrl_priv;
/* Find tx rate for unicast frames */
ath_rate_findrate(sc, ath_rc_priv,
ATH_11N_TXMAXTRY, 4,
ATH_RC_PROBE_ALLOWED,
tx_info_priv->rcs,
&is_probe,
false);
if (is_probe)
sel->probe_idx = ((struct ath_tx_ratectrl *)
sta->rate_ctrl_priv)->probe_rate;
/* Ratecontrol sometimes returns invalid rate index */
if (tx_info_priv->rcs[0].rix != 0xff)
ath_rc_priv->prev_data_rix = tx_info_priv->rcs[0].rix;
else
tx_info_priv->rcs[0].rix = ath_rc_priv->prev_data_rix;
sel->rate_idx = tx_info_priv->rcs[0].rix;
/* Check if aggregation has to be enabled for this tid */
if (hw->conf.ht_conf.ht_supported) {
if (ieee80211_is_data_qos(fc)) {
qc = ieee80211_get_qos_ctl(hdr);
tid = qc[0] & 0xf;
spin_lock_bh(&sc->node_lock);
an = ath_node_find(sc, hdr->addr1);
spin_unlock_bh(&sc->node_lock);
if (!an) {
DPRINTF(sc, ATH_DBG_AGGR,
"%s: Node not found to "
"init/chk TX aggr\n", __func__);
return;
}
chk = ath_tx_aggr_check(sc, an, tid);
if (chk == AGGR_REQUIRED) {
ret = ieee80211_start_tx_ba_session(hw,
hdr->addr1, tid);
if (ret)
DPRINTF(sc, ATH_DBG_AGGR,
"%s: Unable to start tx "
"aggr for: %s\n",
__func__,
print_mac(mac, hdr->addr1));
else
DPRINTF(sc, ATH_DBG_AGGR,
"%s: Started tx aggr for: %s\n",
__func__,
print_mac(mac, hdr->addr1));
} else if (chk == AGGR_EXCHANGE_PROGRESS)
ath_tx_aggr_resp(sc, sta, an, tid);
}
}
}
static void ath_rate_init(void *priv, void *priv_sta,
struct ieee80211_local *local,
struct sta_info *sta)
{
struct ieee80211_supported_band *sband;
struct ieee80211_hw *hw = local_to_hw(local);
struct ieee80211_conf *conf = &local->hw.conf;
struct ath_softc *sc = hw->priv;
struct ath_rate_node *ath_rc_priv = priv_sta;
int i, j = 0;
DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
sta->txrate_idx = rate_lowest_index(local, sband, sta);
ath_setup_rates(local, sta);
if (conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
for (i = 0; i < MCS_SET_SIZE; i++) {
if (conf->ht_conf.supp_mcs_set[i/8] & (1<<(i%8)))
ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
if (j == ATH_RATE_MAX)
break;
}
ath_rc_priv->neg_ht_rates.rs_nrates = j;
}
ath_rc_node_update(hw, priv_sta);
}
static void ath_rate_clear(void *priv)
{
return;
}
static void *ath_rate_alloc(struct ieee80211_local *local)
{
struct ieee80211_hw *hw = local_to_hw(local);
struct ath_softc *sc = hw->priv;
DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
return local->hw.priv;
}
static void ath_rate_free(void *priv)
{
return;
}
static void *ath_rate_alloc_sta(void *priv, gfp_t gfp)
{
struct ath_softc *sc = priv;
struct ath_vap *avp = sc->sc_vaps[0];
struct ath_rate_node *rate_priv;
DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
rate_priv = ath_rate_node_alloc(avp, sc->sc_rc, gfp);
if (!rate_priv) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to allocate private rc structure\n",
__func__);
return NULL;
}
ath_rc_sib_init(rate_priv);
return rate_priv;
}
static void ath_rate_free_sta(void *priv, void *priv_sta)
{
struct ath_rate_node *rate_priv = priv_sta;
struct ath_softc *sc = priv;
DPRINTF(sc, ATH_DBG_RATE, "%s", __func__);
ath_rate_node_free(rate_priv);
}
static struct rate_control_ops ath_rate_ops = {
.module = NULL,
.name = "ath9k_rate_control",
.tx_status = ath_tx_status,
.get_rate = ath_get_rate,
.rate_init = ath_rate_init,
.clear = ath_rate_clear,
.alloc = ath_rate_alloc,
.free = ath_rate_free,
.alloc_sta = ath_rate_alloc_sta,
.free_sta = ath_rate_free_sta
};
int ath_rate_control_register(void)
{
return ieee80211_rate_control_register(&ath_rate_ops);
}
void ath_rate_control_unregister(void)
{
ieee80211_rate_control_unregister(&ath_rate_ops);
}