mirror of
https://github.com/torvalds/linux.git
synced 2024-12-31 23:31:29 +00:00
0b26425ce1
There is a small bug in the handling of 16G hugepages recently added to the kernel. This doesn't cause a crash or other user-visible problems, but it does mean that more levels of pagetable are allocated than makes sense for 16G pages. The hugepage pagetables for the 16G pages are allocated much lower in the pagetable tree than they should be, with the intervening levels allocated with full pmd and pud pages which will only ever have one entry filled in. This corrects this problem, at the same time cleaning up the handling of which level 64k versus 16M hugepage pagetables are allocated at. The new way of formatting the tests should be more robust against changes in pagetable structure, or any newly added hugepage sizes. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@samba.org>
779 lines
20 KiB
C
779 lines
20 KiB
C
/*
|
|
* PPC64 (POWER4) Huge TLB Page Support for Kernel.
|
|
*
|
|
* Copyright (C) 2003 David Gibson, IBM Corporation.
|
|
*
|
|
* Based on the IA-32 version:
|
|
* Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/err.h>
|
|
#include <linux/sysctl.h>
|
|
#include <asm/mman.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/spu.h>
|
|
|
|
#define PAGE_SHIFT_64K 16
|
|
#define PAGE_SHIFT_16M 24
|
|
#define PAGE_SHIFT_16G 34
|
|
|
|
#define NUM_LOW_AREAS (0x100000000UL >> SID_SHIFT)
|
|
#define NUM_HIGH_AREAS (PGTABLE_RANGE >> HTLB_AREA_SHIFT)
|
|
#define MAX_NUMBER_GPAGES 1024
|
|
|
|
/* Tracks the 16G pages after the device tree is scanned and before the
|
|
* huge_boot_pages list is ready. */
|
|
static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
|
|
static unsigned nr_gpages;
|
|
|
|
/* Array of valid huge page sizes - non-zero value(hugepte_shift) is
|
|
* stored for the huge page sizes that are valid.
|
|
*/
|
|
unsigned int mmu_huge_psizes[MMU_PAGE_COUNT] = { }; /* initialize all to 0 */
|
|
|
|
#define hugepte_shift mmu_huge_psizes
|
|
#define PTRS_PER_HUGEPTE(psize) (1 << hugepte_shift[psize])
|
|
#define HUGEPTE_TABLE_SIZE(psize) (sizeof(pte_t) << hugepte_shift[psize])
|
|
|
|
#define HUGEPD_SHIFT(psize) (mmu_psize_to_shift(psize) \
|
|
+ hugepte_shift[psize])
|
|
#define HUGEPD_SIZE(psize) (1UL << HUGEPD_SHIFT(psize))
|
|
#define HUGEPD_MASK(psize) (~(HUGEPD_SIZE(psize)-1))
|
|
|
|
/* Subtract one from array size because we don't need a cache for 4K since
|
|
* is not a huge page size */
|
|
#define huge_pgtable_cache(psize) (pgtable_cache[HUGEPTE_CACHE_NUM \
|
|
+ psize-1])
|
|
#define HUGEPTE_CACHE_NAME(psize) (huge_pgtable_cache_name[psize])
|
|
|
|
static const char *huge_pgtable_cache_name[MMU_PAGE_COUNT] = {
|
|
"unused_4K", "hugepte_cache_64K", "unused_64K_AP",
|
|
"hugepte_cache_1M", "hugepte_cache_16M", "hugepte_cache_16G"
|
|
};
|
|
|
|
/* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad()
|
|
* will choke on pointers to hugepte tables, which is handy for
|
|
* catching screwups early. */
|
|
#define HUGEPD_OK 0x1
|
|
|
|
typedef struct { unsigned long pd; } hugepd_t;
|
|
|
|
#define hugepd_none(hpd) ((hpd).pd == 0)
|
|
|
|
static inline int shift_to_mmu_psize(unsigned int shift)
|
|
{
|
|
switch (shift) {
|
|
#ifndef CONFIG_PPC_64K_PAGES
|
|
case PAGE_SHIFT_64K:
|
|
return MMU_PAGE_64K;
|
|
#endif
|
|
case PAGE_SHIFT_16M:
|
|
return MMU_PAGE_16M;
|
|
case PAGE_SHIFT_16G:
|
|
return MMU_PAGE_16G;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
|
|
{
|
|
if (mmu_psize_defs[mmu_psize].shift)
|
|
return mmu_psize_defs[mmu_psize].shift;
|
|
BUG();
|
|
}
|
|
|
|
static inline pte_t *hugepd_page(hugepd_t hpd)
|
|
{
|
|
BUG_ON(!(hpd.pd & HUGEPD_OK));
|
|
return (pte_t *)(hpd.pd & ~HUGEPD_OK);
|
|
}
|
|
|
|
static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr,
|
|
struct hstate *hstate)
|
|
{
|
|
unsigned int shift = huge_page_shift(hstate);
|
|
int psize = shift_to_mmu_psize(shift);
|
|
unsigned long idx = ((addr >> shift) & (PTRS_PER_HUGEPTE(psize)-1));
|
|
pte_t *dir = hugepd_page(*hpdp);
|
|
|
|
return dir + idx;
|
|
}
|
|
|
|
static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
|
|
unsigned long address, unsigned int psize)
|
|
{
|
|
pte_t *new = kmem_cache_zalloc(huge_pgtable_cache(psize),
|
|
GFP_KERNEL|__GFP_REPEAT);
|
|
|
|
if (! new)
|
|
return -ENOMEM;
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
if (!hugepd_none(*hpdp))
|
|
kmem_cache_free(huge_pgtable_cache(psize), new);
|
|
else
|
|
hpdp->pd = (unsigned long)new | HUGEPD_OK;
|
|
spin_unlock(&mm->page_table_lock);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static pud_t *hpud_offset(pgd_t *pgd, unsigned long addr, struct hstate *hstate)
|
|
{
|
|
if (huge_page_shift(hstate) < PUD_SHIFT)
|
|
return pud_offset(pgd, addr);
|
|
else
|
|
return (pud_t *) pgd;
|
|
}
|
|
static pud_t *hpud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long addr,
|
|
struct hstate *hstate)
|
|
{
|
|
if (huge_page_shift(hstate) < PUD_SHIFT)
|
|
return pud_alloc(mm, pgd, addr);
|
|
else
|
|
return (pud_t *) pgd;
|
|
}
|
|
static pmd_t *hpmd_offset(pud_t *pud, unsigned long addr, struct hstate *hstate)
|
|
{
|
|
if (huge_page_shift(hstate) < PMD_SHIFT)
|
|
return pmd_offset(pud, addr);
|
|
else
|
|
return (pmd_t *) pud;
|
|
}
|
|
static pmd_t *hpmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long addr,
|
|
struct hstate *hstate)
|
|
{
|
|
if (huge_page_shift(hstate) < PMD_SHIFT)
|
|
return pmd_alloc(mm, pud, addr);
|
|
else
|
|
return (pmd_t *) pud;
|
|
}
|
|
|
|
/* Build list of addresses of gigantic pages. This function is used in early
|
|
* boot before the buddy or bootmem allocator is setup.
|
|
*/
|
|
void add_gpage(unsigned long addr, unsigned long page_size,
|
|
unsigned long number_of_pages)
|
|
{
|
|
if (!addr)
|
|
return;
|
|
while (number_of_pages > 0) {
|
|
gpage_freearray[nr_gpages] = addr;
|
|
nr_gpages++;
|
|
number_of_pages--;
|
|
addr += page_size;
|
|
}
|
|
}
|
|
|
|
/* Moves the gigantic page addresses from the temporary list to the
|
|
* huge_boot_pages list.
|
|
*/
|
|
int alloc_bootmem_huge_page(struct hstate *hstate)
|
|
{
|
|
struct huge_bootmem_page *m;
|
|
if (nr_gpages == 0)
|
|
return 0;
|
|
m = phys_to_virt(gpage_freearray[--nr_gpages]);
|
|
gpage_freearray[nr_gpages] = 0;
|
|
list_add(&m->list, &huge_boot_pages);
|
|
m->hstate = hstate;
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Modelled after find_linux_pte() */
|
|
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
pgd_t *pg;
|
|
pud_t *pu;
|
|
pmd_t *pm;
|
|
|
|
unsigned int psize;
|
|
unsigned int shift;
|
|
unsigned long sz;
|
|
struct hstate *hstate;
|
|
psize = get_slice_psize(mm, addr);
|
|
shift = mmu_psize_to_shift(psize);
|
|
sz = ((1UL) << shift);
|
|
hstate = size_to_hstate(sz);
|
|
|
|
addr &= hstate->mask;
|
|
|
|
pg = pgd_offset(mm, addr);
|
|
if (!pgd_none(*pg)) {
|
|
pu = hpud_offset(pg, addr, hstate);
|
|
if (!pud_none(*pu)) {
|
|
pm = hpmd_offset(pu, addr, hstate);
|
|
if (!pmd_none(*pm))
|
|
return hugepte_offset((hugepd_t *)pm, addr,
|
|
hstate);
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
pte_t *huge_pte_alloc(struct mm_struct *mm,
|
|
unsigned long addr, unsigned long sz)
|
|
{
|
|
pgd_t *pg;
|
|
pud_t *pu;
|
|
pmd_t *pm;
|
|
hugepd_t *hpdp = NULL;
|
|
struct hstate *hstate;
|
|
unsigned int psize;
|
|
hstate = size_to_hstate(sz);
|
|
|
|
psize = get_slice_psize(mm, addr);
|
|
BUG_ON(!mmu_huge_psizes[psize]);
|
|
|
|
addr &= hstate->mask;
|
|
|
|
pg = pgd_offset(mm, addr);
|
|
pu = hpud_alloc(mm, pg, addr, hstate);
|
|
|
|
if (pu) {
|
|
pm = hpmd_alloc(mm, pu, addr, hstate);
|
|
if (pm)
|
|
hpdp = (hugepd_t *)pm;
|
|
}
|
|
|
|
if (! hpdp)
|
|
return NULL;
|
|
|
|
if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, psize))
|
|
return NULL;
|
|
|
|
return hugepte_offset(hpdp, addr, hstate);
|
|
}
|
|
|
|
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp,
|
|
unsigned int psize)
|
|
{
|
|
pte_t *hugepte = hugepd_page(*hpdp);
|
|
|
|
hpdp->pd = 0;
|
|
tlb->need_flush = 1;
|
|
pgtable_free_tlb(tlb, pgtable_free_cache(hugepte,
|
|
HUGEPTE_CACHE_NUM+psize-1,
|
|
PGF_CACHENUM_MASK));
|
|
}
|
|
|
|
static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling,
|
|
unsigned int psize)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
unsigned long start;
|
|
|
|
start = addr;
|
|
pmd = pmd_offset(pud, addr);
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
if (pmd_none(*pmd))
|
|
continue;
|
|
free_hugepte_range(tlb, (hugepd_t *)pmd, psize);
|
|
} while (pmd++, addr = next, addr != end);
|
|
|
|
start &= PUD_MASK;
|
|
if (start < floor)
|
|
return;
|
|
if (ceiling) {
|
|
ceiling &= PUD_MASK;
|
|
if (!ceiling)
|
|
return;
|
|
}
|
|
if (end - 1 > ceiling - 1)
|
|
return;
|
|
|
|
pmd = pmd_offset(pud, start);
|
|
pud_clear(pud);
|
|
pmd_free_tlb(tlb, pmd);
|
|
}
|
|
|
|
static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
unsigned long start;
|
|
unsigned int shift;
|
|
unsigned int psize = get_slice_psize(tlb->mm, addr);
|
|
shift = mmu_psize_to_shift(psize);
|
|
|
|
start = addr;
|
|
pud = pud_offset(pgd, addr);
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
if (shift < PMD_SHIFT) {
|
|
if (pud_none_or_clear_bad(pud))
|
|
continue;
|
|
hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
|
|
ceiling, psize);
|
|
} else {
|
|
if (pud_none(*pud))
|
|
continue;
|
|
free_hugepte_range(tlb, (hugepd_t *)pud, psize);
|
|
}
|
|
} while (pud++, addr = next, addr != end);
|
|
|
|
start &= PGDIR_MASK;
|
|
if (start < floor)
|
|
return;
|
|
if (ceiling) {
|
|
ceiling &= PGDIR_MASK;
|
|
if (!ceiling)
|
|
return;
|
|
}
|
|
if (end - 1 > ceiling - 1)
|
|
return;
|
|
|
|
pud = pud_offset(pgd, start);
|
|
pgd_clear(pgd);
|
|
pud_free_tlb(tlb, pud);
|
|
}
|
|
|
|
/*
|
|
* This function frees user-level page tables of a process.
|
|
*
|
|
* Must be called with pagetable lock held.
|
|
*/
|
|
void hugetlb_free_pgd_range(struct mmu_gather *tlb,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pgd_t *pgd;
|
|
unsigned long next;
|
|
unsigned long start;
|
|
|
|
/*
|
|
* Comments below take from the normal free_pgd_range(). They
|
|
* apply here too. The tests against HUGEPD_MASK below are
|
|
* essential, because we *don't* test for this at the bottom
|
|
* level. Without them we'll attempt to free a hugepte table
|
|
* when we unmap just part of it, even if there are other
|
|
* active mappings using it.
|
|
*
|
|
* The next few lines have given us lots of grief...
|
|
*
|
|
* Why are we testing HUGEPD* at this top level? Because
|
|
* often there will be no work to do at all, and we'd prefer
|
|
* not to go all the way down to the bottom just to discover
|
|
* that.
|
|
*
|
|
* Why all these "- 1"s? Because 0 represents both the bottom
|
|
* of the address space and the top of it (using -1 for the
|
|
* top wouldn't help much: the masks would do the wrong thing).
|
|
* The rule is that addr 0 and floor 0 refer to the bottom of
|
|
* the address space, but end 0 and ceiling 0 refer to the top
|
|
* Comparisons need to use "end - 1" and "ceiling - 1" (though
|
|
* that end 0 case should be mythical).
|
|
*
|
|
* Wherever addr is brought up or ceiling brought down, we
|
|
* must be careful to reject "the opposite 0" before it
|
|
* confuses the subsequent tests. But what about where end is
|
|
* brought down by HUGEPD_SIZE below? no, end can't go down to
|
|
* 0 there.
|
|
*
|
|
* Whereas we round start (addr) and ceiling down, by different
|
|
* masks at different levels, in order to test whether a table
|
|
* now has no other vmas using it, so can be freed, we don't
|
|
* bother to round floor or end up - the tests don't need that.
|
|
*/
|
|
unsigned int psize = get_slice_psize(tlb->mm, addr);
|
|
|
|
addr &= HUGEPD_MASK(psize);
|
|
if (addr < floor) {
|
|
addr += HUGEPD_SIZE(psize);
|
|
if (!addr)
|
|
return;
|
|
}
|
|
if (ceiling) {
|
|
ceiling &= HUGEPD_MASK(psize);
|
|
if (!ceiling)
|
|
return;
|
|
}
|
|
if (end - 1 > ceiling - 1)
|
|
end -= HUGEPD_SIZE(psize);
|
|
if (addr > end - 1)
|
|
return;
|
|
|
|
start = addr;
|
|
pgd = pgd_offset(tlb->mm, addr);
|
|
do {
|
|
psize = get_slice_psize(tlb->mm, addr);
|
|
BUG_ON(!mmu_huge_psizes[psize]);
|
|
next = pgd_addr_end(addr, end);
|
|
if (mmu_psize_to_shift(psize) < PUD_SHIFT) {
|
|
if (pgd_none_or_clear_bad(pgd))
|
|
continue;
|
|
hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
|
|
} else {
|
|
if (pgd_none(*pgd))
|
|
continue;
|
|
free_hugepte_range(tlb, (hugepd_t *)pgd, psize);
|
|
}
|
|
} while (pgd++, addr = next, addr != end);
|
|
}
|
|
|
|
void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep, pte_t pte)
|
|
{
|
|
if (pte_present(*ptep)) {
|
|
/* We open-code pte_clear because we need to pass the right
|
|
* argument to hpte_need_flush (huge / !huge). Might not be
|
|
* necessary anymore if we make hpte_need_flush() get the
|
|
* page size from the slices
|
|
*/
|
|
unsigned int psize = get_slice_psize(mm, addr);
|
|
unsigned int shift = mmu_psize_to_shift(psize);
|
|
unsigned long sz = ((1UL) << shift);
|
|
struct hstate *hstate = size_to_hstate(sz);
|
|
pte_update(mm, addr & hstate->mask, ptep, ~0UL, 1);
|
|
}
|
|
*ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
|
|
}
|
|
|
|
pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
unsigned long old = pte_update(mm, addr, ptep, ~0UL, 1);
|
|
return __pte(old);
|
|
}
|
|
|
|
struct page *
|
|
follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
|
|
{
|
|
pte_t *ptep;
|
|
struct page *page;
|
|
unsigned int mmu_psize = get_slice_psize(mm, address);
|
|
|
|
/* Verify it is a huge page else bail. */
|
|
if (!mmu_huge_psizes[mmu_psize])
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
ptep = huge_pte_offset(mm, address);
|
|
page = pte_page(*ptep);
|
|
if (page) {
|
|
unsigned int shift = mmu_psize_to_shift(mmu_psize);
|
|
unsigned long sz = ((1UL) << shift);
|
|
page += (address % sz) / PAGE_SIZE;
|
|
}
|
|
|
|
return page;
|
|
}
|
|
|
|
int pmd_huge(pmd_t pmd)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int pud_huge(pud_t pud)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
struct page *
|
|
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
|
|
pmd_t *pmd, int write)
|
|
{
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
|
|
|
|
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff,
|
|
unsigned long flags)
|
|
{
|
|
struct hstate *hstate = hstate_file(file);
|
|
int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
|
|
return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
|
|
}
|
|
|
|
/*
|
|
* Called by asm hashtable.S for doing lazy icache flush
|
|
*/
|
|
static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags,
|
|
pte_t pte, int trap, unsigned long sz)
|
|
{
|
|
struct page *page;
|
|
int i;
|
|
|
|
if (!pfn_valid(pte_pfn(pte)))
|
|
return rflags;
|
|
|
|
page = pte_page(pte);
|
|
|
|
/* page is dirty */
|
|
if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
|
|
if (trap == 0x400) {
|
|
for (i = 0; i < (sz / PAGE_SIZE); i++)
|
|
__flush_dcache_icache(page_address(page+i));
|
|
set_bit(PG_arch_1, &page->flags);
|
|
} else {
|
|
rflags |= HPTE_R_N;
|
|
}
|
|
}
|
|
return rflags;
|
|
}
|
|
|
|
int hash_huge_page(struct mm_struct *mm, unsigned long access,
|
|
unsigned long ea, unsigned long vsid, int local,
|
|
unsigned long trap)
|
|
{
|
|
pte_t *ptep;
|
|
unsigned long old_pte, new_pte;
|
|
unsigned long va, rflags, pa, sz;
|
|
long slot;
|
|
int err = 1;
|
|
int ssize = user_segment_size(ea);
|
|
unsigned int mmu_psize;
|
|
int shift;
|
|
mmu_psize = get_slice_psize(mm, ea);
|
|
|
|
if (!mmu_huge_psizes[mmu_psize])
|
|
goto out;
|
|
ptep = huge_pte_offset(mm, ea);
|
|
|
|
/* Search the Linux page table for a match with va */
|
|
va = hpt_va(ea, vsid, ssize);
|
|
|
|
/*
|
|
* If no pte found or not present, send the problem up to
|
|
* do_page_fault
|
|
*/
|
|
if (unlikely(!ptep || pte_none(*ptep)))
|
|
goto out;
|
|
|
|
/*
|
|
* Check the user's access rights to the page. If access should be
|
|
* prevented then send the problem up to do_page_fault.
|
|
*/
|
|
if (unlikely(access & ~pte_val(*ptep)))
|
|
goto out;
|
|
/*
|
|
* At this point, we have a pte (old_pte) which can be used to build
|
|
* or update an HPTE. There are 2 cases:
|
|
*
|
|
* 1. There is a valid (present) pte with no associated HPTE (this is
|
|
* the most common case)
|
|
* 2. There is a valid (present) pte with an associated HPTE. The
|
|
* current values of the pp bits in the HPTE prevent access
|
|
* because we are doing software DIRTY bit management and the
|
|
* page is currently not DIRTY.
|
|
*/
|
|
|
|
|
|
do {
|
|
old_pte = pte_val(*ptep);
|
|
if (old_pte & _PAGE_BUSY)
|
|
goto out;
|
|
new_pte = old_pte | _PAGE_BUSY | _PAGE_ACCESSED;
|
|
} while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
|
|
old_pte, new_pte));
|
|
|
|
rflags = 0x2 | (!(new_pte & _PAGE_RW));
|
|
/* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
|
|
rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
|
|
shift = mmu_psize_to_shift(mmu_psize);
|
|
sz = ((1UL) << shift);
|
|
if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
|
|
/* No CPU has hugepages but lacks no execute, so we
|
|
* don't need to worry about that case */
|
|
rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte),
|
|
trap, sz);
|
|
|
|
/* Check if pte already has an hpte (case 2) */
|
|
if (unlikely(old_pte & _PAGE_HASHPTE)) {
|
|
/* There MIGHT be an HPTE for this pte */
|
|
unsigned long hash, slot;
|
|
|
|
hash = hpt_hash(va, shift, ssize);
|
|
if (old_pte & _PAGE_F_SECOND)
|
|
hash = ~hash;
|
|
slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
|
|
slot += (old_pte & _PAGE_F_GIX) >> 12;
|
|
|
|
if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_psize,
|
|
ssize, local) == -1)
|
|
old_pte &= ~_PAGE_HPTEFLAGS;
|
|
}
|
|
|
|
if (likely(!(old_pte & _PAGE_HASHPTE))) {
|
|
unsigned long hash = hpt_hash(va, shift, ssize);
|
|
unsigned long hpte_group;
|
|
|
|
pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
|
|
|
|
repeat:
|
|
hpte_group = ((hash & htab_hash_mask) *
|
|
HPTES_PER_GROUP) & ~0x7UL;
|
|
|
|
/* clear HPTE slot informations in new PTE */
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HPTE_SUB0;
|
|
#else
|
|
new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
|
|
#endif
|
|
/* Add in WIMG bits */
|
|
rflags |= (new_pte & (_PAGE_WRITETHRU | _PAGE_NO_CACHE |
|
|
_PAGE_COHERENT | _PAGE_GUARDED));
|
|
|
|
/* Insert into the hash table, primary slot */
|
|
slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
|
|
mmu_psize, ssize);
|
|
|
|
/* Primary is full, try the secondary */
|
|
if (unlikely(slot == -1)) {
|
|
hpte_group = ((~hash & htab_hash_mask) *
|
|
HPTES_PER_GROUP) & ~0x7UL;
|
|
slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
|
|
HPTE_V_SECONDARY,
|
|
mmu_psize, ssize);
|
|
if (slot == -1) {
|
|
if (mftb() & 0x1)
|
|
hpte_group = ((hash & htab_hash_mask) *
|
|
HPTES_PER_GROUP)&~0x7UL;
|
|
|
|
ppc_md.hpte_remove(hpte_group);
|
|
goto repeat;
|
|
}
|
|
}
|
|
|
|
if (unlikely(slot == -2))
|
|
panic("hash_huge_page: pte_insert failed\n");
|
|
|
|
new_pte |= (slot << 12) & (_PAGE_F_SECOND | _PAGE_F_GIX);
|
|
}
|
|
|
|
/*
|
|
* No need to use ldarx/stdcx here
|
|
*/
|
|
*ptep = __pte(new_pte & ~_PAGE_BUSY);
|
|
|
|
err = 0;
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
void set_huge_psize(int psize)
|
|
{
|
|
/* Check that it is a page size supported by the hardware and
|
|
* that it fits within pagetable limits. */
|
|
if (mmu_psize_defs[psize].shift &&
|
|
mmu_psize_defs[psize].shift < SID_SHIFT_1T &&
|
|
(mmu_psize_defs[psize].shift > MIN_HUGEPTE_SHIFT ||
|
|
mmu_psize_defs[psize].shift == PAGE_SHIFT_64K ||
|
|
mmu_psize_defs[psize].shift == PAGE_SHIFT_16G)) {
|
|
/* Return if huge page size has already been setup or is the
|
|
* same as the base page size. */
|
|
if (mmu_huge_psizes[psize] ||
|
|
mmu_psize_defs[psize].shift == PAGE_SHIFT)
|
|
return;
|
|
hugetlb_add_hstate(mmu_psize_defs[psize].shift - PAGE_SHIFT);
|
|
|
|
switch (mmu_psize_defs[psize].shift) {
|
|
case PAGE_SHIFT_64K:
|
|
/* We only allow 64k hpages with 4k base page,
|
|
* which was checked above, and always put them
|
|
* at the PMD */
|
|
hugepte_shift[psize] = PMD_SHIFT;
|
|
break;
|
|
case PAGE_SHIFT_16M:
|
|
/* 16M pages can be at two different levels
|
|
* of pagestables based on base page size */
|
|
if (PAGE_SHIFT == PAGE_SHIFT_64K)
|
|
hugepte_shift[psize] = PMD_SHIFT;
|
|
else /* 4k base page */
|
|
hugepte_shift[psize] = PUD_SHIFT;
|
|
break;
|
|
case PAGE_SHIFT_16G:
|
|
/* 16G pages are always at PGD level */
|
|
hugepte_shift[psize] = PGDIR_SHIFT;
|
|
break;
|
|
}
|
|
hugepte_shift[psize] -= mmu_psize_defs[psize].shift;
|
|
} else
|
|
hugepte_shift[psize] = 0;
|
|
}
|
|
|
|
static int __init hugepage_setup_sz(char *str)
|
|
{
|
|
unsigned long long size;
|
|
int mmu_psize;
|
|
int shift;
|
|
|
|
size = memparse(str, &str);
|
|
|
|
shift = __ffs(size);
|
|
mmu_psize = shift_to_mmu_psize(shift);
|
|
if (mmu_psize >= 0 && mmu_psize_defs[mmu_psize].shift)
|
|
set_huge_psize(mmu_psize);
|
|
else
|
|
printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
|
|
|
|
return 1;
|
|
}
|
|
__setup("hugepagesz=", hugepage_setup_sz);
|
|
|
|
static int __init hugetlbpage_init(void)
|
|
{
|
|
unsigned int psize;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_16M_PAGE))
|
|
return -ENODEV;
|
|
|
|
/* Add supported huge page sizes. Need to change HUGE_MAX_HSTATE
|
|
* and adjust PTE_NONCACHE_NUM if the number of supported huge page
|
|
* sizes changes.
|
|
*/
|
|
set_huge_psize(MMU_PAGE_16M);
|
|
set_huge_psize(MMU_PAGE_16G);
|
|
|
|
/* Temporarily disable support for 64K huge pages when 64K SPU local
|
|
* store support is enabled as the current implementation conflicts.
|
|
*/
|
|
#ifndef CONFIG_SPU_FS_64K_LS
|
|
set_huge_psize(MMU_PAGE_64K);
|
|
#endif
|
|
|
|
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
|
|
if (mmu_huge_psizes[psize]) {
|
|
huge_pgtable_cache(psize) = kmem_cache_create(
|
|
HUGEPTE_CACHE_NAME(psize),
|
|
HUGEPTE_TABLE_SIZE(psize),
|
|
HUGEPTE_TABLE_SIZE(psize),
|
|
0,
|
|
NULL);
|
|
if (!huge_pgtable_cache(psize))
|
|
panic("hugetlbpage_init(): could not create %s"\
|
|
"\n", HUGEPTE_CACHE_NAME(psize));
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
module_init(hugetlbpage_init);
|