mirror of
https://github.com/torvalds/linux.git
synced 2024-11-28 07:01:32 +00:00
39adff5f69
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits) time, s390: Get rid of compile warning dw_apb_timer: constify clocksource name time: Cleanup old CONFIG_GENERIC_TIME references that snuck in time: Change jiffies_to_clock_t() argument type to unsigned long alarmtimers: Fix error handling clocksource: Make watchdog reset lockless posix-cpu-timers: Cure SMP accounting oddities s390: Use direct ktime path for s390 clockevent device clockevents: Add direct ktime programming function clockevents: Make minimum delay adjustments configurable nohz: Remove "Switched to NOHz mode" debugging messages proc: Consider NO_HZ when printing idle and iowait times nohz: Make idle/iowait counter update conditional nohz: Fix update_ts_time_stat idle accounting cputime: Clean up cputime_to_usecs and usecs_to_cputime macros alarmtimers: Rework RTC device selection using class interface alarmtimers: Add try_to_cancel functionality alarmtimers: Add more refined alarm state tracking alarmtimers: Remove period from alarm structure alarmtimers: Remove interval cap limit hack ...
885 lines
22 KiB
C
885 lines
22 KiB
C
/*
|
|
* linux/kernel/time/tick-sched.c
|
|
*
|
|
* Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
|
|
* Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
|
|
*
|
|
* No idle tick implementation for low and high resolution timers
|
|
*
|
|
* Started by: Thomas Gleixner and Ingo Molnar
|
|
*
|
|
* Distribute under GPLv2.
|
|
*/
|
|
#include <linux/cpu.h>
|
|
#include <linux/err.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/module.h>
|
|
|
|
#include <asm/irq_regs.h>
|
|
|
|
#include "tick-internal.h"
|
|
|
|
/*
|
|
* Per cpu nohz control structure
|
|
*/
|
|
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
|
|
|
|
/*
|
|
* The time, when the last jiffy update happened. Protected by xtime_lock.
|
|
*/
|
|
static ktime_t last_jiffies_update;
|
|
|
|
struct tick_sched *tick_get_tick_sched(int cpu)
|
|
{
|
|
return &per_cpu(tick_cpu_sched, cpu);
|
|
}
|
|
|
|
/*
|
|
* Must be called with interrupts disabled !
|
|
*/
|
|
static void tick_do_update_jiffies64(ktime_t now)
|
|
{
|
|
unsigned long ticks = 0;
|
|
ktime_t delta;
|
|
|
|
/*
|
|
* Do a quick check without holding xtime_lock:
|
|
*/
|
|
delta = ktime_sub(now, last_jiffies_update);
|
|
if (delta.tv64 < tick_period.tv64)
|
|
return;
|
|
|
|
/* Reevalute with xtime_lock held */
|
|
write_seqlock(&xtime_lock);
|
|
|
|
delta = ktime_sub(now, last_jiffies_update);
|
|
if (delta.tv64 >= tick_period.tv64) {
|
|
|
|
delta = ktime_sub(delta, tick_period);
|
|
last_jiffies_update = ktime_add(last_jiffies_update,
|
|
tick_period);
|
|
|
|
/* Slow path for long timeouts */
|
|
if (unlikely(delta.tv64 >= tick_period.tv64)) {
|
|
s64 incr = ktime_to_ns(tick_period);
|
|
|
|
ticks = ktime_divns(delta, incr);
|
|
|
|
last_jiffies_update = ktime_add_ns(last_jiffies_update,
|
|
incr * ticks);
|
|
}
|
|
do_timer(++ticks);
|
|
|
|
/* Keep the tick_next_period variable up to date */
|
|
tick_next_period = ktime_add(last_jiffies_update, tick_period);
|
|
}
|
|
write_sequnlock(&xtime_lock);
|
|
}
|
|
|
|
/*
|
|
* Initialize and return retrieve the jiffies update.
|
|
*/
|
|
static ktime_t tick_init_jiffy_update(void)
|
|
{
|
|
ktime_t period;
|
|
|
|
write_seqlock(&xtime_lock);
|
|
/* Did we start the jiffies update yet ? */
|
|
if (last_jiffies_update.tv64 == 0)
|
|
last_jiffies_update = tick_next_period;
|
|
period = last_jiffies_update;
|
|
write_sequnlock(&xtime_lock);
|
|
return period;
|
|
}
|
|
|
|
/*
|
|
* NOHZ - aka dynamic tick functionality
|
|
*/
|
|
#ifdef CONFIG_NO_HZ
|
|
/*
|
|
* NO HZ enabled ?
|
|
*/
|
|
static int tick_nohz_enabled __read_mostly = 1;
|
|
|
|
/*
|
|
* Enable / Disable tickless mode
|
|
*/
|
|
static int __init setup_tick_nohz(char *str)
|
|
{
|
|
if (!strcmp(str, "off"))
|
|
tick_nohz_enabled = 0;
|
|
else if (!strcmp(str, "on"))
|
|
tick_nohz_enabled = 1;
|
|
else
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
__setup("nohz=", setup_tick_nohz);
|
|
|
|
/**
|
|
* tick_nohz_update_jiffies - update jiffies when idle was interrupted
|
|
*
|
|
* Called from interrupt entry when the CPU was idle
|
|
*
|
|
* In case the sched_tick was stopped on this CPU, we have to check if jiffies
|
|
* must be updated. Otherwise an interrupt handler could use a stale jiffy
|
|
* value. We do this unconditionally on any cpu, as we don't know whether the
|
|
* cpu, which has the update task assigned is in a long sleep.
|
|
*/
|
|
static void tick_nohz_update_jiffies(ktime_t now)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
unsigned long flags;
|
|
|
|
ts->idle_waketime = now;
|
|
|
|
local_irq_save(flags);
|
|
tick_do_update_jiffies64(now);
|
|
local_irq_restore(flags);
|
|
|
|
touch_softlockup_watchdog();
|
|
}
|
|
|
|
/*
|
|
* Updates the per cpu time idle statistics counters
|
|
*/
|
|
static void
|
|
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
|
|
{
|
|
ktime_t delta;
|
|
|
|
if (ts->idle_active) {
|
|
delta = ktime_sub(now, ts->idle_entrytime);
|
|
if (nr_iowait_cpu(cpu) > 0)
|
|
ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
|
|
else
|
|
ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
|
|
ts->idle_entrytime = now;
|
|
}
|
|
|
|
if (last_update_time)
|
|
*last_update_time = ktime_to_us(now);
|
|
|
|
}
|
|
|
|
static void tick_nohz_stop_idle(int cpu, ktime_t now)
|
|
{
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
|
|
update_ts_time_stats(cpu, ts, now, NULL);
|
|
ts->idle_active = 0;
|
|
|
|
sched_clock_idle_wakeup_event(0);
|
|
}
|
|
|
|
static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
|
|
{
|
|
ktime_t now;
|
|
|
|
now = ktime_get();
|
|
|
|
update_ts_time_stats(cpu, ts, now, NULL);
|
|
|
|
ts->idle_entrytime = now;
|
|
ts->idle_active = 1;
|
|
sched_clock_idle_sleep_event();
|
|
return now;
|
|
}
|
|
|
|
/**
|
|
* get_cpu_idle_time_us - get the total idle time of a cpu
|
|
* @cpu: CPU number to query
|
|
* @last_update_time: variable to store update time in. Do not update
|
|
* counters if NULL.
|
|
*
|
|
* Return the cummulative idle time (since boot) for a given
|
|
* CPU, in microseconds.
|
|
*
|
|
* This time is measured via accounting rather than sampling,
|
|
* and is as accurate as ktime_get() is.
|
|
*
|
|
* This function returns -1 if NOHZ is not enabled.
|
|
*/
|
|
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
|
|
{
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
ktime_t now, idle;
|
|
|
|
if (!tick_nohz_enabled)
|
|
return -1;
|
|
|
|
now = ktime_get();
|
|
if (last_update_time) {
|
|
update_ts_time_stats(cpu, ts, now, last_update_time);
|
|
idle = ts->idle_sleeptime;
|
|
} else {
|
|
if (ts->idle_active && !nr_iowait_cpu(cpu)) {
|
|
ktime_t delta = ktime_sub(now, ts->idle_entrytime);
|
|
|
|
idle = ktime_add(ts->idle_sleeptime, delta);
|
|
} else {
|
|
idle = ts->idle_sleeptime;
|
|
}
|
|
}
|
|
|
|
return ktime_to_us(idle);
|
|
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
|
|
|
|
/**
|
|
* get_cpu_iowait_time_us - get the total iowait time of a cpu
|
|
* @cpu: CPU number to query
|
|
* @last_update_time: variable to store update time in. Do not update
|
|
* counters if NULL.
|
|
*
|
|
* Return the cummulative iowait time (since boot) for a given
|
|
* CPU, in microseconds.
|
|
*
|
|
* This time is measured via accounting rather than sampling,
|
|
* and is as accurate as ktime_get() is.
|
|
*
|
|
* This function returns -1 if NOHZ is not enabled.
|
|
*/
|
|
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
|
|
{
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
ktime_t now, iowait;
|
|
|
|
if (!tick_nohz_enabled)
|
|
return -1;
|
|
|
|
now = ktime_get();
|
|
if (last_update_time) {
|
|
update_ts_time_stats(cpu, ts, now, last_update_time);
|
|
iowait = ts->iowait_sleeptime;
|
|
} else {
|
|
if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
|
|
ktime_t delta = ktime_sub(now, ts->idle_entrytime);
|
|
|
|
iowait = ktime_add(ts->iowait_sleeptime, delta);
|
|
} else {
|
|
iowait = ts->iowait_sleeptime;
|
|
}
|
|
}
|
|
|
|
return ktime_to_us(iowait);
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
|
|
|
|
/**
|
|
* tick_nohz_stop_sched_tick - stop the idle tick from the idle task
|
|
*
|
|
* When the next event is more than a tick into the future, stop the idle tick
|
|
* Called either from the idle loop or from irq_exit() when an idle period was
|
|
* just interrupted by an interrupt which did not cause a reschedule.
|
|
*/
|
|
void tick_nohz_stop_sched_tick(int inidle)
|
|
{
|
|
unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
|
|
struct tick_sched *ts;
|
|
ktime_t last_update, expires, now;
|
|
struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
|
|
u64 time_delta;
|
|
int cpu;
|
|
|
|
local_irq_save(flags);
|
|
|
|
cpu = smp_processor_id();
|
|
ts = &per_cpu(tick_cpu_sched, cpu);
|
|
|
|
/*
|
|
* Call to tick_nohz_start_idle stops the last_update_time from being
|
|
* updated. Thus, it must not be called in the event we are called from
|
|
* irq_exit() with the prior state different than idle.
|
|
*/
|
|
if (!inidle && !ts->inidle)
|
|
goto end;
|
|
|
|
/*
|
|
* Set ts->inidle unconditionally. Even if the system did not
|
|
* switch to NOHZ mode the cpu frequency governers rely on the
|
|
* update of the idle time accounting in tick_nohz_start_idle().
|
|
*/
|
|
ts->inidle = 1;
|
|
|
|
now = tick_nohz_start_idle(cpu, ts);
|
|
|
|
/*
|
|
* If this cpu is offline and it is the one which updates
|
|
* jiffies, then give up the assignment and let it be taken by
|
|
* the cpu which runs the tick timer next. If we don't drop
|
|
* this here the jiffies might be stale and do_timer() never
|
|
* invoked.
|
|
*/
|
|
if (unlikely(!cpu_online(cpu))) {
|
|
if (cpu == tick_do_timer_cpu)
|
|
tick_do_timer_cpu = TICK_DO_TIMER_NONE;
|
|
}
|
|
|
|
if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
|
|
goto end;
|
|
|
|
if (need_resched())
|
|
goto end;
|
|
|
|
if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
|
|
static int ratelimit;
|
|
|
|
if (ratelimit < 10) {
|
|
printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
|
|
(unsigned int) local_softirq_pending());
|
|
ratelimit++;
|
|
}
|
|
goto end;
|
|
}
|
|
|
|
ts->idle_calls++;
|
|
/* Read jiffies and the time when jiffies were updated last */
|
|
do {
|
|
seq = read_seqbegin(&xtime_lock);
|
|
last_update = last_jiffies_update;
|
|
last_jiffies = jiffies;
|
|
time_delta = timekeeping_max_deferment();
|
|
} while (read_seqretry(&xtime_lock, seq));
|
|
|
|
if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
|
|
arch_needs_cpu(cpu)) {
|
|
next_jiffies = last_jiffies + 1;
|
|
delta_jiffies = 1;
|
|
} else {
|
|
/* Get the next timer wheel timer */
|
|
next_jiffies = get_next_timer_interrupt(last_jiffies);
|
|
delta_jiffies = next_jiffies - last_jiffies;
|
|
}
|
|
/*
|
|
* Do not stop the tick, if we are only one off
|
|
* or if the cpu is required for rcu
|
|
*/
|
|
if (!ts->tick_stopped && delta_jiffies == 1)
|
|
goto out;
|
|
|
|
/* Schedule the tick, if we are at least one jiffie off */
|
|
if ((long)delta_jiffies >= 1) {
|
|
|
|
/*
|
|
* If this cpu is the one which updates jiffies, then
|
|
* give up the assignment and let it be taken by the
|
|
* cpu which runs the tick timer next, which might be
|
|
* this cpu as well. If we don't drop this here the
|
|
* jiffies might be stale and do_timer() never
|
|
* invoked. Keep track of the fact that it was the one
|
|
* which had the do_timer() duty last. If this cpu is
|
|
* the one which had the do_timer() duty last, we
|
|
* limit the sleep time to the timekeeping
|
|
* max_deferement value which we retrieved
|
|
* above. Otherwise we can sleep as long as we want.
|
|
*/
|
|
if (cpu == tick_do_timer_cpu) {
|
|
tick_do_timer_cpu = TICK_DO_TIMER_NONE;
|
|
ts->do_timer_last = 1;
|
|
} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
|
|
time_delta = KTIME_MAX;
|
|
ts->do_timer_last = 0;
|
|
} else if (!ts->do_timer_last) {
|
|
time_delta = KTIME_MAX;
|
|
}
|
|
|
|
/*
|
|
* calculate the expiry time for the next timer wheel
|
|
* timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
|
|
* that there is no timer pending or at least extremely
|
|
* far into the future (12 days for HZ=1000). In this
|
|
* case we set the expiry to the end of time.
|
|
*/
|
|
if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
|
|
/*
|
|
* Calculate the time delta for the next timer event.
|
|
* If the time delta exceeds the maximum time delta
|
|
* permitted by the current clocksource then adjust
|
|
* the time delta accordingly to ensure the
|
|
* clocksource does not wrap.
|
|
*/
|
|
time_delta = min_t(u64, time_delta,
|
|
tick_period.tv64 * delta_jiffies);
|
|
}
|
|
|
|
if (time_delta < KTIME_MAX)
|
|
expires = ktime_add_ns(last_update, time_delta);
|
|
else
|
|
expires.tv64 = KTIME_MAX;
|
|
|
|
/* Skip reprogram of event if its not changed */
|
|
if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
|
|
goto out;
|
|
|
|
/*
|
|
* nohz_stop_sched_tick can be called several times before
|
|
* the nohz_restart_sched_tick is called. This happens when
|
|
* interrupts arrive which do not cause a reschedule. In the
|
|
* first call we save the current tick time, so we can restart
|
|
* the scheduler tick in nohz_restart_sched_tick.
|
|
*/
|
|
if (!ts->tick_stopped) {
|
|
select_nohz_load_balancer(1);
|
|
|
|
ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
|
|
ts->tick_stopped = 1;
|
|
ts->idle_jiffies = last_jiffies;
|
|
rcu_enter_nohz();
|
|
}
|
|
|
|
ts->idle_sleeps++;
|
|
|
|
/* Mark expires */
|
|
ts->idle_expires = expires;
|
|
|
|
/*
|
|
* If the expiration time == KTIME_MAX, then
|
|
* in this case we simply stop the tick timer.
|
|
*/
|
|
if (unlikely(expires.tv64 == KTIME_MAX)) {
|
|
if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
|
|
hrtimer_cancel(&ts->sched_timer);
|
|
goto out;
|
|
}
|
|
|
|
if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
|
|
hrtimer_start(&ts->sched_timer, expires,
|
|
HRTIMER_MODE_ABS_PINNED);
|
|
/* Check, if the timer was already in the past */
|
|
if (hrtimer_active(&ts->sched_timer))
|
|
goto out;
|
|
} else if (!tick_program_event(expires, 0))
|
|
goto out;
|
|
/*
|
|
* We are past the event already. So we crossed a
|
|
* jiffie boundary. Update jiffies and raise the
|
|
* softirq.
|
|
*/
|
|
tick_do_update_jiffies64(ktime_get());
|
|
}
|
|
raise_softirq_irqoff(TIMER_SOFTIRQ);
|
|
out:
|
|
ts->next_jiffies = next_jiffies;
|
|
ts->last_jiffies = last_jiffies;
|
|
ts->sleep_length = ktime_sub(dev->next_event, now);
|
|
end:
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_get_sleep_length - return the length of the current sleep
|
|
*
|
|
* Called from power state control code with interrupts disabled
|
|
*/
|
|
ktime_t tick_nohz_get_sleep_length(void)
|
|
{
|
|
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
|
|
|
|
return ts->sleep_length;
|
|
}
|
|
|
|
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
|
|
{
|
|
hrtimer_cancel(&ts->sched_timer);
|
|
hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
|
|
|
|
while (1) {
|
|
/* Forward the time to expire in the future */
|
|
hrtimer_forward(&ts->sched_timer, now, tick_period);
|
|
|
|
if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
|
|
hrtimer_start_expires(&ts->sched_timer,
|
|
HRTIMER_MODE_ABS_PINNED);
|
|
/* Check, if the timer was already in the past */
|
|
if (hrtimer_active(&ts->sched_timer))
|
|
break;
|
|
} else {
|
|
if (!tick_program_event(
|
|
hrtimer_get_expires(&ts->sched_timer), 0))
|
|
break;
|
|
}
|
|
/* Update jiffies and reread time */
|
|
tick_do_update_jiffies64(now);
|
|
now = ktime_get();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_restart_sched_tick - restart the idle tick from the idle task
|
|
*
|
|
* Restart the idle tick when the CPU is woken up from idle
|
|
*/
|
|
void tick_nohz_restart_sched_tick(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
|
|
unsigned long ticks;
|
|
#endif
|
|
ktime_t now;
|
|
|
|
local_irq_disable();
|
|
if (ts->idle_active || (ts->inidle && ts->tick_stopped))
|
|
now = ktime_get();
|
|
|
|
if (ts->idle_active)
|
|
tick_nohz_stop_idle(cpu, now);
|
|
|
|
if (!ts->inidle || !ts->tick_stopped) {
|
|
ts->inidle = 0;
|
|
local_irq_enable();
|
|
return;
|
|
}
|
|
|
|
ts->inidle = 0;
|
|
|
|
rcu_exit_nohz();
|
|
|
|
/* Update jiffies first */
|
|
select_nohz_load_balancer(0);
|
|
tick_do_update_jiffies64(now);
|
|
|
|
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
|
|
/*
|
|
* We stopped the tick in idle. Update process times would miss the
|
|
* time we slept as update_process_times does only a 1 tick
|
|
* accounting. Enforce that this is accounted to idle !
|
|
*/
|
|
ticks = jiffies - ts->idle_jiffies;
|
|
/*
|
|
* We might be one off. Do not randomly account a huge number of ticks!
|
|
*/
|
|
if (ticks && ticks < LONG_MAX)
|
|
account_idle_ticks(ticks);
|
|
#endif
|
|
|
|
touch_softlockup_watchdog();
|
|
/*
|
|
* Cancel the scheduled timer and restore the tick
|
|
*/
|
|
ts->tick_stopped = 0;
|
|
ts->idle_exittime = now;
|
|
|
|
tick_nohz_restart(ts, now);
|
|
|
|
local_irq_enable();
|
|
}
|
|
|
|
static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
|
|
{
|
|
hrtimer_forward(&ts->sched_timer, now, tick_period);
|
|
return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
|
|
}
|
|
|
|
/*
|
|
* The nohz low res interrupt handler
|
|
*/
|
|
static void tick_nohz_handler(struct clock_event_device *dev)
|
|
{
|
|
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
|
|
struct pt_regs *regs = get_irq_regs();
|
|
int cpu = smp_processor_id();
|
|
ktime_t now = ktime_get();
|
|
|
|
dev->next_event.tv64 = KTIME_MAX;
|
|
|
|
/*
|
|
* Check if the do_timer duty was dropped. We don't care about
|
|
* concurrency: This happens only when the cpu in charge went
|
|
* into a long sleep. If two cpus happen to assign themself to
|
|
* this duty, then the jiffies update is still serialized by
|
|
* xtime_lock.
|
|
*/
|
|
if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
|
|
tick_do_timer_cpu = cpu;
|
|
|
|
/* Check, if the jiffies need an update */
|
|
if (tick_do_timer_cpu == cpu)
|
|
tick_do_update_jiffies64(now);
|
|
|
|
/*
|
|
* When we are idle and the tick is stopped, we have to touch
|
|
* the watchdog as we might not schedule for a really long
|
|
* time. This happens on complete idle SMP systems while
|
|
* waiting on the login prompt. We also increment the "start
|
|
* of idle" jiffy stamp so the idle accounting adjustment we
|
|
* do when we go busy again does not account too much ticks.
|
|
*/
|
|
if (ts->tick_stopped) {
|
|
touch_softlockup_watchdog();
|
|
ts->idle_jiffies++;
|
|
}
|
|
|
|
update_process_times(user_mode(regs));
|
|
profile_tick(CPU_PROFILING);
|
|
|
|
while (tick_nohz_reprogram(ts, now)) {
|
|
now = ktime_get();
|
|
tick_do_update_jiffies64(now);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_switch_to_nohz - switch to nohz mode
|
|
*/
|
|
static void tick_nohz_switch_to_nohz(void)
|
|
{
|
|
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
|
|
ktime_t next;
|
|
|
|
if (!tick_nohz_enabled)
|
|
return;
|
|
|
|
local_irq_disable();
|
|
if (tick_switch_to_oneshot(tick_nohz_handler)) {
|
|
local_irq_enable();
|
|
return;
|
|
}
|
|
|
|
ts->nohz_mode = NOHZ_MODE_LOWRES;
|
|
|
|
/*
|
|
* Recycle the hrtimer in ts, so we can share the
|
|
* hrtimer_forward with the highres code.
|
|
*/
|
|
hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
|
|
/* Get the next period */
|
|
next = tick_init_jiffy_update();
|
|
|
|
for (;;) {
|
|
hrtimer_set_expires(&ts->sched_timer, next);
|
|
if (!tick_program_event(next, 0))
|
|
break;
|
|
next = ktime_add(next, tick_period);
|
|
}
|
|
local_irq_enable();
|
|
}
|
|
|
|
/*
|
|
* When NOHZ is enabled and the tick is stopped, we need to kick the
|
|
* tick timer from irq_enter() so that the jiffies update is kept
|
|
* alive during long running softirqs. That's ugly as hell, but
|
|
* correctness is key even if we need to fix the offending softirq in
|
|
* the first place.
|
|
*
|
|
* Note, this is different to tick_nohz_restart. We just kick the
|
|
* timer and do not touch the other magic bits which need to be done
|
|
* when idle is left.
|
|
*/
|
|
static void tick_nohz_kick_tick(int cpu, ktime_t now)
|
|
{
|
|
#if 0
|
|
/* Switch back to 2.6.27 behaviour */
|
|
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
ktime_t delta;
|
|
|
|
/*
|
|
* Do not touch the tick device, when the next expiry is either
|
|
* already reached or less/equal than the tick period.
|
|
*/
|
|
delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
|
|
if (delta.tv64 <= tick_period.tv64)
|
|
return;
|
|
|
|
tick_nohz_restart(ts, now);
|
|
#endif
|
|
}
|
|
|
|
static inline void tick_check_nohz(int cpu)
|
|
{
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
ktime_t now;
|
|
|
|
if (!ts->idle_active && !ts->tick_stopped)
|
|
return;
|
|
now = ktime_get();
|
|
if (ts->idle_active)
|
|
tick_nohz_stop_idle(cpu, now);
|
|
if (ts->tick_stopped) {
|
|
tick_nohz_update_jiffies(now);
|
|
tick_nohz_kick_tick(cpu, now);
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void tick_nohz_switch_to_nohz(void) { }
|
|
static inline void tick_check_nohz(int cpu) { }
|
|
|
|
#endif /* NO_HZ */
|
|
|
|
/*
|
|
* Called from irq_enter to notify about the possible interruption of idle()
|
|
*/
|
|
void tick_check_idle(int cpu)
|
|
{
|
|
tick_check_oneshot_broadcast(cpu);
|
|
tick_check_nohz(cpu);
|
|
}
|
|
|
|
/*
|
|
* High resolution timer specific code
|
|
*/
|
|
#ifdef CONFIG_HIGH_RES_TIMERS
|
|
/*
|
|
* We rearm the timer until we get disabled by the idle code.
|
|
* Called with interrupts disabled and timer->base->cpu_base->lock held.
|
|
*/
|
|
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
|
|
{
|
|
struct tick_sched *ts =
|
|
container_of(timer, struct tick_sched, sched_timer);
|
|
struct pt_regs *regs = get_irq_regs();
|
|
ktime_t now = ktime_get();
|
|
int cpu = smp_processor_id();
|
|
|
|
#ifdef CONFIG_NO_HZ
|
|
/*
|
|
* Check if the do_timer duty was dropped. We don't care about
|
|
* concurrency: This happens only when the cpu in charge went
|
|
* into a long sleep. If two cpus happen to assign themself to
|
|
* this duty, then the jiffies update is still serialized by
|
|
* xtime_lock.
|
|
*/
|
|
if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
|
|
tick_do_timer_cpu = cpu;
|
|
#endif
|
|
|
|
/* Check, if the jiffies need an update */
|
|
if (tick_do_timer_cpu == cpu)
|
|
tick_do_update_jiffies64(now);
|
|
|
|
/*
|
|
* Do not call, when we are not in irq context and have
|
|
* no valid regs pointer
|
|
*/
|
|
if (regs) {
|
|
/*
|
|
* When we are idle and the tick is stopped, we have to touch
|
|
* the watchdog as we might not schedule for a really long
|
|
* time. This happens on complete idle SMP systems while
|
|
* waiting on the login prompt. We also increment the "start of
|
|
* idle" jiffy stamp so the idle accounting adjustment we do
|
|
* when we go busy again does not account too much ticks.
|
|
*/
|
|
if (ts->tick_stopped) {
|
|
touch_softlockup_watchdog();
|
|
ts->idle_jiffies++;
|
|
}
|
|
update_process_times(user_mode(regs));
|
|
profile_tick(CPU_PROFILING);
|
|
}
|
|
|
|
hrtimer_forward(timer, now, tick_period);
|
|
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
/**
|
|
* tick_setup_sched_timer - setup the tick emulation timer
|
|
*/
|
|
void tick_setup_sched_timer(void)
|
|
{
|
|
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
|
|
ktime_t now = ktime_get();
|
|
|
|
/*
|
|
* Emulate tick processing via per-CPU hrtimers:
|
|
*/
|
|
hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
|
|
ts->sched_timer.function = tick_sched_timer;
|
|
|
|
/* Get the next period (per cpu) */
|
|
hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
|
|
|
|
for (;;) {
|
|
hrtimer_forward(&ts->sched_timer, now, tick_period);
|
|
hrtimer_start_expires(&ts->sched_timer,
|
|
HRTIMER_MODE_ABS_PINNED);
|
|
/* Check, if the timer was already in the past */
|
|
if (hrtimer_active(&ts->sched_timer))
|
|
break;
|
|
now = ktime_get();
|
|
}
|
|
|
|
#ifdef CONFIG_NO_HZ
|
|
if (tick_nohz_enabled)
|
|
ts->nohz_mode = NOHZ_MODE_HIGHRES;
|
|
#endif
|
|
}
|
|
#endif /* HIGH_RES_TIMERS */
|
|
|
|
#if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
|
|
void tick_cancel_sched_timer(int cpu)
|
|
{
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
|
|
# ifdef CONFIG_HIGH_RES_TIMERS
|
|
if (ts->sched_timer.base)
|
|
hrtimer_cancel(&ts->sched_timer);
|
|
# endif
|
|
|
|
ts->nohz_mode = NOHZ_MODE_INACTIVE;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Async notification about clocksource changes
|
|
*/
|
|
void tick_clock_notify(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
|
|
}
|
|
|
|
/*
|
|
* Async notification about clock event changes
|
|
*/
|
|
void tick_oneshot_notify(void)
|
|
{
|
|
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
|
|
|
|
set_bit(0, &ts->check_clocks);
|
|
}
|
|
|
|
/**
|
|
* Check, if a change happened, which makes oneshot possible.
|
|
*
|
|
* Called cyclic from the hrtimer softirq (driven by the timer
|
|
* softirq) allow_nohz signals, that we can switch into low-res nohz
|
|
* mode, because high resolution timers are disabled (either compile
|
|
* or runtime).
|
|
*/
|
|
int tick_check_oneshot_change(int allow_nohz)
|
|
{
|
|
struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
|
|
|
|
if (!test_and_clear_bit(0, &ts->check_clocks))
|
|
return 0;
|
|
|
|
if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
|
|
return 0;
|
|
|
|
if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
|
|
return 0;
|
|
|
|
if (!allow_nohz)
|
|
return 1;
|
|
|
|
tick_nohz_switch_to_nohz();
|
|
return 0;
|
|
}
|