linux/arch/x86/kernel/acpi/cstate.c
Tony W Wang-oc dacca1e5e7 x86/acpi/cstate: Optimize ARB_DISABLE on Centaur CPUs
On all recent Centaur platforms, ARB_DISABLE is handled by PMU
automatically while entering C3 type state. No need for OS to
issue the ARB_DISABLE, so set bm_control to zero to indicate that.

Signed-off-by: Tony W Wang-oc <TonyWWang-oc@zhaoxin.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lore.kernel.org/all/1667792089-4904-1-git-send-email-TonyWWang-oc%40zhaoxin.com
2022-11-11 09:42:05 -08:00

239 lines
6.7 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2005 Intel Corporation
* Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
* - Added _PDC for SMP C-states on Intel CPUs
*/
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/acpi.h>
#include <linux/cpu.h>
#include <linux/sched.h>
#include <acpi/processor.h>
#include <asm/mwait.h>
#include <asm/special_insns.h>
/*
* Initialize bm_flags based on the CPU cache properties
* On SMP it depends on cache configuration
* - When cache is not shared among all CPUs, we flush cache
* before entering C3.
* - When cache is shared among all CPUs, we use bm_check
* mechanism as in UP case
*
* This routine is called only after all the CPUs are online
*/
void acpi_processor_power_init_bm_check(struct acpi_processor_flags *flags,
unsigned int cpu)
{
struct cpuinfo_x86 *c = &cpu_data(cpu);
flags->bm_check = 0;
if (num_online_cpus() == 1)
flags->bm_check = 1;
else if (c->x86_vendor == X86_VENDOR_INTEL) {
/*
* Today all MP CPUs that support C3 share cache.
* And caches should not be flushed by software while
* entering C3 type state.
*/
flags->bm_check = 1;
}
/*
* On all recent Intel platforms, ARB_DISABLE is a nop.
* So, set bm_control to zero to indicate that ARB_DISABLE
* is not required while entering C3 type state on
* P4, Core and beyond CPUs
*/
if (c->x86_vendor == X86_VENDOR_INTEL &&
(c->x86 > 0xf || (c->x86 == 6 && c->x86_model >= 0x0f)))
flags->bm_control = 0;
if (c->x86_vendor == X86_VENDOR_CENTAUR) {
if (c->x86 > 6 || (c->x86 == 6 && c->x86_model == 0x0f &&
c->x86_stepping >= 0x0e)) {
/*
* For all recent Centaur CPUs, the ucode will make sure that each
* core can keep cache coherence with each other while entering C3
* type state. So, set bm_check to 1 to indicate that the kernel
* doesn't need to execute a cache flush operation (WBINVD) when
* entering C3 type state.
*/
flags->bm_check = 1;
/*
* For all recent Centaur platforms, ARB_DISABLE is a nop.
* Set bm_control to zero to indicate that ARB_DISABLE is
* not required while entering C3 type state.
*/
flags->bm_control = 0;
}
}
if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
/*
* All Zhaoxin CPUs that support C3 share cache.
* And caches should not be flushed by software while
* entering C3 type state.
*/
flags->bm_check = 1;
/*
* On all recent Zhaoxin platforms, ARB_DISABLE is a nop.
* So, set bm_control to zero to indicate that ARB_DISABLE
* is not required while entering C3 type state.
*/
flags->bm_control = 0;
}
if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17) {
/*
* For all AMD Zen or newer CPUs that support C3, caches
* should not be flushed by software while entering C3
* type state. Set bm->check to 1 so that kernel doesn't
* need to execute cache flush operation.
*/
flags->bm_check = 1;
/*
* In current AMD C state implementation ARB_DIS is no longer
* used. So set bm_control to zero to indicate ARB_DIS is not
* required while entering C3 type state.
*/
flags->bm_control = 0;
}
}
EXPORT_SYMBOL(acpi_processor_power_init_bm_check);
/* The code below handles cstate entry with monitor-mwait pair on Intel*/
struct cstate_entry {
struct {
unsigned int eax;
unsigned int ecx;
} states[ACPI_PROCESSOR_MAX_POWER];
};
static struct cstate_entry __percpu *cpu_cstate_entry; /* per CPU ptr */
static short mwait_supported[ACPI_PROCESSOR_MAX_POWER];
#define NATIVE_CSTATE_BEYOND_HALT (2)
static long acpi_processor_ffh_cstate_probe_cpu(void *_cx)
{
struct acpi_processor_cx *cx = _cx;
long retval;
unsigned int eax, ebx, ecx, edx;
unsigned int edx_part;
unsigned int cstate_type; /* C-state type and not ACPI C-state type */
unsigned int num_cstate_subtype;
cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
/* Check whether this particular cx_type (in CST) is supported or not */
cstate_type = ((cx->address >> MWAIT_SUBSTATE_SIZE) &
MWAIT_CSTATE_MASK) + 1;
edx_part = edx >> (cstate_type * MWAIT_SUBSTATE_SIZE);
num_cstate_subtype = edx_part & MWAIT_SUBSTATE_MASK;
retval = 0;
/* If the HW does not support any sub-states in this C-state */
if (num_cstate_subtype == 0) {
pr_warn(FW_BUG "ACPI MWAIT C-state 0x%x not supported by HW (0x%x)\n",
cx->address, edx_part);
retval = -1;
goto out;
}
/* mwait ecx extensions INTERRUPT_BREAK should be supported for C2/C3 */
if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
!(ecx & CPUID5_ECX_INTERRUPT_BREAK)) {
retval = -1;
goto out;
}
if (!mwait_supported[cstate_type]) {
mwait_supported[cstate_type] = 1;
printk(KERN_DEBUG
"Monitor-Mwait will be used to enter C-%d state\n",
cx->type);
}
snprintf(cx->desc,
ACPI_CX_DESC_LEN, "ACPI FFH MWAIT 0x%x",
cx->address);
out:
return retval;
}
int acpi_processor_ffh_cstate_probe(unsigned int cpu,
struct acpi_processor_cx *cx, struct acpi_power_register *reg)
{
struct cstate_entry *percpu_entry;
struct cpuinfo_x86 *c = &cpu_data(cpu);
long retval;
if (!cpu_cstate_entry || c->cpuid_level < CPUID_MWAIT_LEAF)
return -1;
if (reg->bit_offset != NATIVE_CSTATE_BEYOND_HALT)
return -1;
percpu_entry = per_cpu_ptr(cpu_cstate_entry, cpu);
percpu_entry->states[cx->index].eax = 0;
percpu_entry->states[cx->index].ecx = 0;
/* Make sure we are running on right CPU */
retval = call_on_cpu(cpu, acpi_processor_ffh_cstate_probe_cpu, cx,
false);
if (retval == 0) {
/* Use the hint in CST */
percpu_entry->states[cx->index].eax = cx->address;
percpu_entry->states[cx->index].ecx = MWAIT_ECX_INTERRUPT_BREAK;
}
/*
* For _CST FFH on Intel, if GAS.access_size bit 1 is cleared,
* then we should skip checking BM_STS for this C-state.
* ref: "Intel Processor Vendor-Specific ACPI Interface Specification"
*/
if ((c->x86_vendor == X86_VENDOR_INTEL) && !(reg->access_size & 0x2))
cx->bm_sts_skip = 1;
return retval;
}
EXPORT_SYMBOL_GPL(acpi_processor_ffh_cstate_probe);
void __cpuidle acpi_processor_ffh_cstate_enter(struct acpi_processor_cx *cx)
{
unsigned int cpu = smp_processor_id();
struct cstate_entry *percpu_entry;
percpu_entry = per_cpu_ptr(cpu_cstate_entry, cpu);
mwait_idle_with_hints(percpu_entry->states[cx->index].eax,
percpu_entry->states[cx->index].ecx);
}
EXPORT_SYMBOL_GPL(acpi_processor_ffh_cstate_enter);
static int __init ffh_cstate_init(void)
{
struct cpuinfo_x86 *c = &boot_cpu_data;
if (c->x86_vendor != X86_VENDOR_INTEL &&
c->x86_vendor != X86_VENDOR_AMD &&
c->x86_vendor != X86_VENDOR_HYGON)
return -1;
cpu_cstate_entry = alloc_percpu(struct cstate_entry);
return 0;
}
static void __exit ffh_cstate_exit(void)
{
free_percpu(cpu_cstate_entry);
cpu_cstate_entry = NULL;
}
arch_initcall(ffh_cstate_init);
__exitcall(ffh_cstate_exit);