mirror of
https://github.com/torvalds/linux.git
synced 2024-11-14 16:12:02 +00:00
bbc9e2f452
The mapping between cpu/apicid and node is done via apicid_to_node[] on 64bit and apicid_2_node[] + apic->x86_32_numa_cpu_node() on 32bit. This difference makes it difficult to further unify 32 and 64bit NUMA handling. This patch unifies it by replacing both apicid_to_node[] and apicid_2_node[] with __apicid_to_node[] array, which is accessed by two accessors - set_apicid_to_node() and numa_cpu_node(). On 64bit, numa_cpu_node() always consults __apicid_to_node[] directly while 32bit goes through apic->numa_cpu_node() method to allow apic implementations to override it. srat_detect_node() for amd cpus contains workaround for broken NUMA configuration which assumes relationship between APIC ID, HT node ID and NUMA topology. Leave it to access __apicid_to_node[] directly as mapping through CPU might result in undesirable behavior change. The comment is reformatted and updated to note the ugliness. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Pekka Enberg <penberg@kernel.org> Cc: eric.dumazet@gmail.com Cc: yinghai@kernel.org Cc: brgerst@gmail.com Cc: gorcunov@gmail.com Cc: shaohui.zheng@intel.com Cc: rientjes@google.com LKML-Reference: <1295789862-25482-14-git-send-email-tj@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Cc: David Rientjes <rientjes@google.com>
287 lines
8.1 KiB
C
287 lines
8.1 KiB
C
/*
|
|
* Some of the code in this file has been gleaned from the 64 bit
|
|
* discontigmem support code base.
|
|
*
|
|
* Copyright (C) 2002, IBM Corp.
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
* Send feedback to Pat Gaughen <gone@us.ibm.com>
|
|
*/
|
|
#include <linux/mm.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/nodemask.h>
|
|
#include <asm/srat.h>
|
|
#include <asm/topology.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/e820.h>
|
|
|
|
/*
|
|
* proximity macros and definitions
|
|
*/
|
|
#define NODE_ARRAY_INDEX(x) ((x) / 8) /* 8 bits/char */
|
|
#define NODE_ARRAY_OFFSET(x) ((x) % 8) /* 8 bits/char */
|
|
#define BMAP_SET(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] |= 1 << NODE_ARRAY_OFFSET(bit))
|
|
#define BMAP_TEST(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] & (1 << NODE_ARRAY_OFFSET(bit)))
|
|
/* bitmap length; _PXM is at most 255 */
|
|
#define PXM_BITMAP_LEN (MAX_PXM_DOMAINS / 8)
|
|
static u8 __initdata pxm_bitmap[PXM_BITMAP_LEN]; /* bitmap of proximity domains */
|
|
|
|
#define MAX_CHUNKS_PER_NODE 3
|
|
#define MAXCHUNKS (MAX_CHUNKS_PER_NODE * MAX_NUMNODES)
|
|
struct node_memory_chunk_s {
|
|
unsigned long start_pfn;
|
|
unsigned long end_pfn;
|
|
u8 pxm; // proximity domain of node
|
|
u8 nid; // which cnode contains this chunk?
|
|
u8 bank; // which mem bank on this node
|
|
};
|
|
static struct node_memory_chunk_s __initdata node_memory_chunk[MAXCHUNKS];
|
|
|
|
static int __initdata num_memory_chunks; /* total number of memory chunks */
|
|
static u8 __initdata apicid_to_pxm[MAX_LOCAL_APIC];
|
|
|
|
int acpi_numa __initdata;
|
|
|
|
static __init void bad_srat(void)
|
|
{
|
|
printk(KERN_ERR "SRAT: SRAT not used.\n");
|
|
acpi_numa = -1;
|
|
num_memory_chunks = 0;
|
|
}
|
|
|
|
static __init inline int srat_disabled(void)
|
|
{
|
|
return numa_off || acpi_numa < 0;
|
|
}
|
|
|
|
/* Identify CPU proximity domains */
|
|
void __init
|
|
acpi_numa_processor_affinity_init(struct acpi_srat_cpu_affinity *cpu_affinity)
|
|
{
|
|
if (srat_disabled())
|
|
return;
|
|
if (cpu_affinity->header.length !=
|
|
sizeof(struct acpi_srat_cpu_affinity)) {
|
|
bad_srat();
|
|
return;
|
|
}
|
|
|
|
if ((cpu_affinity->flags & ACPI_SRAT_CPU_ENABLED) == 0)
|
|
return; /* empty entry */
|
|
|
|
/* mark this node as "seen" in node bitmap */
|
|
BMAP_SET(pxm_bitmap, cpu_affinity->proximity_domain_lo);
|
|
|
|
/* don't need to check apic_id here, because it is always 8 bits */
|
|
apicid_to_pxm[cpu_affinity->apic_id] = cpu_affinity->proximity_domain_lo;
|
|
|
|
printk(KERN_DEBUG "CPU %02x in proximity domain %02x\n",
|
|
cpu_affinity->apic_id, cpu_affinity->proximity_domain_lo);
|
|
}
|
|
|
|
/*
|
|
* Identify memory proximity domains and hot-remove capabilities.
|
|
* Fill node memory chunk list structure.
|
|
*/
|
|
void __init
|
|
acpi_numa_memory_affinity_init(struct acpi_srat_mem_affinity *memory_affinity)
|
|
{
|
|
unsigned long long paddr, size;
|
|
unsigned long start_pfn, end_pfn;
|
|
u8 pxm;
|
|
struct node_memory_chunk_s *p, *q, *pend;
|
|
|
|
if (srat_disabled())
|
|
return;
|
|
if (memory_affinity->header.length !=
|
|
sizeof(struct acpi_srat_mem_affinity)) {
|
|
bad_srat();
|
|
return;
|
|
}
|
|
|
|
if ((memory_affinity->flags & ACPI_SRAT_MEM_ENABLED) == 0)
|
|
return; /* empty entry */
|
|
|
|
pxm = memory_affinity->proximity_domain & 0xff;
|
|
|
|
/* mark this node as "seen" in node bitmap */
|
|
BMAP_SET(pxm_bitmap, pxm);
|
|
|
|
/* calculate info for memory chunk structure */
|
|
paddr = memory_affinity->base_address;
|
|
size = memory_affinity->length;
|
|
|
|
start_pfn = paddr >> PAGE_SHIFT;
|
|
end_pfn = (paddr + size) >> PAGE_SHIFT;
|
|
|
|
|
|
if (num_memory_chunks >= MAXCHUNKS) {
|
|
printk(KERN_WARNING "Too many mem chunks in SRAT."
|
|
" Ignoring %lld MBytes at %llx\n",
|
|
size/(1024*1024), paddr);
|
|
return;
|
|
}
|
|
|
|
/* Insertion sort based on base address */
|
|
pend = &node_memory_chunk[num_memory_chunks];
|
|
for (p = &node_memory_chunk[0]; p < pend; p++) {
|
|
if (start_pfn < p->start_pfn)
|
|
break;
|
|
}
|
|
if (p < pend) {
|
|
for (q = pend; q >= p; q--)
|
|
*(q + 1) = *q;
|
|
}
|
|
p->start_pfn = start_pfn;
|
|
p->end_pfn = end_pfn;
|
|
p->pxm = pxm;
|
|
|
|
num_memory_chunks++;
|
|
|
|
printk(KERN_DEBUG "Memory range %08lx to %08lx"
|
|
" in proximity domain %02x %s\n",
|
|
start_pfn, end_pfn,
|
|
pxm,
|
|
((memory_affinity->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) ?
|
|
"enabled and removable" : "enabled" ) );
|
|
}
|
|
|
|
/* Callback for SLIT parsing */
|
|
void __init acpi_numa_slit_init(struct acpi_table_slit *slit)
|
|
{
|
|
}
|
|
|
|
void acpi_numa_arch_fixup(void)
|
|
{
|
|
}
|
|
/*
|
|
* The SRAT table always lists ascending addresses, so can always
|
|
* assume that the first "start" address that you see is the real
|
|
* start of the node, and that the current "end" address is after
|
|
* the previous one.
|
|
*/
|
|
static __init int node_read_chunk(int nid, struct node_memory_chunk_s *memory_chunk)
|
|
{
|
|
/*
|
|
* Only add present memory as told by the e820.
|
|
* There is no guarantee from the SRAT that the memory it
|
|
* enumerates is present at boot time because it represents
|
|
* *possible* memory hotplug areas the same as normal RAM.
|
|
*/
|
|
if (memory_chunk->start_pfn >= max_pfn) {
|
|
printk(KERN_INFO "Ignoring SRAT pfns: %08lx - %08lx\n",
|
|
memory_chunk->start_pfn, memory_chunk->end_pfn);
|
|
return -1;
|
|
}
|
|
if (memory_chunk->nid != nid)
|
|
return -1;
|
|
|
|
if (!node_has_online_mem(nid))
|
|
node_start_pfn[nid] = memory_chunk->start_pfn;
|
|
|
|
if (node_start_pfn[nid] > memory_chunk->start_pfn)
|
|
node_start_pfn[nid] = memory_chunk->start_pfn;
|
|
|
|
if (node_end_pfn[nid] < memory_chunk->end_pfn)
|
|
node_end_pfn[nid] = memory_chunk->end_pfn;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __init get_memcfg_from_srat(void)
|
|
{
|
|
int i, j, nid;
|
|
|
|
|
|
if (srat_disabled())
|
|
goto out_fail;
|
|
|
|
if (num_memory_chunks == 0) {
|
|
printk(KERN_DEBUG
|
|
"could not find any ACPI SRAT memory areas.\n");
|
|
goto out_fail;
|
|
}
|
|
|
|
/* Calculate total number of nodes in system from PXM bitmap and create
|
|
* a set of sequential node IDs starting at zero. (ACPI doesn't seem
|
|
* to specify the range of _PXM values.)
|
|
*/
|
|
/*
|
|
* MCD - we no longer HAVE to number nodes sequentially. PXM domain
|
|
* numbers could go as high as 256, and MAX_NUMNODES for i386 is typically
|
|
* 32, so we will continue numbering them in this manner until MAX_NUMNODES
|
|
* approaches MAX_PXM_DOMAINS for i386.
|
|
*/
|
|
nodes_clear(node_online_map);
|
|
for (i = 0; i < MAX_PXM_DOMAINS; i++) {
|
|
if (BMAP_TEST(pxm_bitmap, i)) {
|
|
int nid = acpi_map_pxm_to_node(i);
|
|
node_set_online(nid);
|
|
}
|
|
}
|
|
BUG_ON(num_online_nodes() == 0);
|
|
|
|
/* set cnode id in memory chunk structure */
|
|
for (i = 0; i < num_memory_chunks; i++)
|
|
node_memory_chunk[i].nid = pxm_to_node(node_memory_chunk[i].pxm);
|
|
|
|
printk(KERN_DEBUG "pxm bitmap: ");
|
|
for (i = 0; i < sizeof(pxm_bitmap); i++) {
|
|
printk(KERN_CONT "%02x ", pxm_bitmap[i]);
|
|
}
|
|
printk(KERN_CONT "\n");
|
|
printk(KERN_DEBUG "Number of logical nodes in system = %d\n",
|
|
num_online_nodes());
|
|
printk(KERN_DEBUG "Number of memory chunks in system = %d\n",
|
|
num_memory_chunks);
|
|
|
|
for (i = 0; i < MAX_LOCAL_APIC; i++)
|
|
set_apicid_to_node(i, pxm_to_node(apicid_to_pxm[i]));
|
|
|
|
for (j = 0; j < num_memory_chunks; j++){
|
|
struct node_memory_chunk_s * chunk = &node_memory_chunk[j];
|
|
printk(KERN_DEBUG
|
|
"chunk %d nid %d start_pfn %08lx end_pfn %08lx\n",
|
|
j, chunk->nid, chunk->start_pfn, chunk->end_pfn);
|
|
if (node_read_chunk(chunk->nid, chunk))
|
|
continue;
|
|
|
|
memblock_x86_register_active_regions(chunk->nid, chunk->start_pfn,
|
|
min(chunk->end_pfn, max_pfn));
|
|
}
|
|
/* for out of order entries in SRAT */
|
|
sort_node_map();
|
|
|
|
for_each_online_node(nid) {
|
|
unsigned long start = node_start_pfn[nid];
|
|
unsigned long end = min(node_end_pfn[nid], max_pfn);
|
|
|
|
memory_present(nid, start, end);
|
|
node_remap_size[nid] = node_memmap_size_bytes(nid, start, end);
|
|
}
|
|
return 1;
|
|
out_fail:
|
|
printk(KERN_DEBUG "failed to get NUMA memory information from SRAT"
|
|
" table\n");
|
|
return 0;
|
|
}
|