mirror of
https://github.com/torvalds/linux.git
synced 2024-12-29 22:31:32 +00:00
03fd5db717
Currently the cpu argument validity check uses a hardcoded limit of 4. The DCSCB configuration data provides the actual number of CPUs and we already use it elsewhere. Let's improve the cpu argument validity check by using that information instead. Signed-off-by: Nicolas Pitre <nico@linaro.org> Signed-off-by: Olof Johansson <olof@lixom.net>
238 lines
6.3 KiB
C
238 lines
6.3 KiB
C
/*
|
|
* arch/arm/mach-vexpress/dcscb.c - Dual Cluster System Configuration Block
|
|
*
|
|
* Created by: Nicolas Pitre, May 2012
|
|
* Copyright: (C) 2012-2013 Linaro Limited
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/io.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/vexpress.h>
|
|
#include <linux/arm-cci.h>
|
|
|
|
#include <asm/mcpm.h>
|
|
#include <asm/proc-fns.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/cp15.h>
|
|
|
|
|
|
#define RST_HOLD0 0x0
|
|
#define RST_HOLD1 0x4
|
|
#define SYS_SWRESET 0x8
|
|
#define RST_STAT0 0xc
|
|
#define RST_STAT1 0x10
|
|
#define EAG_CFG_R 0x20
|
|
#define EAG_CFG_W 0x24
|
|
#define KFC_CFG_R 0x28
|
|
#define KFC_CFG_W 0x2c
|
|
#define DCS_CFG_R 0x30
|
|
|
|
/*
|
|
* We can't use regular spinlocks. In the switcher case, it is possible
|
|
* for an outbound CPU to call power_down() while its inbound counterpart
|
|
* is already live using the same logical CPU number which trips lockdep
|
|
* debugging.
|
|
*/
|
|
static arch_spinlock_t dcscb_lock = __ARCH_SPIN_LOCK_UNLOCKED;
|
|
|
|
static void __iomem *dcscb_base;
|
|
static int dcscb_use_count[4][2];
|
|
static int dcscb_allcpus_mask[2];
|
|
|
|
static int dcscb_power_up(unsigned int cpu, unsigned int cluster)
|
|
{
|
|
unsigned int rst_hold, cpumask = (1 << cpu);
|
|
unsigned int all_mask;
|
|
|
|
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
|
if (cluster >= 2 || !(cpumask & dcscb_allcpus_mask[cluster]))
|
|
return -EINVAL;
|
|
|
|
all_mask = dcscb_allcpus_mask[cluster];
|
|
|
|
/*
|
|
* Since this is called with IRQs enabled, and no arch_spin_lock_irq
|
|
* variant exists, we need to disable IRQs manually here.
|
|
*/
|
|
local_irq_disable();
|
|
arch_spin_lock(&dcscb_lock);
|
|
|
|
dcscb_use_count[cpu][cluster]++;
|
|
if (dcscb_use_count[cpu][cluster] == 1) {
|
|
rst_hold = readl_relaxed(dcscb_base + RST_HOLD0 + cluster * 4);
|
|
if (rst_hold & (1 << 8)) {
|
|
/* remove cluster reset and add individual CPU's reset */
|
|
rst_hold &= ~(1 << 8);
|
|
rst_hold |= all_mask;
|
|
}
|
|
rst_hold &= ~(cpumask | (cpumask << 4));
|
|
writel_relaxed(rst_hold, dcscb_base + RST_HOLD0 + cluster * 4);
|
|
} else if (dcscb_use_count[cpu][cluster] != 2) {
|
|
/*
|
|
* The only possible values are:
|
|
* 0 = CPU down
|
|
* 1 = CPU (still) up
|
|
* 2 = CPU requested to be up before it had a chance
|
|
* to actually make itself down.
|
|
* Any other value is a bug.
|
|
*/
|
|
BUG();
|
|
}
|
|
|
|
arch_spin_unlock(&dcscb_lock);
|
|
local_irq_enable();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void dcscb_power_down(void)
|
|
{
|
|
unsigned int mpidr, cpu, cluster, rst_hold, cpumask, all_mask;
|
|
bool last_man = false, skip_wfi = false;
|
|
|
|
mpidr = read_cpuid_mpidr();
|
|
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
|
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
|
cpumask = (1 << cpu);
|
|
|
|
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
|
BUG_ON(cluster >= 2 || !(cpumask & dcscb_allcpus_mask[cluster]));
|
|
|
|
all_mask = dcscb_allcpus_mask[cluster];
|
|
|
|
__mcpm_cpu_going_down(cpu, cluster);
|
|
|
|
arch_spin_lock(&dcscb_lock);
|
|
BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
|
|
dcscb_use_count[cpu][cluster]--;
|
|
if (dcscb_use_count[cpu][cluster] == 0) {
|
|
rst_hold = readl_relaxed(dcscb_base + RST_HOLD0 + cluster * 4);
|
|
rst_hold |= cpumask;
|
|
if (((rst_hold | (rst_hold >> 4)) & all_mask) == all_mask) {
|
|
rst_hold |= (1 << 8);
|
|
last_man = true;
|
|
}
|
|
writel_relaxed(rst_hold, dcscb_base + RST_HOLD0 + cluster * 4);
|
|
} else if (dcscb_use_count[cpu][cluster] == 1) {
|
|
/*
|
|
* A power_up request went ahead of us.
|
|
* Even if we do not want to shut this CPU down,
|
|
* the caller expects a certain state as if the WFI
|
|
* was aborted. So let's continue with cache cleaning.
|
|
*/
|
|
skip_wfi = true;
|
|
} else
|
|
BUG();
|
|
|
|
if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
|
|
arch_spin_unlock(&dcscb_lock);
|
|
|
|
/* Flush all cache levels for this cluster. */
|
|
v7_exit_coherency_flush(all);
|
|
|
|
/*
|
|
* A full outer cache flush could be needed at this point
|
|
* on platforms with such a cache, depending on where the
|
|
* outer cache sits. In some cases the notion of a "last
|
|
* cluster standing" would need to be implemented if the
|
|
* outer cache is shared across clusters. In any case, when
|
|
* the outer cache needs flushing, there is no concurrent
|
|
* access to the cache controller to worry about and no
|
|
* special locking besides what is already provided by the
|
|
* MCPM state machinery is needed.
|
|
*/
|
|
|
|
/*
|
|
* Disable cluster-level coherency by masking
|
|
* incoming snoops and DVM messages:
|
|
*/
|
|
cci_disable_port_by_cpu(mpidr);
|
|
|
|
__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
|
|
} else {
|
|
arch_spin_unlock(&dcscb_lock);
|
|
|
|
/* Disable and flush the local CPU cache. */
|
|
v7_exit_coherency_flush(louis);
|
|
}
|
|
|
|
__mcpm_cpu_down(cpu, cluster);
|
|
|
|
/* Now we are prepared for power-down, do it: */
|
|
dsb();
|
|
if (!skip_wfi)
|
|
wfi();
|
|
|
|
/* Not dead at this point? Let our caller cope. */
|
|
}
|
|
|
|
static const struct mcpm_platform_ops dcscb_power_ops = {
|
|
.power_up = dcscb_power_up,
|
|
.power_down = dcscb_power_down,
|
|
};
|
|
|
|
static void __init dcscb_usage_count_init(void)
|
|
{
|
|
unsigned int mpidr, cpu, cluster;
|
|
|
|
mpidr = read_cpuid_mpidr();
|
|
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
|
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
|
|
|
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
|
BUG_ON(cluster >= 2 || !((1 << cpu) & dcscb_allcpus_mask[cluster]));
|
|
dcscb_use_count[cpu][cluster] = 1;
|
|
}
|
|
|
|
extern void dcscb_power_up_setup(unsigned int affinity_level);
|
|
|
|
static int __init dcscb_init(void)
|
|
{
|
|
struct device_node *node;
|
|
unsigned int cfg;
|
|
int ret;
|
|
|
|
if (!cci_probed())
|
|
return -ENODEV;
|
|
|
|
node = of_find_compatible_node(NULL, NULL, "arm,rtsm,dcscb");
|
|
if (!node)
|
|
return -ENODEV;
|
|
dcscb_base = of_iomap(node, 0);
|
|
if (!dcscb_base)
|
|
return -EADDRNOTAVAIL;
|
|
cfg = readl_relaxed(dcscb_base + DCS_CFG_R);
|
|
dcscb_allcpus_mask[0] = (1 << (((cfg >> 16) >> (0 << 2)) & 0xf)) - 1;
|
|
dcscb_allcpus_mask[1] = (1 << (((cfg >> 16) >> (1 << 2)) & 0xf)) - 1;
|
|
dcscb_usage_count_init();
|
|
|
|
ret = mcpm_platform_register(&dcscb_power_ops);
|
|
if (!ret)
|
|
ret = mcpm_sync_init(dcscb_power_up_setup);
|
|
if (ret) {
|
|
iounmap(dcscb_base);
|
|
return ret;
|
|
}
|
|
|
|
pr_info("VExpress DCSCB support installed\n");
|
|
|
|
/*
|
|
* Future entries into the kernel can now go
|
|
* through the cluster entry vectors.
|
|
*/
|
|
vexpress_flags_set(virt_to_phys(mcpm_entry_point));
|
|
|
|
return 0;
|
|
}
|
|
|
|
early_initcall(dcscb_init);
|