linux/drivers/media/platform/omap3isp/ispresizer.c
Sakari Ailus e9eb103f02 media: omap3isp: Set device on omap3isp subdevs
The omap3isp driver registered subdevs without the dev field being set. Do
that now.

Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
2019-08-15 08:06:34 -03:00

1794 lines
54 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* ispresizer.c
*
* TI OMAP3 ISP - Resizer module
*
* Copyright (C) 2010 Nokia Corporation
* Copyright (C) 2009 Texas Instruments, Inc
*
* Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
* Sakari Ailus <sakari.ailus@iki.fi>
*/
#include <linux/device.h>
#include <linux/mm.h>
#include <linux/module.h>
#include "isp.h"
#include "ispreg.h"
#include "ispresizer.h"
/*
* Resizer Constants
*/
#define MIN_RESIZE_VALUE 64
#define MID_RESIZE_VALUE 512
#define MAX_RESIZE_VALUE 1024
#define MIN_IN_WIDTH 32
#define MIN_IN_HEIGHT 32
#define MAX_IN_WIDTH_MEMORY_MODE 4095
#define MAX_IN_WIDTH_ONTHEFLY_MODE_ES1 1280
#define MAX_IN_WIDTH_ONTHEFLY_MODE_ES2 4095
#define MAX_IN_HEIGHT 4095
#define MIN_OUT_WIDTH 16
#define MIN_OUT_HEIGHT 2
#define MAX_OUT_HEIGHT 4095
/*
* Resizer Use Constraints
* "TRM ES3.1, table 12-46"
*/
#define MAX_4TAP_OUT_WIDTH_ES1 1280
#define MAX_7TAP_OUT_WIDTH_ES1 640
#define MAX_4TAP_OUT_WIDTH_ES2 3312
#define MAX_7TAP_OUT_WIDTH_ES2 1650
#define MAX_4TAP_OUT_WIDTH_3630 4096
#define MAX_7TAP_OUT_WIDTH_3630 2048
/*
* Constants for ratio calculation
*/
#define RESIZE_DIVISOR 256
#define DEFAULT_PHASE 1
/*
* Default (and only) configuration of filter coefficients.
* 7-tap mode is for scale factors 0.25x to 0.5x.
* 4-tap mode is for scale factors 0.5x to 4.0x.
* There shouldn't be any reason to recalculate these, EVER.
*/
static const struct isprsz_coef filter_coefs = {
/* For 8-phase 4-tap horizontal filter: */
{
0x0000, 0x0100, 0x0000, 0x0000,
0x03FA, 0x00F6, 0x0010, 0x0000,
0x03F9, 0x00DB, 0x002C, 0x0000,
0x03FB, 0x00B3, 0x0053, 0x03FF,
0x03FD, 0x0082, 0x0084, 0x03FD,
0x03FF, 0x0053, 0x00B3, 0x03FB,
0x0000, 0x002C, 0x00DB, 0x03F9,
0x0000, 0x0010, 0x00F6, 0x03FA
},
/* For 8-phase 4-tap vertical filter: */
{
0x0000, 0x0100, 0x0000, 0x0000,
0x03FA, 0x00F6, 0x0010, 0x0000,
0x03F9, 0x00DB, 0x002C, 0x0000,
0x03FB, 0x00B3, 0x0053, 0x03FF,
0x03FD, 0x0082, 0x0084, 0x03FD,
0x03FF, 0x0053, 0x00B3, 0x03FB,
0x0000, 0x002C, 0x00DB, 0x03F9,
0x0000, 0x0010, 0x00F6, 0x03FA
},
/* For 4-phase 7-tap horizontal filter: */
#define DUMMY 0
{
0x0004, 0x0023, 0x005A, 0x0058, 0x0023, 0x0004, 0x0000, DUMMY,
0x0002, 0x0018, 0x004d, 0x0060, 0x0031, 0x0008, 0x0000, DUMMY,
0x0001, 0x000f, 0x003f, 0x0062, 0x003f, 0x000f, 0x0001, DUMMY,
0x0000, 0x0008, 0x0031, 0x0060, 0x004d, 0x0018, 0x0002, DUMMY
},
/* For 4-phase 7-tap vertical filter: */
{
0x0004, 0x0023, 0x005A, 0x0058, 0x0023, 0x0004, 0x0000, DUMMY,
0x0002, 0x0018, 0x004d, 0x0060, 0x0031, 0x0008, 0x0000, DUMMY,
0x0001, 0x000f, 0x003f, 0x0062, 0x003f, 0x000f, 0x0001, DUMMY,
0x0000, 0x0008, 0x0031, 0x0060, 0x004d, 0x0018, 0x0002, DUMMY
}
/*
* The dummy padding is required in 7-tap mode because of how the
* registers are arranged physically.
*/
#undef DUMMY
};
/*
* __resizer_get_format - helper function for getting resizer format
* @res : pointer to resizer private structure
* @pad : pad number
* @cfg: V4L2 subdev pad configuration
* @which : wanted subdev format
* return zero
*/
static struct v4l2_mbus_framefmt *
__resizer_get_format(struct isp_res_device *res, struct v4l2_subdev_pad_config *cfg,
unsigned int pad, enum v4l2_subdev_format_whence which)
{
if (which == V4L2_SUBDEV_FORMAT_TRY)
return v4l2_subdev_get_try_format(&res->subdev, cfg, pad);
else
return &res->formats[pad];
}
/*
* __resizer_get_crop - helper function for getting resizer crop rectangle
* @res : pointer to resizer private structure
* @cfg: V4L2 subdev pad configuration
* @which : wanted subdev crop rectangle
*/
static struct v4l2_rect *
__resizer_get_crop(struct isp_res_device *res, struct v4l2_subdev_pad_config *cfg,
enum v4l2_subdev_format_whence which)
{
if (which == V4L2_SUBDEV_FORMAT_TRY)
return v4l2_subdev_get_try_crop(&res->subdev, cfg, RESZ_PAD_SINK);
else
return &res->crop.request;
}
/*
* resizer_set_filters - Set resizer filters
* @res: Device context.
* @h_coeff: horizontal coefficient
* @v_coeff: vertical coefficient
* Return none
*/
static void resizer_set_filters(struct isp_res_device *res, const u16 *h_coeff,
const u16 *v_coeff)
{
struct isp_device *isp = to_isp_device(res);
u32 startaddr_h, startaddr_v, tmp_h, tmp_v;
int i;
startaddr_h = ISPRSZ_HFILT10;
startaddr_v = ISPRSZ_VFILT10;
for (i = 0; i < COEFF_CNT; i += 2) {
tmp_h = h_coeff[i] |
(h_coeff[i + 1] << ISPRSZ_HFILT_COEF1_SHIFT);
tmp_v = v_coeff[i] |
(v_coeff[i + 1] << ISPRSZ_VFILT_COEF1_SHIFT);
isp_reg_writel(isp, tmp_h, OMAP3_ISP_IOMEM_RESZ, startaddr_h);
isp_reg_writel(isp, tmp_v, OMAP3_ISP_IOMEM_RESZ, startaddr_v);
startaddr_h += 4;
startaddr_v += 4;
}
}
/*
* resizer_set_bilinear - Chrominance horizontal algorithm select
* @res: Device context.
* @type: Filtering interpolation type.
*
* Filtering that is same as luminance processing is
* intended only for downsampling, and bilinear interpolation
* is intended only for upsampling.
*/
static void resizer_set_bilinear(struct isp_res_device *res,
enum resizer_chroma_algo type)
{
struct isp_device *isp = to_isp_device(res);
if (type == RSZ_BILINEAR)
isp_reg_set(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT,
ISPRSZ_CNT_CBILIN);
else
isp_reg_clr(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT,
ISPRSZ_CNT_CBILIN);
}
/*
* resizer_set_ycpos - Luminance and chrominance order
* @res: Device context.
* @pixelcode: pixel code.
*/
static void resizer_set_ycpos(struct isp_res_device *res, u32 pixelcode)
{
struct isp_device *isp = to_isp_device(res);
switch (pixelcode) {
case MEDIA_BUS_FMT_YUYV8_1X16:
isp_reg_set(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT,
ISPRSZ_CNT_YCPOS);
break;
case MEDIA_BUS_FMT_UYVY8_1X16:
isp_reg_clr(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT,
ISPRSZ_CNT_YCPOS);
break;
default:
return;
}
}
/*
* resizer_set_phase - Setup horizontal and vertical starting phase
* @res: Device context.
* @h_phase: horizontal phase parameters.
* @v_phase: vertical phase parameters.
*
* Horizontal and vertical phase range is 0 to 7
*/
static void resizer_set_phase(struct isp_res_device *res, u32 h_phase,
u32 v_phase)
{
struct isp_device *isp = to_isp_device(res);
u32 rgval;
rgval = isp_reg_readl(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT) &
~(ISPRSZ_CNT_HSTPH_MASK | ISPRSZ_CNT_VSTPH_MASK);
rgval |= (h_phase << ISPRSZ_CNT_HSTPH_SHIFT) & ISPRSZ_CNT_HSTPH_MASK;
rgval |= (v_phase << ISPRSZ_CNT_VSTPH_SHIFT) & ISPRSZ_CNT_VSTPH_MASK;
isp_reg_writel(isp, rgval, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT);
}
/*
* resizer_set_luma - Setup luminance enhancer parameters
* @res: Device context.
* @luma: Structure for luminance enhancer parameters.
*
* Algorithm select:
* 0x0: Disable
* 0x1: [-1 2 -1]/2 high-pass filter
* 0x2: [-1 -2 6 -2 -1]/4 high-pass filter
*
* Maximum gain:
* The data is coded in U4Q4 representation.
*
* Slope:
* The data is coded in U4Q4 representation.
*
* Coring offset:
* The data is coded in U8Q0 representation.
*
* The new luminance value is computed as:
* Y += HPF(Y) x max(GAIN, (HPF(Y) - CORE) x SLOP + 8) >> 4.
*/
static void resizer_set_luma(struct isp_res_device *res,
struct resizer_luma_yenh *luma)
{
struct isp_device *isp = to_isp_device(res);
u32 rgval;
rgval = (luma->algo << ISPRSZ_YENH_ALGO_SHIFT)
& ISPRSZ_YENH_ALGO_MASK;
rgval |= (luma->gain << ISPRSZ_YENH_GAIN_SHIFT)
& ISPRSZ_YENH_GAIN_MASK;
rgval |= (luma->slope << ISPRSZ_YENH_SLOP_SHIFT)
& ISPRSZ_YENH_SLOP_MASK;
rgval |= (luma->core << ISPRSZ_YENH_CORE_SHIFT)
& ISPRSZ_YENH_CORE_MASK;
isp_reg_writel(isp, rgval, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_YENH);
}
/*
* resizer_set_source - Input source select
* @res: Device context.
* @source: Input source type
*
* If this field is set to RESIZER_INPUT_VP, the resizer input is fed from
* Preview/CCDC engine, otherwise from memory.
*/
static void resizer_set_source(struct isp_res_device *res,
enum resizer_input_entity source)
{
struct isp_device *isp = to_isp_device(res);
if (source == RESIZER_INPUT_MEMORY)
isp_reg_set(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT,
ISPRSZ_CNT_INPSRC);
else
isp_reg_clr(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT,
ISPRSZ_CNT_INPSRC);
}
/*
* resizer_set_ratio - Setup horizontal and vertical resizing value
* @res: Device context.
* @ratio: Structure for ratio parameters.
*
* Resizing range from 64 to 1024
*/
static void resizer_set_ratio(struct isp_res_device *res,
const struct resizer_ratio *ratio)
{
struct isp_device *isp = to_isp_device(res);
const u16 *h_filter, *v_filter;
u32 rgval;
rgval = isp_reg_readl(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT) &
~(ISPRSZ_CNT_HRSZ_MASK | ISPRSZ_CNT_VRSZ_MASK);
rgval |= ((ratio->horz - 1) << ISPRSZ_CNT_HRSZ_SHIFT)
& ISPRSZ_CNT_HRSZ_MASK;
rgval |= ((ratio->vert - 1) << ISPRSZ_CNT_VRSZ_SHIFT)
& ISPRSZ_CNT_VRSZ_MASK;
isp_reg_writel(isp, rgval, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT);
/* prepare horizontal filter coefficients */
if (ratio->horz > MID_RESIZE_VALUE)
h_filter = &filter_coefs.h_filter_coef_7tap[0];
else
h_filter = &filter_coefs.h_filter_coef_4tap[0];
/* prepare vertical filter coefficients */
if (ratio->vert > MID_RESIZE_VALUE)
v_filter = &filter_coefs.v_filter_coef_7tap[0];
else
v_filter = &filter_coefs.v_filter_coef_4tap[0];
resizer_set_filters(res, h_filter, v_filter);
}
/*
* resizer_set_dst_size - Setup the output height and width
* @res: Device context.
* @width: Output width.
* @height: Output height.
*
* Width :
* The value must be EVEN.
*
* Height:
* The number of bytes written to SDRAM must be
* a multiple of 16-bytes if the vertical resizing factor
* is greater than 1x (upsizing)
*/
static void resizer_set_output_size(struct isp_res_device *res,
u32 width, u32 height)
{
struct isp_device *isp = to_isp_device(res);
u32 rgval;
rgval = (width << ISPRSZ_OUT_SIZE_HORZ_SHIFT)
& ISPRSZ_OUT_SIZE_HORZ_MASK;
rgval |= (height << ISPRSZ_OUT_SIZE_VERT_SHIFT)
& ISPRSZ_OUT_SIZE_VERT_MASK;
isp_reg_writel(isp, rgval, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_OUT_SIZE);
}
/*
* resizer_set_output_offset - Setup memory offset for the output lines.
* @res: Device context.
* @offset: Memory offset.
*
* The 5 LSBs are forced to be zeros by the hardware to align on a 32-byte
* boundary; the 5 LSBs are read-only. For optimal use of SDRAM bandwidth,
* the SDRAM line offset must be set on a 256-byte boundary
*/
static void resizer_set_output_offset(struct isp_res_device *res, u32 offset)
{
struct isp_device *isp = to_isp_device(res);
isp_reg_writel(isp, offset, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_SDR_OUTOFF);
}
/*
* resizer_set_start - Setup vertical and horizontal start position
* @res: Device context.
* @left: Horizontal start position.
* @top: Vertical start position.
*
* Vertical start line:
* This field makes sense only when the resizer obtains its input
* from the preview engine/CCDC
*
* Horizontal start pixel:
* Pixels are coded on 16 bits for YUV and 8 bits for color separate data.
* When the resizer gets its input from SDRAM, this field must be set
* to <= 15 for YUV 16-bit data and <= 31 for 8-bit color separate data
*/
static void resizer_set_start(struct isp_res_device *res, u32 left, u32 top)
{
struct isp_device *isp = to_isp_device(res);
u32 rgval;
rgval = (left << ISPRSZ_IN_START_HORZ_ST_SHIFT)
& ISPRSZ_IN_START_HORZ_ST_MASK;
rgval |= (top << ISPRSZ_IN_START_VERT_ST_SHIFT)
& ISPRSZ_IN_START_VERT_ST_MASK;
isp_reg_writel(isp, rgval, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_IN_START);
}
/*
* resizer_set_input_size - Setup the input size
* @res: Device context.
* @width: The range is 0 to 4095 pixels
* @height: The range is 0 to 4095 lines
*/
static void resizer_set_input_size(struct isp_res_device *res,
u32 width, u32 height)
{
struct isp_device *isp = to_isp_device(res);
u32 rgval;
rgval = (width << ISPRSZ_IN_SIZE_HORZ_SHIFT)
& ISPRSZ_IN_SIZE_HORZ_MASK;
rgval |= (height << ISPRSZ_IN_SIZE_VERT_SHIFT)
& ISPRSZ_IN_SIZE_VERT_MASK;
isp_reg_writel(isp, rgval, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_IN_SIZE);
}
/*
* resizer_set_src_offs - Setup the memory offset for the input lines
* @res: Device context.
* @offset: Memory offset.
*
* The 5 LSBs are forced to be zeros by the hardware to align on a 32-byte
* boundary; the 5 LSBs are read-only. This field must be programmed to be
* 0x0 if the resizer input is from preview engine/CCDC.
*/
static void resizer_set_input_offset(struct isp_res_device *res, u32 offset)
{
struct isp_device *isp = to_isp_device(res);
isp_reg_writel(isp, offset, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_SDR_INOFF);
}
/*
* resizer_set_intype - Input type select
* @res: Device context.
* @type: Pixel format type.
*/
static void resizer_set_intype(struct isp_res_device *res,
enum resizer_colors_type type)
{
struct isp_device *isp = to_isp_device(res);
if (type == RSZ_COLOR8)
isp_reg_set(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT,
ISPRSZ_CNT_INPTYP);
else
isp_reg_clr(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_CNT,
ISPRSZ_CNT_INPTYP);
}
/*
* __resizer_set_inaddr - Helper function for set input address
* @res : pointer to resizer private data structure
* @addr: input address
* return none
*/
static void __resizer_set_inaddr(struct isp_res_device *res, u32 addr)
{
struct isp_device *isp = to_isp_device(res);
isp_reg_writel(isp, addr, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_SDR_INADD);
}
/*
* The data rate at the horizontal resizer output must not exceed half the
* functional clock or 100 MP/s, whichever is lower. According to the TRM
* there's no similar requirement for the vertical resizer output. However
* experience showed that vertical upscaling by 4 leads to SBL overflows (with
* data rates at the resizer output exceeding 300 MP/s). Limiting the resizer
* output data rate to the functional clock or 200 MP/s, whichever is lower,
* seems to get rid of SBL overflows.
*
* The maximum data rate at the output of the horizontal resizer can thus be
* computed with
*
* max intermediate rate <= L3 clock * input height / output height
* max intermediate rate <= L3 clock / 2
*
* The maximum data rate at the resizer input is then
*
* max input rate <= max intermediate rate * input width / output width
*
* where the input width and height are the resizer input crop rectangle size.
* The TRM doesn't clearly explain if that's a maximum instant data rate or a
* maximum average data rate.
*/
void omap3isp_resizer_max_rate(struct isp_res_device *res,
unsigned int *max_rate)
{
struct isp_pipeline *pipe = to_isp_pipeline(&res->subdev.entity);
const struct v4l2_mbus_framefmt *ofmt = &res->formats[RESZ_PAD_SOURCE];
unsigned long limit = min(pipe->l3_ick, 200000000UL);
unsigned long clock;
clock = div_u64((u64)limit * res->crop.active.height, ofmt->height);
clock = min(clock, limit / 2);
*max_rate = div_u64((u64)clock * res->crop.active.width, ofmt->width);
}
/*
* When the resizer processes images from memory, the driver must slow down read
* requests on the input to at least comply with the internal data rate
* requirements. If the application real-time requirements can cope with slower
* processing, the resizer can be slowed down even more to put less pressure on
* the overall system.
*
* When the resizer processes images on the fly (either from the CCDC or the
* preview module), the same data rate requirements apply but they can't be
* enforced at the resizer level. The image input module (sensor, CCP2 or
* preview module) must not provide image data faster than the resizer can
* process.
*
* For live image pipelines, the data rate is set by the frame format, size and
* rate. The sensor output frame rate must not exceed the maximum resizer data
* rate.
*
* The resizer slows down read requests by inserting wait cycles in the SBL
* requests. The maximum number of 256-byte requests per second can be computed
* as (the data rate is multiplied by 2 to convert from pixels per second to
* bytes per second)
*
* request per second = data rate * 2 / 256
* cycles per request = cycles per second / requests per second
*
* The number of cycles per second is controlled by the L3 clock, leading to
*
* cycles per request = L3 frequency / 2 * 256 / data rate
*/
static void resizer_adjust_bandwidth(struct isp_res_device *res)
{
struct isp_pipeline *pipe = to_isp_pipeline(&res->subdev.entity);
struct isp_device *isp = to_isp_device(res);
unsigned long l3_ick = pipe->l3_ick;
struct v4l2_fract *timeperframe;
unsigned int cycles_per_frame;
unsigned int requests_per_frame;
unsigned int cycles_per_request;
unsigned int granularity;
unsigned int minimum;
unsigned int maximum;
unsigned int value;
if (res->input != RESIZER_INPUT_MEMORY) {
isp_reg_clr(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_SDR_REQ_EXP,
ISPSBL_SDR_REQ_RSZ_EXP_MASK);
return;
}
switch (isp->revision) {
case ISP_REVISION_1_0:
case ISP_REVISION_2_0:
default:
granularity = 1024;
break;
case ISP_REVISION_15_0:
granularity = 32;
break;
}
/* Compute the minimum number of cycles per request, based on the
* pipeline maximum data rate. This is an absolute lower bound if we
* don't want SBL overflows, so round the value up.
*/
cycles_per_request = div_u64((u64)l3_ick / 2 * 256 + pipe->max_rate - 1,
pipe->max_rate);
minimum = DIV_ROUND_UP(cycles_per_request, granularity);
/* Compute the maximum number of cycles per request, based on the
* requested frame rate. This is a soft upper bound to achieve a frame
* rate equal or higher than the requested value, so round the value
* down.
*/
timeperframe = &pipe->max_timeperframe;
requests_per_frame = DIV_ROUND_UP(res->crop.active.width * 2, 256)
* res->crop.active.height;
cycles_per_frame = div_u64((u64)l3_ick * timeperframe->numerator,
timeperframe->denominator);
cycles_per_request = cycles_per_frame / requests_per_frame;
maximum = cycles_per_request / granularity;
value = max(minimum, maximum);
dev_dbg(isp->dev, "%s: cycles per request = %u\n", __func__, value);
isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_SDR_REQ_EXP,
ISPSBL_SDR_REQ_RSZ_EXP_MASK,
value << ISPSBL_SDR_REQ_RSZ_EXP_SHIFT);
}
/*
* omap3isp_resizer_busy - Checks if ISP resizer is busy.
*
* Returns busy field from ISPRSZ_PCR register.
*/
int omap3isp_resizer_busy(struct isp_res_device *res)
{
struct isp_device *isp = to_isp_device(res);
return isp_reg_readl(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_PCR) &
ISPRSZ_PCR_BUSY;
}
/*
* resizer_set_inaddr - Sets the memory address of the input frame.
* @addr: 32bit memory address aligned on 32byte boundary.
*/
static void resizer_set_inaddr(struct isp_res_device *res, u32 addr)
{
res->addr_base = addr;
/* This will handle crop settings in stream off state */
if (res->crop_offset)
addr += res->crop_offset & ~0x1f;
__resizer_set_inaddr(res, addr);
}
/*
* Configures the memory address to which the output frame is written.
* @addr: 32bit memory address aligned on 32byte boundary.
* Note: For SBL efficiency reasons the address should be on a 256-byte
* boundary.
*/
static void resizer_set_outaddr(struct isp_res_device *res, u32 addr)
{
struct isp_device *isp = to_isp_device(res);
/*
* Set output address. This needs to be in its own function
* because it changes often.
*/
isp_reg_writel(isp, addr << ISPRSZ_SDR_OUTADD_ADDR_SHIFT,
OMAP3_ISP_IOMEM_RESZ, ISPRSZ_SDR_OUTADD);
}
/*
* resizer_print_status - Prints the values of the resizer module registers.
*/
#define RSZ_PRINT_REGISTER(isp, name)\
dev_dbg(isp->dev, "###RSZ " #name "=0x%08x\n", \
isp_reg_readl(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_##name))
static void resizer_print_status(struct isp_res_device *res)
{
struct isp_device *isp = to_isp_device(res);
dev_dbg(isp->dev, "-------------Resizer Register dump----------\n");
RSZ_PRINT_REGISTER(isp, PCR);
RSZ_PRINT_REGISTER(isp, CNT);
RSZ_PRINT_REGISTER(isp, OUT_SIZE);
RSZ_PRINT_REGISTER(isp, IN_START);
RSZ_PRINT_REGISTER(isp, IN_SIZE);
RSZ_PRINT_REGISTER(isp, SDR_INADD);
RSZ_PRINT_REGISTER(isp, SDR_INOFF);
RSZ_PRINT_REGISTER(isp, SDR_OUTADD);
RSZ_PRINT_REGISTER(isp, SDR_OUTOFF);
RSZ_PRINT_REGISTER(isp, YENH);
dev_dbg(isp->dev, "--------------------------------------------\n");
}
/*
* resizer_calc_ratios - Helper function for calculating resizer ratios
* @res: pointer to resizer private data structure
* @input: input frame size
* @output: output frame size
* @ratio : return calculated ratios
* return none
*
* The resizer uses a polyphase sample rate converter. The upsampling filter
* has a fixed number of phases that depend on the resizing ratio. As the ratio
* computation depends on the number of phases, we need to compute a first
* approximation and then refine it.
*
* The input/output/ratio relationship is given by the OMAP34xx TRM:
*
* - 8-phase, 4-tap mode (RSZ = 64 ~ 512)
* iw = (32 * sph + (ow - 1) * hrsz + 16) >> 8 + 7
* ih = (32 * spv + (oh - 1) * vrsz + 16) >> 8 + 4
* - 4-phase, 7-tap mode (RSZ = 513 ~ 1024)
* iw = (64 * sph + (ow - 1) * hrsz + 32) >> 8 + 7
* ih = (64 * spv + (oh - 1) * vrsz + 32) >> 8 + 7
*
* iw and ih are the input width and height after cropping. Those equations need
* to be satisfied exactly for the resizer to work correctly.
*
* The equations can't be easily reverted, as the >> 8 operation is not linear.
* In addition, not all input sizes can be achieved for a given output size. To
* get the highest input size lower than or equal to the requested input size,
* we need to compute the highest resizing ratio that satisfies the following
* inequality (taking the 4-tap mode width equation as an example)
*
* iw >= (32 * sph + (ow - 1) * hrsz + 16) >> 8 - 7
*
* (where iw is the requested input width) which can be rewritten as
*
* iw - 7 >= (32 * sph + (ow - 1) * hrsz + 16) >> 8
* (iw - 7) << 8 >= 32 * sph + (ow - 1) * hrsz + 16 - b
* ((iw - 7) << 8) + b >= 32 * sph + (ow - 1) * hrsz + 16
*
* where b is the value of the 8 least significant bits of the right hand side
* expression of the last inequality. The highest resizing ratio value will be
* achieved when b is equal to its maximum value of 255. That resizing ratio
* value will still satisfy the original inequality, as b will disappear when
* the expression will be shifted right by 8.
*
* The reverted equations thus become
*
* - 8-phase, 4-tap mode
* hrsz = ((iw - 7) * 256 + 255 - 16 - 32 * sph) / (ow - 1)
* vrsz = ((ih - 4) * 256 + 255 - 16 - 32 * spv) / (oh - 1)
* - 4-phase, 7-tap mode
* hrsz = ((iw - 7) * 256 + 255 - 32 - 64 * sph) / (ow - 1)
* vrsz = ((ih - 7) * 256 + 255 - 32 - 64 * spv) / (oh - 1)
*
* The ratios are integer values, and are rounded down to ensure that the
* cropped input size is not bigger than the uncropped input size.
*
* As the number of phases/taps, used to select the correct equations to compute
* the ratio, depends on the ratio, we start with the 4-tap mode equations to
* compute an approximation of the ratio, and switch to the 7-tap mode equations
* if the approximation is higher than the ratio threshold.
*
* As the 7-tap mode equations will return a ratio smaller than or equal to the
* 4-tap mode equations, the resulting ratio could become lower than or equal to
* the ratio threshold. This 'equations loop' isn't an issue as long as the
* correct equations are used to compute the final input size. Starting with the
* 4-tap mode equations ensure that, in case of values resulting in a 'ratio
* loop', the smallest of the ratio values will be used, never exceeding the
* requested input size.
*
* We first clamp the output size according to the hardware capability to avoid
* auto-cropping the input more than required to satisfy the TRM equations. The
* minimum output size is achieved with a scaling factor of 1024. It is thus
* computed using the 7-tap equations.
*
* min ow = ((iw - 7) * 256 - 32 - 64 * sph) / 1024 + 1
* min oh = ((ih - 7) * 256 - 32 - 64 * spv) / 1024 + 1
*
* Similarly, the maximum output size is achieved with a scaling factor of 64
* and computed using the 4-tap equations.
*
* max ow = ((iw - 7) * 256 + 255 - 16 - 32 * sph) / 64 + 1
* max oh = ((ih - 4) * 256 + 255 - 16 - 32 * spv) / 64 + 1
*
* The additional +255 term compensates for the round down operation performed
* by the TRM equations when shifting the value right by 8 bits.
*
* We then compute and clamp the ratios (x1/4 ~ x4). Clamping the output size to
* the maximum value guarantees that the ratio value will never be smaller than
* the minimum, but it could still slightly exceed the maximum. Clamping the
* ratio will thus result in a resizing factor slightly larger than the
* requested value.
*
* To accommodate that, and make sure the TRM equations are satisfied exactly, we
* compute the input crop rectangle as the last step.
*
* As if the situation wasn't complex enough, the maximum output width depends
* on the vertical resizing ratio. Fortunately, the output height doesn't
* depend on the horizontal resizing ratio. We can then start by computing the
* output height and the vertical ratio, and then move to computing the output
* width and the horizontal ratio.
*/
static void resizer_calc_ratios(struct isp_res_device *res,
struct v4l2_rect *input,
struct v4l2_mbus_framefmt *output,
struct resizer_ratio *ratio)
{
struct isp_device *isp = to_isp_device(res);
const unsigned int spv = DEFAULT_PHASE;
const unsigned int sph = DEFAULT_PHASE;
unsigned int upscaled_width;
unsigned int upscaled_height;
unsigned int min_width;
unsigned int min_height;
unsigned int max_width;
unsigned int max_height;
unsigned int width_alignment;
unsigned int width;
unsigned int height;
/*
* Clamp the output height based on the hardware capabilities and
* compute the vertical resizing ratio.
*/
min_height = ((input->height - 7) * 256 - 32 - 64 * spv) / 1024 + 1;
min_height = max_t(unsigned int, min_height, MIN_OUT_HEIGHT);
max_height = ((input->height - 4) * 256 + 255 - 16 - 32 * spv) / 64 + 1;
max_height = min_t(unsigned int, max_height, MAX_OUT_HEIGHT);
output->height = clamp(output->height, min_height, max_height);
ratio->vert = ((input->height - 4) * 256 + 255 - 16 - 32 * spv)
/ (output->height - 1);
if (ratio->vert > MID_RESIZE_VALUE)
ratio->vert = ((input->height - 7) * 256 + 255 - 32 - 64 * spv)
/ (output->height - 1);
ratio->vert = clamp_t(unsigned int, ratio->vert,
MIN_RESIZE_VALUE, MAX_RESIZE_VALUE);
if (ratio->vert <= MID_RESIZE_VALUE) {
upscaled_height = (output->height - 1) * ratio->vert
+ 32 * spv + 16;
height = (upscaled_height >> 8) + 4;
} else {
upscaled_height = (output->height - 1) * ratio->vert
+ 64 * spv + 32;
height = (upscaled_height >> 8) + 7;
}
/*
* Compute the minimum and maximum output widths based on the hardware
* capabilities. The maximum depends on the vertical resizing ratio.
*/
min_width = ((input->width - 7) * 256 - 32 - 64 * sph) / 1024 + 1;
min_width = max_t(unsigned int, min_width, MIN_OUT_WIDTH);
if (ratio->vert <= MID_RESIZE_VALUE) {
switch (isp->revision) {
case ISP_REVISION_1_0:
max_width = MAX_4TAP_OUT_WIDTH_ES1;
break;
case ISP_REVISION_2_0:
default:
max_width = MAX_4TAP_OUT_WIDTH_ES2;
break;
case ISP_REVISION_15_0:
max_width = MAX_4TAP_OUT_WIDTH_3630;
break;
}
} else {
switch (isp->revision) {
case ISP_REVISION_1_0:
max_width = MAX_7TAP_OUT_WIDTH_ES1;
break;
case ISP_REVISION_2_0:
default:
max_width = MAX_7TAP_OUT_WIDTH_ES2;
break;
case ISP_REVISION_15_0:
max_width = MAX_7TAP_OUT_WIDTH_3630;
break;
}
}
max_width = min(((input->width - 7) * 256 + 255 - 16 - 32 * sph) / 64
+ 1, max_width);
/*
* The output width must be even, and must be a multiple of 16 bytes
* when upscaling vertically. Clamp the output width to the valid range.
* Take the alignment into account (the maximum width in 7-tap mode on
* ES2 isn't a multiple of 8) and align the result up to make sure it
* won't be smaller than the minimum.
*/
width_alignment = ratio->vert < 256 ? 8 : 2;
output->width = clamp(output->width, min_width,
max_width & ~(width_alignment - 1));
output->width = ALIGN(output->width, width_alignment);
ratio->horz = ((input->width - 7) * 256 + 255 - 16 - 32 * sph)
/ (output->width - 1);
if (ratio->horz > MID_RESIZE_VALUE)
ratio->horz = ((input->width - 7) * 256 + 255 - 32 - 64 * sph)
/ (output->width - 1);
ratio->horz = clamp_t(unsigned int, ratio->horz,
MIN_RESIZE_VALUE, MAX_RESIZE_VALUE);
if (ratio->horz <= MID_RESIZE_VALUE) {
upscaled_width = (output->width - 1) * ratio->horz
+ 32 * sph + 16;
width = (upscaled_width >> 8) + 7;
} else {
upscaled_width = (output->width - 1) * ratio->horz
+ 64 * sph + 32;
width = (upscaled_width >> 8) + 7;
}
/* Center the new crop rectangle. */
input->left += (input->width - width) / 2;
input->top += (input->height - height) / 2;
input->width = width;
input->height = height;
}
/*
* resizer_set_crop_params - Setup hardware with cropping parameters
* @res : resizer private structure
* @input : format on sink pad
* @output : format on source pad
* return none
*/
static void resizer_set_crop_params(struct isp_res_device *res,
const struct v4l2_mbus_framefmt *input,
const struct v4l2_mbus_framefmt *output)
{
resizer_set_ratio(res, &res->ratio);
/* Set chrominance horizontal algorithm */
if (res->ratio.horz >= RESIZE_DIVISOR)
resizer_set_bilinear(res, RSZ_THE_SAME);
else
resizer_set_bilinear(res, RSZ_BILINEAR);
resizer_adjust_bandwidth(res);
if (res->input == RESIZER_INPUT_MEMORY) {
/* Calculate additional offset for crop */
res->crop_offset = (res->crop.active.top * input->width +
res->crop.active.left) * 2;
/*
* Write lowest 4 bits of horizontal pixel offset (in pixels),
* vertical start must be 0.
*/
resizer_set_start(res, (res->crop_offset / 2) & 0xf, 0);
/*
* Set start (read) address for cropping, in bytes.
* Lowest 5 bits must be zero.
*/
__resizer_set_inaddr(res,
res->addr_base + (res->crop_offset & ~0x1f));
} else {
/*
* Set vertical start line and horizontal starting pixel.
* If the input is from CCDC/PREV, horizontal start field is
* in bytes (twice number of pixels).
*/
resizer_set_start(res, res->crop.active.left * 2,
res->crop.active.top);
/* Input address and offset must be 0 for preview/ccdc input */
__resizer_set_inaddr(res, 0);
resizer_set_input_offset(res, 0);
}
/* Set the input size */
resizer_set_input_size(res, res->crop.active.width,
res->crop.active.height);
}
static void resizer_configure(struct isp_res_device *res)
{
struct v4l2_mbus_framefmt *informat, *outformat;
struct resizer_luma_yenh luma = {0, 0, 0, 0};
resizer_set_source(res, res->input);
informat = &res->formats[RESZ_PAD_SINK];
outformat = &res->formats[RESZ_PAD_SOURCE];
/* RESZ_PAD_SINK */
if (res->input == RESIZER_INPUT_VP)
resizer_set_input_offset(res, 0);
else
resizer_set_input_offset(res, ALIGN(informat->width, 0x10) * 2);
/* YUV422 interleaved, default phase, no luma enhancement */
resizer_set_intype(res, RSZ_YUV422);
resizer_set_ycpos(res, informat->code);
resizer_set_phase(res, DEFAULT_PHASE, DEFAULT_PHASE);
resizer_set_luma(res, &luma);
/* RESZ_PAD_SOURCE */
resizer_set_output_offset(res, ALIGN(outformat->width * 2, 32));
resizer_set_output_size(res, outformat->width, outformat->height);
resizer_set_crop_params(res, informat, outformat);
}
/* -----------------------------------------------------------------------------
* Interrupt handling
*/
static void resizer_enable_oneshot(struct isp_res_device *res)
{
struct isp_device *isp = to_isp_device(res);
isp_reg_set(isp, OMAP3_ISP_IOMEM_RESZ, ISPRSZ_PCR,
ISPRSZ_PCR_ENABLE | ISPRSZ_PCR_ONESHOT);
}
void omap3isp_resizer_isr_frame_sync(struct isp_res_device *res)
{
/*
* If ISP_VIDEO_DMAQUEUE_QUEUED is set, DMA queue had an underrun
* condition, the module was paused and now we have a buffer queued
* on the output again. Restart the pipeline if running in continuous
* mode.
*/
if (res->state == ISP_PIPELINE_STREAM_CONTINUOUS &&
res->video_out.dmaqueue_flags & ISP_VIDEO_DMAQUEUE_QUEUED) {
resizer_enable_oneshot(res);
isp_video_dmaqueue_flags_clr(&res->video_out);
}
}
static void resizer_isr_buffer(struct isp_res_device *res)
{
struct isp_pipeline *pipe = to_isp_pipeline(&res->subdev.entity);
struct isp_buffer *buffer;
int restart = 0;
if (res->state == ISP_PIPELINE_STREAM_STOPPED)
return;
/* Complete the output buffer and, if reading from memory, the input
* buffer.
*/
buffer = omap3isp_video_buffer_next(&res->video_out);
if (buffer != NULL) {
resizer_set_outaddr(res, buffer->dma);
restart = 1;
}
pipe->state |= ISP_PIPELINE_IDLE_OUTPUT;
if (res->input == RESIZER_INPUT_MEMORY) {
buffer = omap3isp_video_buffer_next(&res->video_in);
if (buffer != NULL)
resizer_set_inaddr(res, buffer->dma);
pipe->state |= ISP_PIPELINE_IDLE_INPUT;
}
if (res->state == ISP_PIPELINE_STREAM_SINGLESHOT) {
if (isp_pipeline_ready(pipe))
omap3isp_pipeline_set_stream(pipe,
ISP_PIPELINE_STREAM_SINGLESHOT);
} else {
/* If an underrun occurs, the video queue operation handler will
* restart the resizer. Otherwise restart it immediately.
*/
if (restart)
resizer_enable_oneshot(res);
}
}
/*
* omap3isp_resizer_isr - ISP resizer interrupt handler
*
* Manage the resizer video buffers and configure shadowed and busy-locked
* registers.
*/
void omap3isp_resizer_isr(struct isp_res_device *res)
{
struct v4l2_mbus_framefmt *informat, *outformat;
unsigned long flags;
if (omap3isp_module_sync_is_stopping(&res->wait, &res->stopping))
return;
spin_lock_irqsave(&res->lock, flags);
if (res->applycrop) {
outformat = __resizer_get_format(res, NULL, RESZ_PAD_SOURCE,
V4L2_SUBDEV_FORMAT_ACTIVE);
informat = __resizer_get_format(res, NULL, RESZ_PAD_SINK,
V4L2_SUBDEV_FORMAT_ACTIVE);
resizer_set_crop_params(res, informat, outformat);
res->applycrop = 0;
}
spin_unlock_irqrestore(&res->lock, flags);
resizer_isr_buffer(res);
}
/* -----------------------------------------------------------------------------
* ISP video operations
*/
static int resizer_video_queue(struct isp_video *video,
struct isp_buffer *buffer)
{
struct isp_res_device *res = &video->isp->isp_res;
if (video->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
resizer_set_inaddr(res, buffer->dma);
/*
* We now have a buffer queued on the output. Despite what the
* TRM says, the resizer can't be restarted immediately.
* Enabling it in one shot mode in the middle of a frame (or at
* least asynchronously to the frame) results in the output
* being shifted randomly left/right and up/down, as if the
* hardware didn't synchronize itself to the beginning of the
* frame correctly.
*
* Restart the resizer on the next sync interrupt if running in
* continuous mode or when starting the stream.
*/
if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
resizer_set_outaddr(res, buffer->dma);
return 0;
}
static const struct isp_video_operations resizer_video_ops = {
.queue = resizer_video_queue,
};
/* -----------------------------------------------------------------------------
* V4L2 subdev operations
*/
/*
* resizer_set_stream - Enable/Disable streaming on resizer subdev
* @sd: ISP resizer V4L2 subdev
* @enable: 1 == Enable, 0 == Disable
*
* The resizer hardware can't be enabled without a memory buffer to write to.
* As the s_stream operation is called in response to a STREAMON call without
* any buffer queued yet, just update the state field and return immediately.
* The resizer will be enabled in resizer_video_queue().
*/
static int resizer_set_stream(struct v4l2_subdev *sd, int enable)
{
struct isp_res_device *res = v4l2_get_subdevdata(sd);
struct isp_video *video_out = &res->video_out;
struct isp_device *isp = to_isp_device(res);
struct device *dev = to_device(res);
if (res->state == ISP_PIPELINE_STREAM_STOPPED) {
if (enable == ISP_PIPELINE_STREAM_STOPPED)
return 0;
omap3isp_subclk_enable(isp, OMAP3_ISP_SUBCLK_RESIZER);
resizer_configure(res);
resizer_print_status(res);
}
switch (enable) {
case ISP_PIPELINE_STREAM_CONTINUOUS:
omap3isp_sbl_enable(isp, OMAP3_ISP_SBL_RESIZER_WRITE);
if (video_out->dmaqueue_flags & ISP_VIDEO_DMAQUEUE_QUEUED) {
resizer_enable_oneshot(res);
isp_video_dmaqueue_flags_clr(video_out);
}
break;
case ISP_PIPELINE_STREAM_SINGLESHOT:
if (res->input == RESIZER_INPUT_MEMORY)
omap3isp_sbl_enable(isp, OMAP3_ISP_SBL_RESIZER_READ);
omap3isp_sbl_enable(isp, OMAP3_ISP_SBL_RESIZER_WRITE);
resizer_enable_oneshot(res);
break;
case ISP_PIPELINE_STREAM_STOPPED:
if (omap3isp_module_sync_idle(&sd->entity, &res->wait,
&res->stopping))
dev_dbg(dev, "%s: module stop timeout.\n", sd->name);
omap3isp_sbl_disable(isp, OMAP3_ISP_SBL_RESIZER_READ |
OMAP3_ISP_SBL_RESIZER_WRITE);
omap3isp_subclk_disable(isp, OMAP3_ISP_SUBCLK_RESIZER);
isp_video_dmaqueue_flags_clr(video_out);
break;
}
res->state = enable;
return 0;
}
/*
* resizer_try_crop - mangles crop parameters.
*/
static void resizer_try_crop(const struct v4l2_mbus_framefmt *sink,
const struct v4l2_mbus_framefmt *source,
struct v4l2_rect *crop)
{
const unsigned int spv = DEFAULT_PHASE;
const unsigned int sph = DEFAULT_PHASE;
/* Crop rectangle is constrained by the output size so that zoom ratio
* cannot exceed +/-4.0.
*/
unsigned int min_width =
((32 * sph + (source->width - 1) * 64 + 16) >> 8) + 7;
unsigned int min_height =
((32 * spv + (source->height - 1) * 64 + 16) >> 8) + 4;
unsigned int max_width =
((64 * sph + (source->width - 1) * 1024 + 32) >> 8) + 7;
unsigned int max_height =
((64 * spv + (source->height - 1) * 1024 + 32) >> 8) + 7;
crop->width = clamp_t(u32, crop->width, min_width, max_width);
crop->height = clamp_t(u32, crop->height, min_height, max_height);
/* Crop can not go beyond of the input rectangle */
crop->left = clamp_t(u32, crop->left, 0, sink->width - MIN_IN_WIDTH);
crop->width = clamp_t(u32, crop->width, MIN_IN_WIDTH,
sink->width - crop->left);
crop->top = clamp_t(u32, crop->top, 0, sink->height - MIN_IN_HEIGHT);
crop->height = clamp_t(u32, crop->height, MIN_IN_HEIGHT,
sink->height - crop->top);
}
/*
* resizer_get_selection - Retrieve a selection rectangle on a pad
* @sd: ISP resizer V4L2 subdevice
* @cfg: V4L2 subdev pad configuration
* @sel: Selection rectangle
*
* The only supported rectangles are the crop rectangles on the sink pad.
*
* Return 0 on success or a negative error code otherwise.
*/
static int resizer_get_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct isp_res_device *res = v4l2_get_subdevdata(sd);
struct v4l2_mbus_framefmt *format_source;
struct v4l2_mbus_framefmt *format_sink;
struct resizer_ratio ratio;
if (sel->pad != RESZ_PAD_SINK)
return -EINVAL;
format_sink = __resizer_get_format(res, cfg, RESZ_PAD_SINK,
sel->which);
format_source = __resizer_get_format(res, cfg, RESZ_PAD_SOURCE,
sel->which);
switch (sel->target) {
case V4L2_SEL_TGT_CROP_BOUNDS:
sel->r.left = 0;
sel->r.top = 0;
sel->r.width = INT_MAX;
sel->r.height = INT_MAX;
resizer_try_crop(format_sink, format_source, &sel->r);
resizer_calc_ratios(res, &sel->r, format_source, &ratio);
break;
case V4L2_SEL_TGT_CROP:
sel->r = *__resizer_get_crop(res, cfg, sel->which);
resizer_calc_ratios(res, &sel->r, format_source, &ratio);
break;
default:
return -EINVAL;
}
return 0;
}
/*
* resizer_set_selection - Set a selection rectangle on a pad
* @sd: ISP resizer V4L2 subdevice
* @cfg: V4L2 subdev pad configuration
* @sel: Selection rectangle
*
* The only supported rectangle is the actual crop rectangle on the sink pad.
*
* FIXME: This function currently behaves as if the KEEP_CONFIG selection flag
* was always set.
*
* Return 0 on success or a negative error code otherwise.
*/
static int resizer_set_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct isp_res_device *res = v4l2_get_subdevdata(sd);
struct isp_device *isp = to_isp_device(res);
const struct v4l2_mbus_framefmt *format_sink;
struct v4l2_mbus_framefmt format_source;
struct resizer_ratio ratio;
unsigned long flags;
if (sel->target != V4L2_SEL_TGT_CROP ||
sel->pad != RESZ_PAD_SINK)
return -EINVAL;
format_sink = __resizer_get_format(res, cfg, RESZ_PAD_SINK,
sel->which);
format_source = *__resizer_get_format(res, cfg, RESZ_PAD_SOURCE,
sel->which);
dev_dbg(isp->dev, "%s(%s): req %ux%u -> (%d,%d)/%ux%u -> %ux%u\n",
__func__, sel->which == V4L2_SUBDEV_FORMAT_TRY ? "try" : "act",
format_sink->width, format_sink->height,
sel->r.left, sel->r.top, sel->r.width, sel->r.height,
format_source.width, format_source.height);
/* Clamp the crop rectangle to the bounds, and then mangle it further to
* fulfill the TRM equations. Store the clamped but otherwise unmangled
* rectangle to avoid cropping the input multiple times: when an
* application sets the output format, the current crop rectangle is
* mangled during crop rectangle computation, which would lead to a new,
* smaller input crop rectangle every time the output size is set if we
* stored the mangled rectangle.
*/
resizer_try_crop(format_sink, &format_source, &sel->r);
*__resizer_get_crop(res, cfg, sel->which) = sel->r;
resizer_calc_ratios(res, &sel->r, &format_source, &ratio);
dev_dbg(isp->dev, "%s(%s): got %ux%u -> (%d,%d)/%ux%u -> %ux%u\n",
__func__, sel->which == V4L2_SUBDEV_FORMAT_TRY ? "try" : "act",
format_sink->width, format_sink->height,
sel->r.left, sel->r.top, sel->r.width, sel->r.height,
format_source.width, format_source.height);
if (sel->which == V4L2_SUBDEV_FORMAT_TRY) {
*__resizer_get_format(res, cfg, RESZ_PAD_SOURCE, sel->which) =
format_source;
return 0;
}
/* Update the source format, resizing ratios and crop rectangle. If
* streaming is on the IRQ handler will reprogram the resizer after the
* current frame. We thus we need to protect against race conditions.
*/
spin_lock_irqsave(&res->lock, flags);
*__resizer_get_format(res, cfg, RESZ_PAD_SOURCE, sel->which) =
format_source;
res->ratio = ratio;
res->crop.active = sel->r;
if (res->state != ISP_PIPELINE_STREAM_STOPPED)
res->applycrop = 1;
spin_unlock_irqrestore(&res->lock, flags);
return 0;
}
/* resizer pixel formats */
static const unsigned int resizer_formats[] = {
MEDIA_BUS_FMT_UYVY8_1X16,
MEDIA_BUS_FMT_YUYV8_1X16,
};
static unsigned int resizer_max_in_width(struct isp_res_device *res)
{
struct isp_device *isp = to_isp_device(res);
if (res->input == RESIZER_INPUT_MEMORY) {
return MAX_IN_WIDTH_MEMORY_MODE;
} else {
if (isp->revision == ISP_REVISION_1_0)
return MAX_IN_WIDTH_ONTHEFLY_MODE_ES1;
else
return MAX_IN_WIDTH_ONTHEFLY_MODE_ES2;
}
}
/*
* resizer_try_format - Handle try format by pad subdev method
* @res : ISP resizer device
* @cfg: V4L2 subdev pad configuration
* @pad : pad num
* @fmt : pointer to v4l2 format structure
* @which : wanted subdev format
*/
static void resizer_try_format(struct isp_res_device *res,
struct v4l2_subdev_pad_config *cfg, unsigned int pad,
struct v4l2_mbus_framefmt *fmt,
enum v4l2_subdev_format_whence which)
{
struct v4l2_mbus_framefmt *format;
struct resizer_ratio ratio;
struct v4l2_rect crop;
switch (pad) {
case RESZ_PAD_SINK:
if (fmt->code != MEDIA_BUS_FMT_YUYV8_1X16 &&
fmt->code != MEDIA_BUS_FMT_UYVY8_1X16)
fmt->code = MEDIA_BUS_FMT_YUYV8_1X16;
fmt->width = clamp_t(u32, fmt->width, MIN_IN_WIDTH,
resizer_max_in_width(res));
fmt->height = clamp_t(u32, fmt->height, MIN_IN_HEIGHT,
MAX_IN_HEIGHT);
break;
case RESZ_PAD_SOURCE:
format = __resizer_get_format(res, cfg, RESZ_PAD_SINK, which);
fmt->code = format->code;
crop = *__resizer_get_crop(res, cfg, which);
resizer_calc_ratios(res, &crop, fmt, &ratio);
break;
}
fmt->colorspace = V4L2_COLORSPACE_JPEG;
fmt->field = V4L2_FIELD_NONE;
}
/*
* resizer_enum_mbus_code - Handle pixel format enumeration
* @sd : pointer to v4l2 subdev structure
* @cfg: V4L2 subdev pad configuration
* @code : pointer to v4l2_subdev_mbus_code_enum structure
* return -EINVAL or zero on success
*/
static int resizer_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
{
struct isp_res_device *res = v4l2_get_subdevdata(sd);
struct v4l2_mbus_framefmt *format;
if (code->pad == RESZ_PAD_SINK) {
if (code->index >= ARRAY_SIZE(resizer_formats))
return -EINVAL;
code->code = resizer_formats[code->index];
} else {
if (code->index != 0)
return -EINVAL;
format = __resizer_get_format(res, cfg, RESZ_PAD_SINK,
code->which);
code->code = format->code;
}
return 0;
}
static int resizer_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_size_enum *fse)
{
struct isp_res_device *res = v4l2_get_subdevdata(sd);
struct v4l2_mbus_framefmt format;
if (fse->index != 0)
return -EINVAL;
format.code = fse->code;
format.width = 1;
format.height = 1;
resizer_try_format(res, cfg, fse->pad, &format, fse->which);
fse->min_width = format.width;
fse->min_height = format.height;
if (format.code != fse->code)
return -EINVAL;
format.code = fse->code;
format.width = -1;
format.height = -1;
resizer_try_format(res, cfg, fse->pad, &format, fse->which);
fse->max_width = format.width;
fse->max_height = format.height;
return 0;
}
/*
* resizer_get_format - Handle get format by pads subdev method
* @sd : pointer to v4l2 subdev structure
* @cfg: V4L2 subdev pad configuration
* @fmt : pointer to v4l2 subdev format structure
* return -EINVAL or zero on success
*/
static int resizer_get_format(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct isp_res_device *res = v4l2_get_subdevdata(sd);
struct v4l2_mbus_framefmt *format;
format = __resizer_get_format(res, cfg, fmt->pad, fmt->which);
if (format == NULL)
return -EINVAL;
fmt->format = *format;
return 0;
}
/*
* resizer_set_format - Handle set format by pads subdev method
* @sd : pointer to v4l2 subdev structure
* @cfg: V4L2 subdev pad configuration
* @fmt : pointer to v4l2 subdev format structure
* return -EINVAL or zero on success
*/
static int resizer_set_format(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct isp_res_device *res = v4l2_get_subdevdata(sd);
struct v4l2_mbus_framefmt *format;
struct v4l2_rect *crop;
format = __resizer_get_format(res, cfg, fmt->pad, fmt->which);
if (format == NULL)
return -EINVAL;
resizer_try_format(res, cfg, fmt->pad, &fmt->format, fmt->which);
*format = fmt->format;
if (fmt->pad == RESZ_PAD_SINK) {
/* reset crop rectangle */
crop = __resizer_get_crop(res, cfg, fmt->which);
crop->left = 0;
crop->top = 0;
crop->width = fmt->format.width;
crop->height = fmt->format.height;
/* Propagate the format from sink to source */
format = __resizer_get_format(res, cfg, RESZ_PAD_SOURCE,
fmt->which);
*format = fmt->format;
resizer_try_format(res, cfg, RESZ_PAD_SOURCE, format,
fmt->which);
}
if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
/* Compute and store the active crop rectangle and resizer
* ratios. format already points to the source pad active
* format.
*/
res->crop.active = res->crop.request;
resizer_calc_ratios(res, &res->crop.active, format,
&res->ratio);
}
return 0;
}
static int resizer_link_validate(struct v4l2_subdev *sd,
struct media_link *link,
struct v4l2_subdev_format *source_fmt,
struct v4l2_subdev_format *sink_fmt)
{
struct isp_res_device *res = v4l2_get_subdevdata(sd);
struct isp_pipeline *pipe = to_isp_pipeline(&sd->entity);
omap3isp_resizer_max_rate(res, &pipe->max_rate);
return v4l2_subdev_link_validate_default(sd, link,
source_fmt, sink_fmt);
}
/*
* resizer_init_formats - Initialize formats on all pads
* @sd: ISP resizer V4L2 subdevice
* @fh: V4L2 subdev file handle
*
* Initialize all pad formats with default values. If fh is not NULL, try
* formats are initialized on the file handle. Otherwise active formats are
* initialized on the device.
*/
static int resizer_init_formats(struct v4l2_subdev *sd,
struct v4l2_subdev_fh *fh)
{
struct v4l2_subdev_format format;
memset(&format, 0, sizeof(format));
format.pad = RESZ_PAD_SINK;
format.which = fh ? V4L2_SUBDEV_FORMAT_TRY : V4L2_SUBDEV_FORMAT_ACTIVE;
format.format.code = MEDIA_BUS_FMT_YUYV8_1X16;
format.format.width = 4096;
format.format.height = 4096;
resizer_set_format(sd, fh ? fh->pad : NULL, &format);
return 0;
}
/* subdev video operations */
static const struct v4l2_subdev_video_ops resizer_v4l2_video_ops = {
.s_stream = resizer_set_stream,
};
/* subdev pad operations */
static const struct v4l2_subdev_pad_ops resizer_v4l2_pad_ops = {
.enum_mbus_code = resizer_enum_mbus_code,
.enum_frame_size = resizer_enum_frame_size,
.get_fmt = resizer_get_format,
.set_fmt = resizer_set_format,
.get_selection = resizer_get_selection,
.set_selection = resizer_set_selection,
.link_validate = resizer_link_validate,
};
/* subdev operations */
static const struct v4l2_subdev_ops resizer_v4l2_ops = {
.video = &resizer_v4l2_video_ops,
.pad = &resizer_v4l2_pad_ops,
};
/* subdev internal operations */
static const struct v4l2_subdev_internal_ops resizer_v4l2_internal_ops = {
.open = resizer_init_formats,
};
/* -----------------------------------------------------------------------------
* Media entity operations
*/
/*
* resizer_link_setup - Setup resizer connections.
* @entity : Pointer to media entity structure
* @local : Pointer to local pad array
* @remote : Pointer to remote pad array
* @flags : Link flags
* return -EINVAL or zero on success
*/
static int resizer_link_setup(struct media_entity *entity,
const struct media_pad *local,
const struct media_pad *remote, u32 flags)
{
struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity);
struct isp_res_device *res = v4l2_get_subdevdata(sd);
unsigned int index = local->index;
/* FIXME: this is actually a hack! */
if (is_media_entity_v4l2_subdev(remote->entity))
index |= 2 << 16;
switch (index) {
case RESZ_PAD_SINK:
/* read from memory */
if (flags & MEDIA_LNK_FL_ENABLED) {
if (res->input == RESIZER_INPUT_VP)
return -EBUSY;
res->input = RESIZER_INPUT_MEMORY;
} else {
if (res->input == RESIZER_INPUT_MEMORY)
res->input = RESIZER_INPUT_NONE;
}
break;
case RESZ_PAD_SINK | 2 << 16:
/* read from ccdc or previewer */
if (flags & MEDIA_LNK_FL_ENABLED) {
if (res->input == RESIZER_INPUT_MEMORY)
return -EBUSY;
res->input = RESIZER_INPUT_VP;
} else {
if (res->input == RESIZER_INPUT_VP)
res->input = RESIZER_INPUT_NONE;
}
break;
case RESZ_PAD_SOURCE:
/* resizer always write to memory */
break;
default:
return -EINVAL;
}
return 0;
}
/* media operations */
static const struct media_entity_operations resizer_media_ops = {
.link_setup = resizer_link_setup,
.link_validate = v4l2_subdev_link_validate,
};
void omap3isp_resizer_unregister_entities(struct isp_res_device *res)
{
v4l2_device_unregister_subdev(&res->subdev);
omap3isp_video_unregister(&res->video_in);
omap3isp_video_unregister(&res->video_out);
}
int omap3isp_resizer_register_entities(struct isp_res_device *res,
struct v4l2_device *vdev)
{
int ret;
/* Register the subdev and video nodes. */
res->subdev.dev = vdev->mdev->dev;
ret = v4l2_device_register_subdev(vdev, &res->subdev);
if (ret < 0)
goto error;
ret = omap3isp_video_register(&res->video_in, vdev);
if (ret < 0)
goto error;
ret = omap3isp_video_register(&res->video_out, vdev);
if (ret < 0)
goto error;
return 0;
error:
omap3isp_resizer_unregister_entities(res);
return ret;
}
/* -----------------------------------------------------------------------------
* ISP resizer initialization and cleanup
*/
/*
* resizer_init_entities - Initialize resizer subdev and media entity.
* @res : Pointer to resizer device structure
* return -ENOMEM or zero on success
*/
static int resizer_init_entities(struct isp_res_device *res)
{
struct v4l2_subdev *sd = &res->subdev;
struct media_pad *pads = res->pads;
struct media_entity *me = &sd->entity;
int ret;
res->input = RESIZER_INPUT_NONE;
v4l2_subdev_init(sd, &resizer_v4l2_ops);
sd->internal_ops = &resizer_v4l2_internal_ops;
strscpy(sd->name, "OMAP3 ISP resizer", sizeof(sd->name));
sd->grp_id = 1 << 16; /* group ID for isp subdevs */
v4l2_set_subdevdata(sd, res);
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
pads[RESZ_PAD_SINK].flags = MEDIA_PAD_FL_SINK
| MEDIA_PAD_FL_MUST_CONNECT;
pads[RESZ_PAD_SOURCE].flags = MEDIA_PAD_FL_SOURCE;
me->ops = &resizer_media_ops;
ret = media_entity_pads_init(me, RESZ_PADS_NUM, pads);
if (ret < 0)
return ret;
resizer_init_formats(sd, NULL);
res->video_in.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
res->video_in.ops = &resizer_video_ops;
res->video_in.isp = to_isp_device(res);
res->video_in.capture_mem = PAGE_ALIGN(4096 * 4096) * 2 * 3;
res->video_in.bpl_alignment = 32;
res->video_out.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
res->video_out.ops = &resizer_video_ops;
res->video_out.isp = to_isp_device(res);
res->video_out.capture_mem = PAGE_ALIGN(4096 * 4096) * 2 * 3;
res->video_out.bpl_alignment = 32;
ret = omap3isp_video_init(&res->video_in, "resizer");
if (ret < 0)
goto error_video_in;
ret = omap3isp_video_init(&res->video_out, "resizer");
if (ret < 0)
goto error_video_out;
res->video_out.video.entity.flags |= MEDIA_ENT_FL_DEFAULT;
return 0;
error_video_out:
omap3isp_video_cleanup(&res->video_in);
error_video_in:
media_entity_cleanup(&res->subdev.entity);
return ret;
}
/*
* isp_resizer_init - Resizer initialization.
* @isp : Pointer to ISP device
* return -ENOMEM or zero on success
*/
int omap3isp_resizer_init(struct isp_device *isp)
{
struct isp_res_device *res = &isp->isp_res;
init_waitqueue_head(&res->wait);
atomic_set(&res->stopping, 0);
spin_lock_init(&res->lock);
return resizer_init_entities(res);
}
void omap3isp_resizer_cleanup(struct isp_device *isp)
{
struct isp_res_device *res = &isp->isp_res;
omap3isp_video_cleanup(&res->video_in);
omap3isp_video_cleanup(&res->video_out);
media_entity_cleanup(&res->subdev.entity);
}