mirror of
https://github.com/torvalds/linux.git
synced 2024-11-28 23:21:31 +00:00
617a814f14
this pull request are: "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds consistency to the APIs and behaviour of these two core allocation functions. This also simplifies/enables Rustification. "Some cleanups for shmem" from Baolin Wang. No functional changes - mode code reuse, better function naming, logic simplifications. "mm: some small page fault cleanups" from Josef Bacik. No functional changes - code cleanups only. "Various memory tiering fixes" from Zi Yan. A small fix and a little cleanup. "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and simplifications and .text shrinkage. "Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt. This is a feature, it adds new feilds to /proc/vmstat such as $ grep kstack /proc/vmstat kstack_1k 3 kstack_2k 188 kstack_4k 11391 kstack_8k 243 kstack_16k 0 which tells us that 11391 processes used 4k of stack while none at all used 16k. Useful for some system tuning things, but partivularly useful for "the dynamic kernel stack project". "kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory. "mm: memcg: page counters optimizations" from Roman Gushchin. "3 independent small optimizations of page counters". "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David Hildenbrand. Improves PTE/PMD splitlock detection, makes powerpc/8xx work correctly by design rather than by accident. "mm: remove arch_make_page_accessible()" from David Hildenbrand. Some folio conversions which make arch_make_page_accessible() unneeded. "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel. Cleans up and fixes our handling of the resetting of the cgroup/process peak-memory-use detector. "Make core VMA operations internal and testable" from Lorenzo Stoakes. Rationalizaion and encapsulation of the VMA manipulation APIs. With a view to better enable testing of the VMA functions, even from a userspace-only harness. "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix issues in the zswap global shrinker, resulting in improved performance. "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill in some missing info in /proc/zoneinfo. "mm: replace follow_page() by folio_walk" from David Hildenbrand. Code cleanups and rationalizations (conversion to folio_walk()) resulting in the removal of follow_page(). "improving dynamic zswap shrinker protection scheme" from Nhat Pham. Some tuning to improve zswap's dynamic shrinker. Significant reductions in swapin and improvements in performance are shown. "mm: Fix several issues with unaccepted memory" from Kirill Shutemov. Improvements to the new unaccepted memory feature, "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on DAX PUDs. This was missing, although nobody seems to have notied yet. "Introduce a store type enum for the Maple tree" from Sidhartha Kumar. Cleanups and modest performance improvements for the maple tree library code. "memcg: further decouple v1 code from v2" from Shakeel Butt. Move more cgroup v1 remnants away from the v2 memcg code. "memcg: initiate deprecation of v1 features" from Shakeel Butt. Adds various warnings telling users that memcg v1 features are deprecated. "mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li. Greatly improves the success rate of the mTHP swap allocation. "mm: introduce numa_memblks" from Mike Rapoport. Moves various disparate per-arch implementations of numa_memblk code into generic code. "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly improves the performance of munmap() of swap-filled ptes. "support large folio swap-out and swap-in for shmem" from Baolin Wang. With this series we no longer split shmem large folios into simgle-page folios when swapping out shmem. "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice performance improvements and code reductions for gigantic folios. "support shmem mTHP collapse" from Baolin Wang. Adds support for khugepaged's collapsing of shmem mTHP folios. "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect() performance regression due to the addition of mseal(). "Increase the number of bits available in page_type" from Matthew Wilcox. Increases the number of bits available in page_type! "Simplify the page flags a little" from Matthew Wilcox. Many legacy page flags are now folio flags, so the page-based flags and their accessors/mutators can be removed. "mm: store zero pages to be swapped out in a bitmap" from Usama Arif. An optimization which permits us to avoid writing/reading zero-filled zswap pages to backing store. "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race window which occurs when a MAP_FIXED operqtion is occurring during an unrelated vma tree walk. "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of the vma_merge() functionality, making ot cleaner, more testable and better tested. "misc fixups for DAMON {self,kunit} tests" from SeongJae Park. Minor fixups of DAMON selftests and kunit tests. "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang. Code cleanups and folio conversions. "Shmem mTHP controls and stats improvements" from Ryan Roberts. Cleanups for shmem controls and stats. "mm: count the number of anonymous THPs per size" from Barry Song. Expose additional anon THP stats to userspace for improved tuning. "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio conversions and removal of now-unused page-based APIs. "replace per-quota region priorities histogram buffer with per-context one" from SeongJae Park. DAMON histogram rationalization. "Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae Park. DAMON documentation updates. "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve related doc and warn" from Jason Wang: fixes usage of page allocator __GFP_NOFAIL and GFP_ATOMIC flags. "mm: split underused THPs" from Yu Zhao. Improve THP=always policy - this was overprovisioning THPs in sparsely accessed memory areas. "zram: introduce custom comp backends API" frm Sergey Senozhatsky. Add support for zram run-time compression algorithm tuning. "mm: Care about shadow stack guard gap when getting an unmapped area" from Mark Brown. Fix up the various arch_get_unmapped_area() implementations to better respect guard areas. "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability of mem_cgroup_iter() and various code cleanups. "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge pfnmap support. "resource: Fix region_intersects() vs add_memory_driver_managed()" from Huang Ying. Fix a bug in region_intersects() for systems with CXL memory. "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches a couple more code paths to correctly recover from the encountering of poisoned memry. "mm: enable large folios swap-in support" from Barry Song. Support the swapin of mTHP memory into appropriately-sized folios, rather than into single-page folios. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZu1BBwAKCRDdBJ7gKXxA jlWNAQDYlqQLun7bgsAN4sSvi27VUuWv1q70jlMXTfmjJAvQqwD/fBFVR6IOOiw7 AkDbKWP2k0hWPiNJBGwoqxdHHx09Xgo= =s0T+ -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Along with the usual shower of singleton patches, notable patch series in this pull request are: - "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds consistency to the APIs and behaviour of these two core allocation functions. This also simplifies/enables Rustification. - "Some cleanups for shmem" from Baolin Wang. No functional changes - mode code reuse, better function naming, logic simplifications. - "mm: some small page fault cleanups" from Josef Bacik. No functional changes - code cleanups only. - "Various memory tiering fixes" from Zi Yan. A small fix and a little cleanup. - "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and simplifications and .text shrinkage. - "Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt. This is a feature, it adds new feilds to /proc/vmstat such as $ grep kstack /proc/vmstat kstack_1k 3 kstack_2k 188 kstack_4k 11391 kstack_8k 243 kstack_16k 0 which tells us that 11391 processes used 4k of stack while none at all used 16k. Useful for some system tuning things, but partivularly useful for "the dynamic kernel stack project". - "kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory. - "mm: memcg: page counters optimizations" from Roman Gushchin. "3 independent small optimizations of page counters". - "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David Hildenbrand. Improves PTE/PMD splitlock detection, makes powerpc/8xx work correctly by design rather than by accident. - "mm: remove arch_make_page_accessible()" from David Hildenbrand. Some folio conversions which make arch_make_page_accessible() unneeded. - "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel. Cleans up and fixes our handling of the resetting of the cgroup/process peak-memory-use detector. - "Make core VMA operations internal and testable" from Lorenzo Stoakes. Rationalizaion and encapsulation of the VMA manipulation APIs. With a view to better enable testing of the VMA functions, even from a userspace-only harness. - "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix issues in the zswap global shrinker, resulting in improved performance. - "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill in some missing info in /proc/zoneinfo. - "mm: replace follow_page() by folio_walk" from David Hildenbrand. Code cleanups and rationalizations (conversion to folio_walk()) resulting in the removal of follow_page(). - "improving dynamic zswap shrinker protection scheme" from Nhat Pham. Some tuning to improve zswap's dynamic shrinker. Significant reductions in swapin and improvements in performance are shown. - "mm: Fix several issues with unaccepted memory" from Kirill Shutemov. Improvements to the new unaccepted memory feature, - "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on DAX PUDs. This was missing, although nobody seems to have notied yet. - "Introduce a store type enum for the Maple tree" from Sidhartha Kumar. Cleanups and modest performance improvements for the maple tree library code. - "memcg: further decouple v1 code from v2" from Shakeel Butt. Move more cgroup v1 remnants away from the v2 memcg code. - "memcg: initiate deprecation of v1 features" from Shakeel Butt. Adds various warnings telling users that memcg v1 features are deprecated. - "mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li. Greatly improves the success rate of the mTHP swap allocation. - "mm: introduce numa_memblks" from Mike Rapoport. Moves various disparate per-arch implementations of numa_memblk code into generic code. - "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly improves the performance of munmap() of swap-filled ptes. - "support large folio swap-out and swap-in for shmem" from Baolin Wang. With this series we no longer split shmem large folios into simgle-page folios when swapping out shmem. - "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice performance improvements and code reductions for gigantic folios. - "support shmem mTHP collapse" from Baolin Wang. Adds support for khugepaged's collapsing of shmem mTHP folios. - "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect() performance regression due to the addition of mseal(). - "Increase the number of bits available in page_type" from Matthew Wilcox. Increases the number of bits available in page_type! - "Simplify the page flags a little" from Matthew Wilcox. Many legacy page flags are now folio flags, so the page-based flags and their accessors/mutators can be removed. - "mm: store zero pages to be swapped out in a bitmap" from Usama Arif. An optimization which permits us to avoid writing/reading zero-filled zswap pages to backing store. - "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race window which occurs when a MAP_FIXED operqtion is occurring during an unrelated vma tree walk. - "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of the vma_merge() functionality, making ot cleaner, more testable and better tested. - "misc fixups for DAMON {self,kunit} tests" from SeongJae Park. Minor fixups of DAMON selftests and kunit tests. - "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang. Code cleanups and folio conversions. - "Shmem mTHP controls and stats improvements" from Ryan Roberts. Cleanups for shmem controls and stats. - "mm: count the number of anonymous THPs per size" from Barry Song. Expose additional anon THP stats to userspace for improved tuning. - "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio conversions and removal of now-unused page-based APIs. - "replace per-quota region priorities histogram buffer with per-context one" from SeongJae Park. DAMON histogram rationalization. - "Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae Park. DAMON documentation updates. - "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve related doc and warn" from Jason Wang: fixes usage of page allocator __GFP_NOFAIL and GFP_ATOMIC flags. - "mm: split underused THPs" from Yu Zhao. Improve THP=always policy. This was overprovisioning THPs in sparsely accessed memory areas. - "zram: introduce custom comp backends API" frm Sergey Senozhatsky. Add support for zram run-time compression algorithm tuning. - "mm: Care about shadow stack guard gap when getting an unmapped area" from Mark Brown. Fix up the various arch_get_unmapped_area() implementations to better respect guard areas. - "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability of mem_cgroup_iter() and various code cleanups. - "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge pfnmap support. - "resource: Fix region_intersects() vs add_memory_driver_managed()" from Huang Ying. Fix a bug in region_intersects() for systems with CXL memory. - "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches a couple more code paths to correctly recover from the encountering of poisoned memry. - "mm: enable large folios swap-in support" from Barry Song. Support the swapin of mTHP memory into appropriately-sized folios, rather than into single-page folios" * tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (416 commits) zram: free secondary algorithms names uprobes: turn xol_area->pages[2] into xol_area->page uprobes: introduce the global struct vm_special_mapping xol_mapping Revert "uprobes: use vm_special_mapping close() functionality" mm: support large folios swap-in for sync io devices mm: add nr argument in mem_cgroup_swapin_uncharge_swap() helper to support large folios mm: fix swap_read_folio_zeromap() for large folios with partial zeromap mm/debug_vm_pgtable: Use pxdp_get() for accessing page table entries set_memory: add __must_check to generic stubs mm/vma: return the exact errno in vms_gather_munmap_vmas() memcg: cleanup with !CONFIG_MEMCG_V1 mm/show_mem.c: report alloc tags in human readable units mm: support poison recovery from copy_present_page() mm: support poison recovery from do_cow_fault() resource, kunit: add test case for region_intersects() resource: make alloc_free_mem_region() works for iomem_resource mm: z3fold: deprecate CONFIG_Z3FOLD vfio/pci: implement huge_fault support mm/arm64: support large pfn mappings mm/x86: support large pfn mappings ...
1975 lines
49 KiB
C
1975 lines
49 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/kernel/exit.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched/autogroup.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/stat.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/sched/cputime.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/iocontext.h>
|
|
#include <linux/key.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/acct.h>
|
|
#include <linux/tsacct_kern.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fdtable.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/binfmts.h>
|
|
#include <linux/nsproxy.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/taskstats_kern.h>
|
|
#include <linux/delayacct.h>
|
|
#include <linux/cgroup.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/posix-timers.h>
|
|
#include <linux/cn_proc.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/futex.h>
|
|
#include <linux/pipe_fs_i.h>
|
|
#include <linux/audit.h> /* for audit_free() */
|
|
#include <linux/resource.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/task_work.h>
|
|
#include <linux/fs_struct.h>
|
|
#include <linux/init_task.h>
|
|
#include <linux/perf_event.h>
|
|
#include <trace/events/sched.h>
|
|
#include <linux/hw_breakpoint.h>
|
|
#include <linux/oom.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/shm.h>
|
|
#include <linux/kcov.h>
|
|
#include <linux/kmsan.h>
|
|
#include <linux/random.h>
|
|
#include <linux/rcuwait.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/io_uring.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/rethook.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/user_events.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <uapi/linux/wait.h>
|
|
|
|
#include <asm/unistd.h>
|
|
#include <asm/mmu_context.h>
|
|
|
|
#include "exit.h"
|
|
|
|
/*
|
|
* The default value should be high enough to not crash a system that randomly
|
|
* crashes its kernel from time to time, but low enough to at least not permit
|
|
* overflowing 32-bit refcounts or the ldsem writer count.
|
|
*/
|
|
static unsigned int oops_limit = 10000;
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
static struct ctl_table kern_exit_table[] = {
|
|
{
|
|
.procname = "oops_limit",
|
|
.data = &oops_limit,
|
|
.maxlen = sizeof(oops_limit),
|
|
.mode = 0644,
|
|
.proc_handler = proc_douintvec,
|
|
},
|
|
};
|
|
|
|
static __init int kernel_exit_sysctls_init(void)
|
|
{
|
|
register_sysctl_init("kernel", kern_exit_table);
|
|
return 0;
|
|
}
|
|
late_initcall(kernel_exit_sysctls_init);
|
|
#endif
|
|
|
|
static atomic_t oops_count = ATOMIC_INIT(0);
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
|
|
char *page)
|
|
{
|
|
return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
|
|
}
|
|
|
|
static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
|
|
|
|
static __init int kernel_exit_sysfs_init(void)
|
|
{
|
|
sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
|
|
return 0;
|
|
}
|
|
late_initcall(kernel_exit_sysfs_init);
|
|
#endif
|
|
|
|
static void __unhash_process(struct task_struct *p, bool group_dead)
|
|
{
|
|
nr_threads--;
|
|
detach_pid(p, PIDTYPE_PID);
|
|
if (group_dead) {
|
|
detach_pid(p, PIDTYPE_TGID);
|
|
detach_pid(p, PIDTYPE_PGID);
|
|
detach_pid(p, PIDTYPE_SID);
|
|
|
|
list_del_rcu(&p->tasks);
|
|
list_del_init(&p->sibling);
|
|
__this_cpu_dec(process_counts);
|
|
}
|
|
list_del_rcu(&p->thread_node);
|
|
}
|
|
|
|
/*
|
|
* This function expects the tasklist_lock write-locked.
|
|
*/
|
|
static void __exit_signal(struct task_struct *tsk)
|
|
{
|
|
struct signal_struct *sig = tsk->signal;
|
|
bool group_dead = thread_group_leader(tsk);
|
|
struct sighand_struct *sighand;
|
|
struct tty_struct *tty;
|
|
u64 utime, stime;
|
|
|
|
sighand = rcu_dereference_check(tsk->sighand,
|
|
lockdep_tasklist_lock_is_held());
|
|
spin_lock(&sighand->siglock);
|
|
|
|
#ifdef CONFIG_POSIX_TIMERS
|
|
posix_cpu_timers_exit(tsk);
|
|
if (group_dead)
|
|
posix_cpu_timers_exit_group(tsk);
|
|
#endif
|
|
|
|
if (group_dead) {
|
|
tty = sig->tty;
|
|
sig->tty = NULL;
|
|
} else {
|
|
/*
|
|
* If there is any task waiting for the group exit
|
|
* then notify it:
|
|
*/
|
|
if (sig->notify_count > 0 && !--sig->notify_count)
|
|
wake_up_process(sig->group_exec_task);
|
|
|
|
if (tsk == sig->curr_target)
|
|
sig->curr_target = next_thread(tsk);
|
|
}
|
|
|
|
add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
|
|
sizeof(unsigned long long));
|
|
|
|
/*
|
|
* Accumulate here the counters for all threads as they die. We could
|
|
* skip the group leader because it is the last user of signal_struct,
|
|
* but we want to avoid the race with thread_group_cputime() which can
|
|
* see the empty ->thread_head list.
|
|
*/
|
|
task_cputime(tsk, &utime, &stime);
|
|
write_seqlock(&sig->stats_lock);
|
|
sig->utime += utime;
|
|
sig->stime += stime;
|
|
sig->gtime += task_gtime(tsk);
|
|
sig->min_flt += tsk->min_flt;
|
|
sig->maj_flt += tsk->maj_flt;
|
|
sig->nvcsw += tsk->nvcsw;
|
|
sig->nivcsw += tsk->nivcsw;
|
|
sig->inblock += task_io_get_inblock(tsk);
|
|
sig->oublock += task_io_get_oublock(tsk);
|
|
task_io_accounting_add(&sig->ioac, &tsk->ioac);
|
|
sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
|
|
sig->nr_threads--;
|
|
__unhash_process(tsk, group_dead);
|
|
write_sequnlock(&sig->stats_lock);
|
|
|
|
/*
|
|
* Do this under ->siglock, we can race with another thread
|
|
* doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
|
|
*/
|
|
flush_sigqueue(&tsk->pending);
|
|
tsk->sighand = NULL;
|
|
spin_unlock(&sighand->siglock);
|
|
|
|
__cleanup_sighand(sighand);
|
|
clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
|
|
if (group_dead) {
|
|
flush_sigqueue(&sig->shared_pending);
|
|
tty_kref_put(tty);
|
|
}
|
|
}
|
|
|
|
static void delayed_put_task_struct(struct rcu_head *rhp)
|
|
{
|
|
struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
|
|
|
|
kprobe_flush_task(tsk);
|
|
rethook_flush_task(tsk);
|
|
perf_event_delayed_put(tsk);
|
|
trace_sched_process_free(tsk);
|
|
put_task_struct(tsk);
|
|
}
|
|
|
|
void put_task_struct_rcu_user(struct task_struct *task)
|
|
{
|
|
if (refcount_dec_and_test(&task->rcu_users))
|
|
call_rcu(&task->rcu, delayed_put_task_struct);
|
|
}
|
|
|
|
void __weak release_thread(struct task_struct *dead_task)
|
|
{
|
|
}
|
|
|
|
void release_task(struct task_struct *p)
|
|
{
|
|
struct task_struct *leader;
|
|
struct pid *thread_pid;
|
|
int zap_leader;
|
|
repeat:
|
|
/* don't need to get the RCU readlock here - the process is dead and
|
|
* can't be modifying its own credentials. But shut RCU-lockdep up */
|
|
rcu_read_lock();
|
|
dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
|
|
rcu_read_unlock();
|
|
|
|
cgroup_release(p);
|
|
|
|
write_lock_irq(&tasklist_lock);
|
|
ptrace_release_task(p);
|
|
thread_pid = get_pid(p->thread_pid);
|
|
__exit_signal(p);
|
|
|
|
/*
|
|
* If we are the last non-leader member of the thread
|
|
* group, and the leader is zombie, then notify the
|
|
* group leader's parent process. (if it wants notification.)
|
|
*/
|
|
zap_leader = 0;
|
|
leader = p->group_leader;
|
|
if (leader != p && thread_group_empty(leader)
|
|
&& leader->exit_state == EXIT_ZOMBIE) {
|
|
/*
|
|
* If we were the last child thread and the leader has
|
|
* exited already, and the leader's parent ignores SIGCHLD,
|
|
* then we are the one who should release the leader.
|
|
*/
|
|
zap_leader = do_notify_parent(leader, leader->exit_signal);
|
|
if (zap_leader)
|
|
leader->exit_state = EXIT_DEAD;
|
|
}
|
|
|
|
write_unlock_irq(&tasklist_lock);
|
|
proc_flush_pid(thread_pid);
|
|
put_pid(thread_pid);
|
|
release_thread(p);
|
|
put_task_struct_rcu_user(p);
|
|
|
|
p = leader;
|
|
if (unlikely(zap_leader))
|
|
goto repeat;
|
|
}
|
|
|
|
int rcuwait_wake_up(struct rcuwait *w)
|
|
{
|
|
int ret = 0;
|
|
struct task_struct *task;
|
|
|
|
rcu_read_lock();
|
|
|
|
/*
|
|
* Order condition vs @task, such that everything prior to the load
|
|
* of @task is visible. This is the condition as to why the user called
|
|
* rcuwait_wake() in the first place. Pairs with set_current_state()
|
|
* barrier (A) in rcuwait_wait_event().
|
|
*
|
|
* WAIT WAKE
|
|
* [S] tsk = current [S] cond = true
|
|
* MB (A) MB (B)
|
|
* [L] cond [L] tsk
|
|
*/
|
|
smp_mb(); /* (B) */
|
|
|
|
task = rcu_dereference(w->task);
|
|
if (task)
|
|
ret = wake_up_process(task);
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcuwait_wake_up);
|
|
|
|
/*
|
|
* Determine if a process group is "orphaned", according to the POSIX
|
|
* definition in 2.2.2.52. Orphaned process groups are not to be affected
|
|
* by terminal-generated stop signals. Newly orphaned process groups are
|
|
* to receive a SIGHUP and a SIGCONT.
|
|
*
|
|
* "I ask you, have you ever known what it is to be an orphan?"
|
|
*/
|
|
static int will_become_orphaned_pgrp(struct pid *pgrp,
|
|
struct task_struct *ignored_task)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
|
|
if ((p == ignored_task) ||
|
|
(p->exit_state && thread_group_empty(p)) ||
|
|
is_global_init(p->real_parent))
|
|
continue;
|
|
|
|
if (task_pgrp(p->real_parent) != pgrp &&
|
|
task_session(p->real_parent) == task_session(p))
|
|
return 0;
|
|
} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int is_current_pgrp_orphaned(void)
|
|
{
|
|
int retval;
|
|
|
|
read_lock(&tasklist_lock);
|
|
retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
|
|
read_unlock(&tasklist_lock);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static bool has_stopped_jobs(struct pid *pgrp)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
|
|
if (p->signal->flags & SIGNAL_STOP_STOPPED)
|
|
return true;
|
|
} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Check to see if any process groups have become orphaned as
|
|
* a result of our exiting, and if they have any stopped jobs,
|
|
* send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
|
|
*/
|
|
static void
|
|
kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
|
|
{
|
|
struct pid *pgrp = task_pgrp(tsk);
|
|
struct task_struct *ignored_task = tsk;
|
|
|
|
if (!parent)
|
|
/* exit: our father is in a different pgrp than
|
|
* we are and we were the only connection outside.
|
|
*/
|
|
parent = tsk->real_parent;
|
|
else
|
|
/* reparent: our child is in a different pgrp than
|
|
* we are, and it was the only connection outside.
|
|
*/
|
|
ignored_task = NULL;
|
|
|
|
if (task_pgrp(parent) != pgrp &&
|
|
task_session(parent) == task_session(tsk) &&
|
|
will_become_orphaned_pgrp(pgrp, ignored_task) &&
|
|
has_stopped_jobs(pgrp)) {
|
|
__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
|
|
__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
|
|
}
|
|
}
|
|
|
|
static void coredump_task_exit(struct task_struct *tsk)
|
|
{
|
|
struct core_state *core_state;
|
|
|
|
/*
|
|
* Serialize with any possible pending coredump.
|
|
* We must hold siglock around checking core_state
|
|
* and setting PF_POSTCOREDUMP. The core-inducing thread
|
|
* will increment ->nr_threads for each thread in the
|
|
* group without PF_POSTCOREDUMP set.
|
|
*/
|
|
spin_lock_irq(&tsk->sighand->siglock);
|
|
tsk->flags |= PF_POSTCOREDUMP;
|
|
core_state = tsk->signal->core_state;
|
|
spin_unlock_irq(&tsk->sighand->siglock);
|
|
if (core_state) {
|
|
struct core_thread self;
|
|
|
|
self.task = current;
|
|
if (self.task->flags & PF_SIGNALED)
|
|
self.next = xchg(&core_state->dumper.next, &self);
|
|
else
|
|
self.task = NULL;
|
|
/*
|
|
* Implies mb(), the result of xchg() must be visible
|
|
* to core_state->dumper.
|
|
*/
|
|
if (atomic_dec_and_test(&core_state->nr_threads))
|
|
complete(&core_state->startup);
|
|
|
|
for (;;) {
|
|
set_current_state(TASK_IDLE|TASK_FREEZABLE);
|
|
if (!self.task) /* see coredump_finish() */
|
|
break;
|
|
schedule();
|
|
}
|
|
__set_current_state(TASK_RUNNING);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_MEMCG
|
|
/* drops tasklist_lock if succeeds */
|
|
static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm)
|
|
{
|
|
bool ret = false;
|
|
|
|
task_lock(tsk);
|
|
if (likely(tsk->mm == mm)) {
|
|
/* tsk can't pass exit_mm/exec_mmap and exit */
|
|
read_unlock(&tasklist_lock);
|
|
WRITE_ONCE(mm->owner, tsk);
|
|
lru_gen_migrate_mm(mm);
|
|
ret = true;
|
|
}
|
|
task_unlock(tsk);
|
|
return ret;
|
|
}
|
|
|
|
static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm)
|
|
{
|
|
struct task_struct *t;
|
|
|
|
for_each_thread(g, t) {
|
|
struct mm_struct *t_mm = READ_ONCE(t->mm);
|
|
if (t_mm == mm) {
|
|
if (__try_to_set_owner(t, mm))
|
|
return true;
|
|
} else if (t_mm)
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* A task is exiting. If it owned this mm, find a new owner for the mm.
|
|
*/
|
|
void mm_update_next_owner(struct mm_struct *mm)
|
|
{
|
|
struct task_struct *g, *p = current;
|
|
|
|
/*
|
|
* If the exiting or execing task is not the owner, it's
|
|
* someone else's problem.
|
|
*/
|
|
if (mm->owner != p)
|
|
return;
|
|
/*
|
|
* The current owner is exiting/execing and there are no other
|
|
* candidates. Do not leave the mm pointing to a possibly
|
|
* freed task structure.
|
|
*/
|
|
if (atomic_read(&mm->mm_users) <= 1) {
|
|
WRITE_ONCE(mm->owner, NULL);
|
|
return;
|
|
}
|
|
|
|
read_lock(&tasklist_lock);
|
|
/*
|
|
* Search in the children
|
|
*/
|
|
list_for_each_entry(g, &p->children, sibling) {
|
|
if (try_to_set_owner(g, mm))
|
|
goto ret;
|
|
}
|
|
/*
|
|
* Search in the siblings
|
|
*/
|
|
list_for_each_entry(g, &p->real_parent->children, sibling) {
|
|
if (try_to_set_owner(g, mm))
|
|
goto ret;
|
|
}
|
|
/*
|
|
* Search through everything else, we should not get here often.
|
|
*/
|
|
for_each_process(g) {
|
|
if (atomic_read(&mm->mm_users) <= 1)
|
|
break;
|
|
if (g->flags & PF_KTHREAD)
|
|
continue;
|
|
if (try_to_set_owner(g, mm))
|
|
goto ret;
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
/*
|
|
* We found no owner yet mm_users > 1: this implies that we are
|
|
* most likely racing with swapoff (try_to_unuse()) or /proc or
|
|
* ptrace or page migration (get_task_mm()). Mark owner as NULL.
|
|
*/
|
|
WRITE_ONCE(mm->owner, NULL);
|
|
ret:
|
|
return;
|
|
|
|
}
|
|
#endif /* CONFIG_MEMCG */
|
|
|
|
/*
|
|
* Turn us into a lazy TLB process if we
|
|
* aren't already..
|
|
*/
|
|
static void exit_mm(void)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
|
|
exit_mm_release(current, mm);
|
|
if (!mm)
|
|
return;
|
|
mmap_read_lock(mm);
|
|
mmgrab_lazy_tlb(mm);
|
|
BUG_ON(mm != current->active_mm);
|
|
/* more a memory barrier than a real lock */
|
|
task_lock(current);
|
|
/*
|
|
* When a thread stops operating on an address space, the loop
|
|
* in membarrier_private_expedited() may not observe that
|
|
* tsk->mm, and the loop in membarrier_global_expedited() may
|
|
* not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
|
|
* rq->membarrier_state, so those would not issue an IPI.
|
|
* Membarrier requires a memory barrier after accessing
|
|
* user-space memory, before clearing tsk->mm or the
|
|
* rq->membarrier_state.
|
|
*/
|
|
smp_mb__after_spinlock();
|
|
local_irq_disable();
|
|
current->mm = NULL;
|
|
membarrier_update_current_mm(NULL);
|
|
enter_lazy_tlb(mm, current);
|
|
local_irq_enable();
|
|
task_unlock(current);
|
|
mmap_read_unlock(mm);
|
|
mm_update_next_owner(mm);
|
|
mmput(mm);
|
|
if (test_thread_flag(TIF_MEMDIE))
|
|
exit_oom_victim();
|
|
}
|
|
|
|
static struct task_struct *find_alive_thread(struct task_struct *p)
|
|
{
|
|
struct task_struct *t;
|
|
|
|
for_each_thread(p, t) {
|
|
if (!(t->flags & PF_EXITING))
|
|
return t;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct task_struct *find_child_reaper(struct task_struct *father,
|
|
struct list_head *dead)
|
|
__releases(&tasklist_lock)
|
|
__acquires(&tasklist_lock)
|
|
{
|
|
struct pid_namespace *pid_ns = task_active_pid_ns(father);
|
|
struct task_struct *reaper = pid_ns->child_reaper;
|
|
struct task_struct *p, *n;
|
|
|
|
if (likely(reaper != father))
|
|
return reaper;
|
|
|
|
reaper = find_alive_thread(father);
|
|
if (reaper) {
|
|
pid_ns->child_reaper = reaper;
|
|
return reaper;
|
|
}
|
|
|
|
write_unlock_irq(&tasklist_lock);
|
|
|
|
list_for_each_entry_safe(p, n, dead, ptrace_entry) {
|
|
list_del_init(&p->ptrace_entry);
|
|
release_task(p);
|
|
}
|
|
|
|
zap_pid_ns_processes(pid_ns);
|
|
write_lock_irq(&tasklist_lock);
|
|
|
|
return father;
|
|
}
|
|
|
|
/*
|
|
* When we die, we re-parent all our children, and try to:
|
|
* 1. give them to another thread in our thread group, if such a member exists
|
|
* 2. give it to the first ancestor process which prctl'd itself as a
|
|
* child_subreaper for its children (like a service manager)
|
|
* 3. give it to the init process (PID 1) in our pid namespace
|
|
*/
|
|
static struct task_struct *find_new_reaper(struct task_struct *father,
|
|
struct task_struct *child_reaper)
|
|
{
|
|
struct task_struct *thread, *reaper;
|
|
|
|
thread = find_alive_thread(father);
|
|
if (thread)
|
|
return thread;
|
|
|
|
if (father->signal->has_child_subreaper) {
|
|
unsigned int ns_level = task_pid(father)->level;
|
|
/*
|
|
* Find the first ->is_child_subreaper ancestor in our pid_ns.
|
|
* We can't check reaper != child_reaper to ensure we do not
|
|
* cross the namespaces, the exiting parent could be injected
|
|
* by setns() + fork().
|
|
* We check pid->level, this is slightly more efficient than
|
|
* task_active_pid_ns(reaper) != task_active_pid_ns(father).
|
|
*/
|
|
for (reaper = father->real_parent;
|
|
task_pid(reaper)->level == ns_level;
|
|
reaper = reaper->real_parent) {
|
|
if (reaper == &init_task)
|
|
break;
|
|
if (!reaper->signal->is_child_subreaper)
|
|
continue;
|
|
thread = find_alive_thread(reaper);
|
|
if (thread)
|
|
return thread;
|
|
}
|
|
}
|
|
|
|
return child_reaper;
|
|
}
|
|
|
|
/*
|
|
* Any that need to be release_task'd are put on the @dead list.
|
|
*/
|
|
static void reparent_leader(struct task_struct *father, struct task_struct *p,
|
|
struct list_head *dead)
|
|
{
|
|
if (unlikely(p->exit_state == EXIT_DEAD))
|
|
return;
|
|
|
|
/* We don't want people slaying init. */
|
|
p->exit_signal = SIGCHLD;
|
|
|
|
/* If it has exited notify the new parent about this child's death. */
|
|
if (!p->ptrace &&
|
|
p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
|
|
if (do_notify_parent(p, p->exit_signal)) {
|
|
p->exit_state = EXIT_DEAD;
|
|
list_add(&p->ptrace_entry, dead);
|
|
}
|
|
}
|
|
|
|
kill_orphaned_pgrp(p, father);
|
|
}
|
|
|
|
/*
|
|
* This does two things:
|
|
*
|
|
* A. Make init inherit all the child processes
|
|
* B. Check to see if any process groups have become orphaned
|
|
* as a result of our exiting, and if they have any stopped
|
|
* jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
|
|
*/
|
|
static void forget_original_parent(struct task_struct *father,
|
|
struct list_head *dead)
|
|
{
|
|
struct task_struct *p, *t, *reaper;
|
|
|
|
if (unlikely(!list_empty(&father->ptraced)))
|
|
exit_ptrace(father, dead);
|
|
|
|
/* Can drop and reacquire tasklist_lock */
|
|
reaper = find_child_reaper(father, dead);
|
|
if (list_empty(&father->children))
|
|
return;
|
|
|
|
reaper = find_new_reaper(father, reaper);
|
|
list_for_each_entry(p, &father->children, sibling) {
|
|
for_each_thread(p, t) {
|
|
RCU_INIT_POINTER(t->real_parent, reaper);
|
|
BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
|
|
if (likely(!t->ptrace))
|
|
t->parent = t->real_parent;
|
|
if (t->pdeath_signal)
|
|
group_send_sig_info(t->pdeath_signal,
|
|
SEND_SIG_NOINFO, t,
|
|
PIDTYPE_TGID);
|
|
}
|
|
/*
|
|
* If this is a threaded reparent there is no need to
|
|
* notify anyone anything has happened.
|
|
*/
|
|
if (!same_thread_group(reaper, father))
|
|
reparent_leader(father, p, dead);
|
|
}
|
|
list_splice_tail_init(&father->children, &reaper->children);
|
|
}
|
|
|
|
/*
|
|
* Send signals to all our closest relatives so that they know
|
|
* to properly mourn us..
|
|
*/
|
|
static void exit_notify(struct task_struct *tsk, int group_dead)
|
|
{
|
|
bool autoreap;
|
|
struct task_struct *p, *n;
|
|
LIST_HEAD(dead);
|
|
|
|
write_lock_irq(&tasklist_lock);
|
|
forget_original_parent(tsk, &dead);
|
|
|
|
if (group_dead)
|
|
kill_orphaned_pgrp(tsk->group_leader, NULL);
|
|
|
|
tsk->exit_state = EXIT_ZOMBIE;
|
|
/*
|
|
* sub-thread or delay_group_leader(), wake up the
|
|
* PIDFD_THREAD waiters.
|
|
*/
|
|
if (!thread_group_empty(tsk))
|
|
do_notify_pidfd(tsk);
|
|
|
|
if (unlikely(tsk->ptrace)) {
|
|
int sig = thread_group_leader(tsk) &&
|
|
thread_group_empty(tsk) &&
|
|
!ptrace_reparented(tsk) ?
|
|
tsk->exit_signal : SIGCHLD;
|
|
autoreap = do_notify_parent(tsk, sig);
|
|
} else if (thread_group_leader(tsk)) {
|
|
autoreap = thread_group_empty(tsk) &&
|
|
do_notify_parent(tsk, tsk->exit_signal);
|
|
} else {
|
|
autoreap = true;
|
|
}
|
|
|
|
if (autoreap) {
|
|
tsk->exit_state = EXIT_DEAD;
|
|
list_add(&tsk->ptrace_entry, &dead);
|
|
}
|
|
|
|
/* mt-exec, de_thread() is waiting for group leader */
|
|
if (unlikely(tsk->signal->notify_count < 0))
|
|
wake_up_process(tsk->signal->group_exec_task);
|
|
write_unlock_irq(&tasklist_lock);
|
|
|
|
list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
|
|
list_del_init(&p->ptrace_entry);
|
|
release_task(p);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_STACK_USAGE
|
|
unsigned long stack_not_used(struct task_struct *p)
|
|
{
|
|
unsigned long *n = end_of_stack(p);
|
|
|
|
do { /* Skip over canary */
|
|
# ifdef CONFIG_STACK_GROWSUP
|
|
n--;
|
|
# else
|
|
n++;
|
|
# endif
|
|
} while (!*n);
|
|
|
|
# ifdef CONFIG_STACK_GROWSUP
|
|
return (unsigned long)end_of_stack(p) - (unsigned long)n;
|
|
# else
|
|
return (unsigned long)n - (unsigned long)end_of_stack(p);
|
|
# endif
|
|
}
|
|
|
|
/* Count the maximum pages reached in kernel stacks */
|
|
static inline void kstack_histogram(unsigned long used_stack)
|
|
{
|
|
#ifdef CONFIG_VM_EVENT_COUNTERS
|
|
if (used_stack <= 1024)
|
|
count_vm_event(KSTACK_1K);
|
|
#if THREAD_SIZE > 1024
|
|
else if (used_stack <= 2048)
|
|
count_vm_event(KSTACK_2K);
|
|
#endif
|
|
#if THREAD_SIZE > 2048
|
|
else if (used_stack <= 4096)
|
|
count_vm_event(KSTACK_4K);
|
|
#endif
|
|
#if THREAD_SIZE > 4096
|
|
else if (used_stack <= 8192)
|
|
count_vm_event(KSTACK_8K);
|
|
#endif
|
|
#if THREAD_SIZE > 8192
|
|
else if (used_stack <= 16384)
|
|
count_vm_event(KSTACK_16K);
|
|
#endif
|
|
#if THREAD_SIZE > 16384
|
|
else if (used_stack <= 32768)
|
|
count_vm_event(KSTACK_32K);
|
|
#endif
|
|
#if THREAD_SIZE > 32768
|
|
else if (used_stack <= 65536)
|
|
count_vm_event(KSTACK_64K);
|
|
#endif
|
|
#if THREAD_SIZE > 65536
|
|
else
|
|
count_vm_event(KSTACK_REST);
|
|
#endif
|
|
#endif /* CONFIG_VM_EVENT_COUNTERS */
|
|
}
|
|
|
|
static void check_stack_usage(void)
|
|
{
|
|
static DEFINE_SPINLOCK(low_water_lock);
|
|
static int lowest_to_date = THREAD_SIZE;
|
|
unsigned long free;
|
|
|
|
free = stack_not_used(current);
|
|
kstack_histogram(THREAD_SIZE - free);
|
|
|
|
if (free >= lowest_to_date)
|
|
return;
|
|
|
|
spin_lock(&low_water_lock);
|
|
if (free < lowest_to_date) {
|
|
pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
|
|
current->comm, task_pid_nr(current), free);
|
|
lowest_to_date = free;
|
|
}
|
|
spin_unlock(&low_water_lock);
|
|
}
|
|
#else
|
|
static inline void check_stack_usage(void) {}
|
|
#endif
|
|
|
|
static void synchronize_group_exit(struct task_struct *tsk, long code)
|
|
{
|
|
struct sighand_struct *sighand = tsk->sighand;
|
|
struct signal_struct *signal = tsk->signal;
|
|
|
|
spin_lock_irq(&sighand->siglock);
|
|
signal->quick_threads--;
|
|
if ((signal->quick_threads == 0) &&
|
|
!(signal->flags & SIGNAL_GROUP_EXIT)) {
|
|
signal->flags = SIGNAL_GROUP_EXIT;
|
|
signal->group_exit_code = code;
|
|
signal->group_stop_count = 0;
|
|
}
|
|
spin_unlock_irq(&sighand->siglock);
|
|
}
|
|
|
|
void __noreturn do_exit(long code)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
int group_dead;
|
|
|
|
WARN_ON(irqs_disabled());
|
|
|
|
synchronize_group_exit(tsk, code);
|
|
|
|
WARN_ON(tsk->plug);
|
|
|
|
kcov_task_exit(tsk);
|
|
kmsan_task_exit(tsk);
|
|
|
|
coredump_task_exit(tsk);
|
|
ptrace_event(PTRACE_EVENT_EXIT, code);
|
|
user_events_exit(tsk);
|
|
|
|
io_uring_files_cancel();
|
|
exit_signals(tsk); /* sets PF_EXITING */
|
|
|
|
seccomp_filter_release(tsk);
|
|
|
|
acct_update_integrals(tsk);
|
|
group_dead = atomic_dec_and_test(&tsk->signal->live);
|
|
if (group_dead) {
|
|
/*
|
|
* If the last thread of global init has exited, panic
|
|
* immediately to get a useable coredump.
|
|
*/
|
|
if (unlikely(is_global_init(tsk)))
|
|
panic("Attempted to kill init! exitcode=0x%08x\n",
|
|
tsk->signal->group_exit_code ?: (int)code);
|
|
|
|
#ifdef CONFIG_POSIX_TIMERS
|
|
hrtimer_cancel(&tsk->signal->real_timer);
|
|
exit_itimers(tsk);
|
|
#endif
|
|
if (tsk->mm)
|
|
setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
|
|
}
|
|
acct_collect(code, group_dead);
|
|
if (group_dead)
|
|
tty_audit_exit();
|
|
audit_free(tsk);
|
|
|
|
tsk->exit_code = code;
|
|
taskstats_exit(tsk, group_dead);
|
|
|
|
exit_mm();
|
|
|
|
if (group_dead)
|
|
acct_process();
|
|
trace_sched_process_exit(tsk);
|
|
|
|
exit_sem(tsk);
|
|
exit_shm(tsk);
|
|
exit_files(tsk);
|
|
exit_fs(tsk);
|
|
if (group_dead)
|
|
disassociate_ctty(1);
|
|
exit_task_namespaces(tsk);
|
|
exit_task_work(tsk);
|
|
exit_thread(tsk);
|
|
|
|
/*
|
|
* Flush inherited counters to the parent - before the parent
|
|
* gets woken up by child-exit notifications.
|
|
*
|
|
* because of cgroup mode, must be called before cgroup_exit()
|
|
*/
|
|
perf_event_exit_task(tsk);
|
|
|
|
sched_autogroup_exit_task(tsk);
|
|
cgroup_exit(tsk);
|
|
|
|
/*
|
|
* FIXME: do that only when needed, using sched_exit tracepoint
|
|
*/
|
|
flush_ptrace_hw_breakpoint(tsk);
|
|
|
|
exit_tasks_rcu_start();
|
|
exit_notify(tsk, group_dead);
|
|
proc_exit_connector(tsk);
|
|
mpol_put_task_policy(tsk);
|
|
#ifdef CONFIG_FUTEX
|
|
if (unlikely(current->pi_state_cache))
|
|
kfree(current->pi_state_cache);
|
|
#endif
|
|
/*
|
|
* Make sure we are holding no locks:
|
|
*/
|
|
debug_check_no_locks_held();
|
|
|
|
if (tsk->io_context)
|
|
exit_io_context(tsk);
|
|
|
|
if (tsk->splice_pipe)
|
|
free_pipe_info(tsk->splice_pipe);
|
|
|
|
if (tsk->task_frag.page)
|
|
put_page(tsk->task_frag.page);
|
|
|
|
exit_task_stack_account(tsk);
|
|
|
|
check_stack_usage();
|
|
preempt_disable();
|
|
if (tsk->nr_dirtied)
|
|
__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
|
|
exit_rcu();
|
|
exit_tasks_rcu_finish();
|
|
|
|
lockdep_free_task(tsk);
|
|
do_task_dead();
|
|
}
|
|
|
|
void __noreturn make_task_dead(int signr)
|
|
{
|
|
/*
|
|
* Take the task off the cpu after something catastrophic has
|
|
* happened.
|
|
*
|
|
* We can get here from a kernel oops, sometimes with preemption off.
|
|
* Start by checking for critical errors.
|
|
* Then fix up important state like USER_DS and preemption.
|
|
* Then do everything else.
|
|
*/
|
|
struct task_struct *tsk = current;
|
|
unsigned int limit;
|
|
|
|
if (unlikely(in_interrupt()))
|
|
panic("Aiee, killing interrupt handler!");
|
|
if (unlikely(!tsk->pid))
|
|
panic("Attempted to kill the idle task!");
|
|
|
|
if (unlikely(irqs_disabled())) {
|
|
pr_info("note: %s[%d] exited with irqs disabled\n",
|
|
current->comm, task_pid_nr(current));
|
|
local_irq_enable();
|
|
}
|
|
if (unlikely(in_atomic())) {
|
|
pr_info("note: %s[%d] exited with preempt_count %d\n",
|
|
current->comm, task_pid_nr(current),
|
|
preempt_count());
|
|
preempt_count_set(PREEMPT_ENABLED);
|
|
}
|
|
|
|
/*
|
|
* Every time the system oopses, if the oops happens while a reference
|
|
* to an object was held, the reference leaks.
|
|
* If the oops doesn't also leak memory, repeated oopsing can cause
|
|
* reference counters to wrap around (if they're not using refcount_t).
|
|
* This means that repeated oopsing can make unexploitable-looking bugs
|
|
* exploitable through repeated oopsing.
|
|
* To make sure this can't happen, place an upper bound on how often the
|
|
* kernel may oops without panic().
|
|
*/
|
|
limit = READ_ONCE(oops_limit);
|
|
if (atomic_inc_return(&oops_count) >= limit && limit)
|
|
panic("Oopsed too often (kernel.oops_limit is %d)", limit);
|
|
|
|
/*
|
|
* We're taking recursive faults here in make_task_dead. Safest is to just
|
|
* leave this task alone and wait for reboot.
|
|
*/
|
|
if (unlikely(tsk->flags & PF_EXITING)) {
|
|
pr_alert("Fixing recursive fault but reboot is needed!\n");
|
|
futex_exit_recursive(tsk);
|
|
tsk->exit_state = EXIT_DEAD;
|
|
refcount_inc(&tsk->rcu_users);
|
|
do_task_dead();
|
|
}
|
|
|
|
do_exit(signr);
|
|
}
|
|
|
|
SYSCALL_DEFINE1(exit, int, error_code)
|
|
{
|
|
do_exit((error_code&0xff)<<8);
|
|
}
|
|
|
|
/*
|
|
* Take down every thread in the group. This is called by fatal signals
|
|
* as well as by sys_exit_group (below).
|
|
*/
|
|
void __noreturn
|
|
do_group_exit(int exit_code)
|
|
{
|
|
struct signal_struct *sig = current->signal;
|
|
|
|
if (sig->flags & SIGNAL_GROUP_EXIT)
|
|
exit_code = sig->group_exit_code;
|
|
else if (sig->group_exec_task)
|
|
exit_code = 0;
|
|
else {
|
|
struct sighand_struct *const sighand = current->sighand;
|
|
|
|
spin_lock_irq(&sighand->siglock);
|
|
if (sig->flags & SIGNAL_GROUP_EXIT)
|
|
/* Another thread got here before we took the lock. */
|
|
exit_code = sig->group_exit_code;
|
|
else if (sig->group_exec_task)
|
|
exit_code = 0;
|
|
else {
|
|
sig->group_exit_code = exit_code;
|
|
sig->flags = SIGNAL_GROUP_EXIT;
|
|
zap_other_threads(current);
|
|
}
|
|
spin_unlock_irq(&sighand->siglock);
|
|
}
|
|
|
|
do_exit(exit_code);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* this kills every thread in the thread group. Note that any externally
|
|
* wait4()-ing process will get the correct exit code - even if this
|
|
* thread is not the thread group leader.
|
|
*/
|
|
SYSCALL_DEFINE1(exit_group, int, error_code)
|
|
{
|
|
do_group_exit((error_code & 0xff) << 8);
|
|
/* NOTREACHED */
|
|
return 0;
|
|
}
|
|
|
|
static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
|
|
{
|
|
return wo->wo_type == PIDTYPE_MAX ||
|
|
task_pid_type(p, wo->wo_type) == wo->wo_pid;
|
|
}
|
|
|
|
static int
|
|
eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
|
|
{
|
|
if (!eligible_pid(wo, p))
|
|
return 0;
|
|
|
|
/*
|
|
* Wait for all children (clone and not) if __WALL is set or
|
|
* if it is traced by us.
|
|
*/
|
|
if (ptrace || (wo->wo_flags & __WALL))
|
|
return 1;
|
|
|
|
/*
|
|
* Otherwise, wait for clone children *only* if __WCLONE is set;
|
|
* otherwise, wait for non-clone children *only*.
|
|
*
|
|
* Note: a "clone" child here is one that reports to its parent
|
|
* using a signal other than SIGCHLD, or a non-leader thread which
|
|
* we can only see if it is traced by us.
|
|
*/
|
|
if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
|
|
* read_lock(&tasklist_lock) on entry. If we return zero, we still hold
|
|
* the lock and this task is uninteresting. If we return nonzero, we have
|
|
* released the lock and the system call should return.
|
|
*/
|
|
static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
|
|
{
|
|
int state, status;
|
|
pid_t pid = task_pid_vnr(p);
|
|
uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
|
|
struct waitid_info *infop;
|
|
|
|
if (!likely(wo->wo_flags & WEXITED))
|
|
return 0;
|
|
|
|
if (unlikely(wo->wo_flags & WNOWAIT)) {
|
|
status = (p->signal->flags & SIGNAL_GROUP_EXIT)
|
|
? p->signal->group_exit_code : p->exit_code;
|
|
get_task_struct(p);
|
|
read_unlock(&tasklist_lock);
|
|
sched_annotate_sleep();
|
|
if (wo->wo_rusage)
|
|
getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
|
|
put_task_struct(p);
|
|
goto out_info;
|
|
}
|
|
/*
|
|
* Move the task's state to DEAD/TRACE, only one thread can do this.
|
|
*/
|
|
state = (ptrace_reparented(p) && thread_group_leader(p)) ?
|
|
EXIT_TRACE : EXIT_DEAD;
|
|
if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
|
|
return 0;
|
|
/*
|
|
* We own this thread, nobody else can reap it.
|
|
*/
|
|
read_unlock(&tasklist_lock);
|
|
sched_annotate_sleep();
|
|
|
|
/*
|
|
* Check thread_group_leader() to exclude the traced sub-threads.
|
|
*/
|
|
if (state == EXIT_DEAD && thread_group_leader(p)) {
|
|
struct signal_struct *sig = p->signal;
|
|
struct signal_struct *psig = current->signal;
|
|
unsigned long maxrss;
|
|
u64 tgutime, tgstime;
|
|
|
|
/*
|
|
* The resource counters for the group leader are in its
|
|
* own task_struct. Those for dead threads in the group
|
|
* are in its signal_struct, as are those for the child
|
|
* processes it has previously reaped. All these
|
|
* accumulate in the parent's signal_struct c* fields.
|
|
*
|
|
* We don't bother to take a lock here to protect these
|
|
* p->signal fields because the whole thread group is dead
|
|
* and nobody can change them.
|
|
*
|
|
* psig->stats_lock also protects us from our sub-threads
|
|
* which can reap other children at the same time.
|
|
*
|
|
* We use thread_group_cputime_adjusted() to get times for
|
|
* the thread group, which consolidates times for all threads
|
|
* in the group including the group leader.
|
|
*/
|
|
thread_group_cputime_adjusted(p, &tgutime, &tgstime);
|
|
write_seqlock_irq(&psig->stats_lock);
|
|
psig->cutime += tgutime + sig->cutime;
|
|
psig->cstime += tgstime + sig->cstime;
|
|
psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
|
|
psig->cmin_flt +=
|
|
p->min_flt + sig->min_flt + sig->cmin_flt;
|
|
psig->cmaj_flt +=
|
|
p->maj_flt + sig->maj_flt + sig->cmaj_flt;
|
|
psig->cnvcsw +=
|
|
p->nvcsw + sig->nvcsw + sig->cnvcsw;
|
|
psig->cnivcsw +=
|
|
p->nivcsw + sig->nivcsw + sig->cnivcsw;
|
|
psig->cinblock +=
|
|
task_io_get_inblock(p) +
|
|
sig->inblock + sig->cinblock;
|
|
psig->coublock +=
|
|
task_io_get_oublock(p) +
|
|
sig->oublock + sig->coublock;
|
|
maxrss = max(sig->maxrss, sig->cmaxrss);
|
|
if (psig->cmaxrss < maxrss)
|
|
psig->cmaxrss = maxrss;
|
|
task_io_accounting_add(&psig->ioac, &p->ioac);
|
|
task_io_accounting_add(&psig->ioac, &sig->ioac);
|
|
write_sequnlock_irq(&psig->stats_lock);
|
|
}
|
|
|
|
if (wo->wo_rusage)
|
|
getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
|
|
status = (p->signal->flags & SIGNAL_GROUP_EXIT)
|
|
? p->signal->group_exit_code : p->exit_code;
|
|
wo->wo_stat = status;
|
|
|
|
if (state == EXIT_TRACE) {
|
|
write_lock_irq(&tasklist_lock);
|
|
/* We dropped tasklist, ptracer could die and untrace */
|
|
ptrace_unlink(p);
|
|
|
|
/* If parent wants a zombie, don't release it now */
|
|
state = EXIT_ZOMBIE;
|
|
if (do_notify_parent(p, p->exit_signal))
|
|
state = EXIT_DEAD;
|
|
p->exit_state = state;
|
|
write_unlock_irq(&tasklist_lock);
|
|
}
|
|
if (state == EXIT_DEAD)
|
|
release_task(p);
|
|
|
|
out_info:
|
|
infop = wo->wo_info;
|
|
if (infop) {
|
|
if ((status & 0x7f) == 0) {
|
|
infop->cause = CLD_EXITED;
|
|
infop->status = status >> 8;
|
|
} else {
|
|
infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
|
|
infop->status = status & 0x7f;
|
|
}
|
|
infop->pid = pid;
|
|
infop->uid = uid;
|
|
}
|
|
|
|
return pid;
|
|
}
|
|
|
|
static int *task_stopped_code(struct task_struct *p, bool ptrace)
|
|
{
|
|
if (ptrace) {
|
|
if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
|
|
return &p->exit_code;
|
|
} else {
|
|
if (p->signal->flags & SIGNAL_STOP_STOPPED)
|
|
return &p->signal->group_exit_code;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
|
|
* @wo: wait options
|
|
* @ptrace: is the wait for ptrace
|
|
* @p: task to wait for
|
|
*
|
|
* Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
|
|
*
|
|
* CONTEXT:
|
|
* read_lock(&tasklist_lock), which is released if return value is
|
|
* non-zero. Also, grabs and releases @p->sighand->siglock.
|
|
*
|
|
* RETURNS:
|
|
* 0 if wait condition didn't exist and search for other wait conditions
|
|
* should continue. Non-zero return, -errno on failure and @p's pid on
|
|
* success, implies that tasklist_lock is released and wait condition
|
|
* search should terminate.
|
|
*/
|
|
static int wait_task_stopped(struct wait_opts *wo,
|
|
int ptrace, struct task_struct *p)
|
|
{
|
|
struct waitid_info *infop;
|
|
int exit_code, *p_code, why;
|
|
uid_t uid = 0; /* unneeded, required by compiler */
|
|
pid_t pid;
|
|
|
|
/*
|
|
* Traditionally we see ptrace'd stopped tasks regardless of options.
|
|
*/
|
|
if (!ptrace && !(wo->wo_flags & WUNTRACED))
|
|
return 0;
|
|
|
|
if (!task_stopped_code(p, ptrace))
|
|
return 0;
|
|
|
|
exit_code = 0;
|
|
spin_lock_irq(&p->sighand->siglock);
|
|
|
|
p_code = task_stopped_code(p, ptrace);
|
|
if (unlikely(!p_code))
|
|
goto unlock_sig;
|
|
|
|
exit_code = *p_code;
|
|
if (!exit_code)
|
|
goto unlock_sig;
|
|
|
|
if (!unlikely(wo->wo_flags & WNOWAIT))
|
|
*p_code = 0;
|
|
|
|
uid = from_kuid_munged(current_user_ns(), task_uid(p));
|
|
unlock_sig:
|
|
spin_unlock_irq(&p->sighand->siglock);
|
|
if (!exit_code)
|
|
return 0;
|
|
|
|
/*
|
|
* Now we are pretty sure this task is interesting.
|
|
* Make sure it doesn't get reaped out from under us while we
|
|
* give up the lock and then examine it below. We don't want to
|
|
* keep holding onto the tasklist_lock while we call getrusage and
|
|
* possibly take page faults for user memory.
|
|
*/
|
|
get_task_struct(p);
|
|
pid = task_pid_vnr(p);
|
|
why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
|
|
read_unlock(&tasklist_lock);
|
|
sched_annotate_sleep();
|
|
if (wo->wo_rusage)
|
|
getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
|
|
put_task_struct(p);
|
|
|
|
if (likely(!(wo->wo_flags & WNOWAIT)))
|
|
wo->wo_stat = (exit_code << 8) | 0x7f;
|
|
|
|
infop = wo->wo_info;
|
|
if (infop) {
|
|
infop->cause = why;
|
|
infop->status = exit_code;
|
|
infop->pid = pid;
|
|
infop->uid = uid;
|
|
}
|
|
return pid;
|
|
}
|
|
|
|
/*
|
|
* Handle do_wait work for one task in a live, non-stopped state.
|
|
* read_lock(&tasklist_lock) on entry. If we return zero, we still hold
|
|
* the lock and this task is uninteresting. If we return nonzero, we have
|
|
* released the lock and the system call should return.
|
|
*/
|
|
static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
|
|
{
|
|
struct waitid_info *infop;
|
|
pid_t pid;
|
|
uid_t uid;
|
|
|
|
if (!unlikely(wo->wo_flags & WCONTINUED))
|
|
return 0;
|
|
|
|
if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
|
|
return 0;
|
|
|
|
spin_lock_irq(&p->sighand->siglock);
|
|
/* Re-check with the lock held. */
|
|
if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
|
|
spin_unlock_irq(&p->sighand->siglock);
|
|
return 0;
|
|
}
|
|
if (!unlikely(wo->wo_flags & WNOWAIT))
|
|
p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
|
|
uid = from_kuid_munged(current_user_ns(), task_uid(p));
|
|
spin_unlock_irq(&p->sighand->siglock);
|
|
|
|
pid = task_pid_vnr(p);
|
|
get_task_struct(p);
|
|
read_unlock(&tasklist_lock);
|
|
sched_annotate_sleep();
|
|
if (wo->wo_rusage)
|
|
getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
|
|
put_task_struct(p);
|
|
|
|
infop = wo->wo_info;
|
|
if (!infop) {
|
|
wo->wo_stat = 0xffff;
|
|
} else {
|
|
infop->cause = CLD_CONTINUED;
|
|
infop->pid = pid;
|
|
infop->uid = uid;
|
|
infop->status = SIGCONT;
|
|
}
|
|
return pid;
|
|
}
|
|
|
|
/*
|
|
* Consider @p for a wait by @parent.
|
|
*
|
|
* -ECHILD should be in ->notask_error before the first call.
|
|
* Returns nonzero for a final return, when we have unlocked tasklist_lock.
|
|
* Returns zero if the search for a child should continue;
|
|
* then ->notask_error is 0 if @p is an eligible child,
|
|
* or still -ECHILD.
|
|
*/
|
|
static int wait_consider_task(struct wait_opts *wo, int ptrace,
|
|
struct task_struct *p)
|
|
{
|
|
/*
|
|
* We can race with wait_task_zombie() from another thread.
|
|
* Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
|
|
* can't confuse the checks below.
|
|
*/
|
|
int exit_state = READ_ONCE(p->exit_state);
|
|
int ret;
|
|
|
|
if (unlikely(exit_state == EXIT_DEAD))
|
|
return 0;
|
|
|
|
ret = eligible_child(wo, ptrace, p);
|
|
if (!ret)
|
|
return ret;
|
|
|
|
if (unlikely(exit_state == EXIT_TRACE)) {
|
|
/*
|
|
* ptrace == 0 means we are the natural parent. In this case
|
|
* we should clear notask_error, debugger will notify us.
|
|
*/
|
|
if (likely(!ptrace))
|
|
wo->notask_error = 0;
|
|
return 0;
|
|
}
|
|
|
|
if (likely(!ptrace) && unlikely(p->ptrace)) {
|
|
/*
|
|
* If it is traced by its real parent's group, just pretend
|
|
* the caller is ptrace_do_wait() and reap this child if it
|
|
* is zombie.
|
|
*
|
|
* This also hides group stop state from real parent; otherwise
|
|
* a single stop can be reported twice as group and ptrace stop.
|
|
* If a ptracer wants to distinguish these two events for its
|
|
* own children it should create a separate process which takes
|
|
* the role of real parent.
|
|
*/
|
|
if (!ptrace_reparented(p))
|
|
ptrace = 1;
|
|
}
|
|
|
|
/* slay zombie? */
|
|
if (exit_state == EXIT_ZOMBIE) {
|
|
/* we don't reap group leaders with subthreads */
|
|
if (!delay_group_leader(p)) {
|
|
/*
|
|
* A zombie ptracee is only visible to its ptracer.
|
|
* Notification and reaping will be cascaded to the
|
|
* real parent when the ptracer detaches.
|
|
*/
|
|
if (unlikely(ptrace) || likely(!p->ptrace))
|
|
return wait_task_zombie(wo, p);
|
|
}
|
|
|
|
/*
|
|
* Allow access to stopped/continued state via zombie by
|
|
* falling through. Clearing of notask_error is complex.
|
|
*
|
|
* When !@ptrace:
|
|
*
|
|
* If WEXITED is set, notask_error should naturally be
|
|
* cleared. If not, subset of WSTOPPED|WCONTINUED is set,
|
|
* so, if there are live subthreads, there are events to
|
|
* wait for. If all subthreads are dead, it's still safe
|
|
* to clear - this function will be called again in finite
|
|
* amount time once all the subthreads are released and
|
|
* will then return without clearing.
|
|
*
|
|
* When @ptrace:
|
|
*
|
|
* Stopped state is per-task and thus can't change once the
|
|
* target task dies. Only continued and exited can happen.
|
|
* Clear notask_error if WCONTINUED | WEXITED.
|
|
*/
|
|
if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
|
|
wo->notask_error = 0;
|
|
} else {
|
|
/*
|
|
* @p is alive and it's gonna stop, continue or exit, so
|
|
* there always is something to wait for.
|
|
*/
|
|
wo->notask_error = 0;
|
|
}
|
|
|
|
/*
|
|
* Wait for stopped. Depending on @ptrace, different stopped state
|
|
* is used and the two don't interact with each other.
|
|
*/
|
|
ret = wait_task_stopped(wo, ptrace, p);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Wait for continued. There's only one continued state and the
|
|
* ptracer can consume it which can confuse the real parent. Don't
|
|
* use WCONTINUED from ptracer. You don't need or want it.
|
|
*/
|
|
return wait_task_continued(wo, p);
|
|
}
|
|
|
|
/*
|
|
* Do the work of do_wait() for one thread in the group, @tsk.
|
|
*
|
|
* -ECHILD should be in ->notask_error before the first call.
|
|
* Returns nonzero for a final return, when we have unlocked tasklist_lock.
|
|
* Returns zero if the search for a child should continue; then
|
|
* ->notask_error is 0 if there were any eligible children,
|
|
* or still -ECHILD.
|
|
*/
|
|
static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
list_for_each_entry(p, &tsk->children, sibling) {
|
|
int ret = wait_consider_task(wo, 0, p);
|
|
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
|
|
int ret = wait_consider_task(wo, 1, p);
|
|
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
|
|
{
|
|
if (!eligible_pid(wo, p))
|
|
return false;
|
|
|
|
if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
|
|
int sync, void *key)
|
|
{
|
|
struct wait_opts *wo = container_of(wait, struct wait_opts,
|
|
child_wait);
|
|
struct task_struct *p = key;
|
|
|
|
if (pid_child_should_wake(wo, p))
|
|
return default_wake_function(wait, mode, sync, key);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
|
|
{
|
|
__wake_up_sync_key(&parent->signal->wait_chldexit,
|
|
TASK_INTERRUPTIBLE, p);
|
|
}
|
|
|
|
static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
|
|
struct task_struct *target)
|
|
{
|
|
struct task_struct *parent =
|
|
!ptrace ? target->real_parent : target->parent;
|
|
|
|
return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
|
|
same_thread_group(current, parent));
|
|
}
|
|
|
|
/*
|
|
* Optimization for waiting on PIDTYPE_PID. No need to iterate through child
|
|
* and tracee lists to find the target task.
|
|
*/
|
|
static int do_wait_pid(struct wait_opts *wo)
|
|
{
|
|
bool ptrace;
|
|
struct task_struct *target;
|
|
int retval;
|
|
|
|
ptrace = false;
|
|
target = pid_task(wo->wo_pid, PIDTYPE_TGID);
|
|
if (target && is_effectively_child(wo, ptrace, target)) {
|
|
retval = wait_consider_task(wo, ptrace, target);
|
|
if (retval)
|
|
return retval;
|
|
}
|
|
|
|
ptrace = true;
|
|
target = pid_task(wo->wo_pid, PIDTYPE_PID);
|
|
if (target && target->ptrace &&
|
|
is_effectively_child(wo, ptrace, target)) {
|
|
retval = wait_consider_task(wo, ptrace, target);
|
|
if (retval)
|
|
return retval;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
long __do_wait(struct wait_opts *wo)
|
|
{
|
|
long retval;
|
|
|
|
/*
|
|
* If there is nothing that can match our criteria, just get out.
|
|
* We will clear ->notask_error to zero if we see any child that
|
|
* might later match our criteria, even if we are not able to reap
|
|
* it yet.
|
|
*/
|
|
wo->notask_error = -ECHILD;
|
|
if ((wo->wo_type < PIDTYPE_MAX) &&
|
|
(!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
|
|
goto notask;
|
|
|
|
read_lock(&tasklist_lock);
|
|
|
|
if (wo->wo_type == PIDTYPE_PID) {
|
|
retval = do_wait_pid(wo);
|
|
if (retval)
|
|
return retval;
|
|
} else {
|
|
struct task_struct *tsk = current;
|
|
|
|
do {
|
|
retval = do_wait_thread(wo, tsk);
|
|
if (retval)
|
|
return retval;
|
|
|
|
retval = ptrace_do_wait(wo, tsk);
|
|
if (retval)
|
|
return retval;
|
|
|
|
if (wo->wo_flags & __WNOTHREAD)
|
|
break;
|
|
} while_each_thread(current, tsk);
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
|
|
notask:
|
|
retval = wo->notask_error;
|
|
if (!retval && !(wo->wo_flags & WNOHANG))
|
|
return -ERESTARTSYS;
|
|
|
|
return retval;
|
|
}
|
|
|
|
static long do_wait(struct wait_opts *wo)
|
|
{
|
|
int retval;
|
|
|
|
trace_sched_process_wait(wo->wo_pid);
|
|
|
|
init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
|
|
wo->child_wait.private = current;
|
|
add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
|
|
|
|
do {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
retval = __do_wait(wo);
|
|
if (retval != -ERESTARTSYS)
|
|
break;
|
|
if (signal_pending(current))
|
|
break;
|
|
schedule();
|
|
} while (1);
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
|
|
return retval;
|
|
}
|
|
|
|
int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
|
|
struct waitid_info *infop, int options,
|
|
struct rusage *ru)
|
|
{
|
|
unsigned int f_flags = 0;
|
|
struct pid *pid = NULL;
|
|
enum pid_type type;
|
|
|
|
if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
|
|
__WNOTHREAD|__WCLONE|__WALL))
|
|
return -EINVAL;
|
|
if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
|
|
return -EINVAL;
|
|
|
|
switch (which) {
|
|
case P_ALL:
|
|
type = PIDTYPE_MAX;
|
|
break;
|
|
case P_PID:
|
|
type = PIDTYPE_PID;
|
|
if (upid <= 0)
|
|
return -EINVAL;
|
|
|
|
pid = find_get_pid(upid);
|
|
break;
|
|
case P_PGID:
|
|
type = PIDTYPE_PGID;
|
|
if (upid < 0)
|
|
return -EINVAL;
|
|
|
|
if (upid)
|
|
pid = find_get_pid(upid);
|
|
else
|
|
pid = get_task_pid(current, PIDTYPE_PGID);
|
|
break;
|
|
case P_PIDFD:
|
|
type = PIDTYPE_PID;
|
|
if (upid < 0)
|
|
return -EINVAL;
|
|
|
|
pid = pidfd_get_pid(upid, &f_flags);
|
|
if (IS_ERR(pid))
|
|
return PTR_ERR(pid);
|
|
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
wo->wo_type = type;
|
|
wo->wo_pid = pid;
|
|
wo->wo_flags = options;
|
|
wo->wo_info = infop;
|
|
wo->wo_rusage = ru;
|
|
if (f_flags & O_NONBLOCK)
|
|
wo->wo_flags |= WNOHANG;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
|
|
int options, struct rusage *ru)
|
|
{
|
|
struct wait_opts wo;
|
|
long ret;
|
|
|
|
ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = do_wait(&wo);
|
|
if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
|
|
ret = -EAGAIN;
|
|
|
|
put_pid(wo.wo_pid);
|
|
return ret;
|
|
}
|
|
|
|
SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
|
|
infop, int, options, struct rusage __user *, ru)
|
|
{
|
|
struct rusage r;
|
|
struct waitid_info info = {.status = 0};
|
|
long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
|
|
int signo = 0;
|
|
|
|
if (err > 0) {
|
|
signo = SIGCHLD;
|
|
err = 0;
|
|
if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
|
|
return -EFAULT;
|
|
}
|
|
if (!infop)
|
|
return err;
|
|
|
|
if (!user_write_access_begin(infop, sizeof(*infop)))
|
|
return -EFAULT;
|
|
|
|
unsafe_put_user(signo, &infop->si_signo, Efault);
|
|
unsafe_put_user(0, &infop->si_errno, Efault);
|
|
unsafe_put_user(info.cause, &infop->si_code, Efault);
|
|
unsafe_put_user(info.pid, &infop->si_pid, Efault);
|
|
unsafe_put_user(info.uid, &infop->si_uid, Efault);
|
|
unsafe_put_user(info.status, &infop->si_status, Efault);
|
|
user_write_access_end();
|
|
return err;
|
|
Efault:
|
|
user_write_access_end();
|
|
return -EFAULT;
|
|
}
|
|
|
|
long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
|
|
struct rusage *ru)
|
|
{
|
|
struct wait_opts wo;
|
|
struct pid *pid = NULL;
|
|
enum pid_type type;
|
|
long ret;
|
|
|
|
if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
|
|
__WNOTHREAD|__WCLONE|__WALL))
|
|
return -EINVAL;
|
|
|
|
/* -INT_MIN is not defined */
|
|
if (upid == INT_MIN)
|
|
return -ESRCH;
|
|
|
|
if (upid == -1)
|
|
type = PIDTYPE_MAX;
|
|
else if (upid < 0) {
|
|
type = PIDTYPE_PGID;
|
|
pid = find_get_pid(-upid);
|
|
} else if (upid == 0) {
|
|
type = PIDTYPE_PGID;
|
|
pid = get_task_pid(current, PIDTYPE_PGID);
|
|
} else /* upid > 0 */ {
|
|
type = PIDTYPE_PID;
|
|
pid = find_get_pid(upid);
|
|
}
|
|
|
|
wo.wo_type = type;
|
|
wo.wo_pid = pid;
|
|
wo.wo_flags = options | WEXITED;
|
|
wo.wo_info = NULL;
|
|
wo.wo_stat = 0;
|
|
wo.wo_rusage = ru;
|
|
ret = do_wait(&wo);
|
|
put_pid(pid);
|
|
if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
|
|
ret = -EFAULT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int kernel_wait(pid_t pid, int *stat)
|
|
{
|
|
struct wait_opts wo = {
|
|
.wo_type = PIDTYPE_PID,
|
|
.wo_pid = find_get_pid(pid),
|
|
.wo_flags = WEXITED,
|
|
};
|
|
int ret;
|
|
|
|
ret = do_wait(&wo);
|
|
if (ret > 0 && wo.wo_stat)
|
|
*stat = wo.wo_stat;
|
|
put_pid(wo.wo_pid);
|
|
return ret;
|
|
}
|
|
|
|
SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
|
|
int, options, struct rusage __user *, ru)
|
|
{
|
|
struct rusage r;
|
|
long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
|
|
|
|
if (err > 0) {
|
|
if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
|
|
return -EFAULT;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
#ifdef __ARCH_WANT_SYS_WAITPID
|
|
|
|
/*
|
|
* sys_waitpid() remains for compatibility. waitpid() should be
|
|
* implemented by calling sys_wait4() from libc.a.
|
|
*/
|
|
SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
|
|
{
|
|
return kernel_wait4(pid, stat_addr, options, NULL);
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE4(wait4,
|
|
compat_pid_t, pid,
|
|
compat_uint_t __user *, stat_addr,
|
|
int, options,
|
|
struct compat_rusage __user *, ru)
|
|
{
|
|
struct rusage r;
|
|
long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
|
|
if (err > 0) {
|
|
if (ru && put_compat_rusage(&r, ru))
|
|
return -EFAULT;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
COMPAT_SYSCALL_DEFINE5(waitid,
|
|
int, which, compat_pid_t, pid,
|
|
struct compat_siginfo __user *, infop, int, options,
|
|
struct compat_rusage __user *, uru)
|
|
{
|
|
struct rusage ru;
|
|
struct waitid_info info = {.status = 0};
|
|
long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
|
|
int signo = 0;
|
|
if (err > 0) {
|
|
signo = SIGCHLD;
|
|
err = 0;
|
|
if (uru) {
|
|
/* kernel_waitid() overwrites everything in ru */
|
|
if (COMPAT_USE_64BIT_TIME)
|
|
err = copy_to_user(uru, &ru, sizeof(ru));
|
|
else
|
|
err = put_compat_rusage(&ru, uru);
|
|
if (err)
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
|
|
if (!infop)
|
|
return err;
|
|
|
|
if (!user_write_access_begin(infop, sizeof(*infop)))
|
|
return -EFAULT;
|
|
|
|
unsafe_put_user(signo, &infop->si_signo, Efault);
|
|
unsafe_put_user(0, &infop->si_errno, Efault);
|
|
unsafe_put_user(info.cause, &infop->si_code, Efault);
|
|
unsafe_put_user(info.pid, &infop->si_pid, Efault);
|
|
unsafe_put_user(info.uid, &infop->si_uid, Efault);
|
|
unsafe_put_user(info.status, &infop->si_status, Efault);
|
|
user_write_access_end();
|
|
return err;
|
|
Efault:
|
|
user_write_access_end();
|
|
return -EFAULT;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This needs to be __function_aligned as GCC implicitly makes any
|
|
* implementation of abort() cold and drops alignment specified by
|
|
* -falign-functions=N.
|
|
*
|
|
* See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
|
|
*/
|
|
__weak __function_aligned void abort(void)
|
|
{
|
|
BUG();
|
|
|
|
/* if that doesn't kill us, halt */
|
|
panic("Oops failed to kill thread");
|
|
}
|
|
EXPORT_SYMBOL(abort);
|