linux/drivers/irqchip/irq-gic-v3.c
Marc Zyngier 464cb98f1c irqchip/gic-v3: Force propagation of the active state with a read-back
Christoffer reports that on some implementations, writing to
GICR_ISACTIVER0 (and similar GICD registers) can race badly with a guest
issuing a deactivation of that interrupt via the system register interface.

There are multiple reasons to this:

 - this uses an early write-acknoledgement memory type (nGnRE), meaning
   that the write may only have made it as far as some interconnect
   by the time the store is considered "done"

 - the GIC itself is allowed to buffer the write until it decides to
   take it into account (as long as it is in finite time)

The effects are that the activation may not have taken effect by the time
the kernel enters the guest, forcing an immediate exit, or that a guest
deactivation occurs before the interrupt is active, doing nothing.

In order to guarantee that the write to the ISACTIVER register has taken
effect, read back from it, forcing the interconnect to propagate the write,
and the GIC to process the write before returning the read.

Reported-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20241106084418.3794612-1-maz@kernel.org
2024-11-07 00:22:44 +01:00

2683 lines
67 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#define pr_fmt(fmt) "GICv3: " fmt
#include <linux/acpi.h>
#include <linux/cpu.h>
#include <linux/cpu_pm.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/irqdomain.h>
#include <linux/kernel.h>
#include <linux/kstrtox.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/percpu.h>
#include <linux/refcount.h>
#include <linux/slab.h>
#include <linux/iopoll.h>
#include <linux/irqchip.h>
#include <linux/irqchip/arm-gic-common.h>
#include <linux/irqchip/arm-gic-v3.h>
#include <linux/irqchip/arm-gic-v3-prio.h>
#include <linux/irqchip/irq-partition-percpu.h>
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/arm-smccc.h>
#include <asm/cputype.h>
#include <asm/exception.h>
#include <asm/smp_plat.h>
#include <asm/virt.h>
#include "irq-gic-common.h"
static u8 dist_prio_irq __ro_after_init = GICV3_PRIO_IRQ;
static u8 dist_prio_nmi __ro_after_init = GICV3_PRIO_NMI;
#define FLAGS_WORKAROUND_GICR_WAKER_MSM8996 (1ULL << 0)
#define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539 (1ULL << 1)
#define FLAGS_WORKAROUND_ASR_ERRATUM_8601001 (1ULL << 2)
#define GIC_IRQ_TYPE_PARTITION (GIC_IRQ_TYPE_LPI + 1)
static struct cpumask broken_rdists __read_mostly __maybe_unused;
struct redist_region {
void __iomem *redist_base;
phys_addr_t phys_base;
bool single_redist;
};
struct gic_chip_data {
struct fwnode_handle *fwnode;
phys_addr_t dist_phys_base;
void __iomem *dist_base;
struct redist_region *redist_regions;
struct rdists rdists;
struct irq_domain *domain;
u64 redist_stride;
u32 nr_redist_regions;
u64 flags;
bool has_rss;
unsigned int ppi_nr;
struct partition_desc **ppi_descs;
};
#define T241_CHIPS_MAX 4
static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly;
static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum);
static DEFINE_STATIC_KEY_FALSE(gic_arm64_2941627_erratum);
static struct gic_chip_data gic_data __read_mostly;
static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
#define GIC_ID_NR (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
#define GIC_LINE_NR min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
#define GIC_ESPI_NR GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
/*
* There are 16 SGIs, though we only actually use 8 in Linux. The other 8 SGIs
* are potentially stolen by the secure side. Some code, especially code dealing
* with hwirq IDs, is simplified by accounting for all 16.
*/
#define SGI_NR 16
/*
* The behaviours of RPR and PMR registers differ depending on the value of
* SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
* distributor and redistributors depends on whether security is enabled in the
* GIC.
*
* When security is enabled, non-secure priority values from the (re)distributor
* are presented to the GIC CPUIF as follow:
* (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
*
* If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
* EL1 are subject to a similar operation thus matching the priorities presented
* from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
* these values are unchanged by the GIC.
*
* see GICv3/GICv4 Architecture Specification (IHI0069D):
* - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
* priorities.
* - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
* interrupt.
*/
static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
static u32 gic_get_pribits(void)
{
u32 pribits;
pribits = gic_read_ctlr();
pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
pribits++;
return pribits;
}
static bool gic_has_group0(void)
{
u32 val;
u32 old_pmr;
old_pmr = gic_read_pmr();
/*
* Let's find out if Group0 is under control of EL3 or not by
* setting the highest possible, non-zero priority in PMR.
*
* If SCR_EL3.FIQ is set, the priority gets shifted down in
* order for the CPU interface to set bit 7, and keep the
* actual priority in the non-secure range. In the process, it
* looses the least significant bit and the actual priority
* becomes 0x80. Reading it back returns 0, indicating that
* we're don't have access to Group0.
*/
gic_write_pmr(BIT(8 - gic_get_pribits()));
val = gic_read_pmr();
gic_write_pmr(old_pmr);
return val != 0;
}
static inline bool gic_dist_security_disabled(void)
{
return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
}
static bool cpus_have_security_disabled __ro_after_init;
static bool cpus_have_group0 __ro_after_init;
static void __init gic_prio_init(void)
{
cpus_have_security_disabled = gic_dist_security_disabled();
cpus_have_group0 = gic_has_group0();
/*
* How priority values are used by the GIC depends on two things:
* the security state of the GIC (controlled by the GICD_CTRL.DS bit)
* and if Group 0 interrupts can be delivered to Linux in the non-secure
* world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
* way priorities are presented in ICC_PMR_EL1 and in the distributor:
*
* GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Distributor
* -------------------------------------------------------
* 1 | - | unchanged | unchanged
* -------------------------------------------------------
* 0 | 1 | non-secure | non-secure
* -------------------------------------------------------
* 0 | 0 | unchanged | non-secure
*
* In the non-secure view reads and writes are modified:
*
* - A value written is right-shifted by one and the MSB is set,
* forcing the priority into the non-secure range.
*
* - A value read is left-shifted by one.
*
* In the first two cases, where ICC_PMR_EL1 and the interrupt priority
* are both either modified or unchanged, we can use the same set of
* priorities.
*
* In the last case, where only the interrupt priorities are modified to
* be in the non-secure range, we program the non-secure values into
* the distributor to match the PMR values we want.
*/
if (cpus_have_group0 & !cpus_have_security_disabled) {
dist_prio_irq = __gicv3_prio_to_ns(dist_prio_irq);
dist_prio_nmi = __gicv3_prio_to_ns(dist_prio_nmi);
}
pr_info("GICD_CTRL.DS=%d, SCR_EL3.FIQ=%d\n",
cpus_have_security_disabled,
!cpus_have_group0);
}
/* rdist_nmi_refs[n] == number of cpus having the rdist interrupt n set as NMI */
static refcount_t *rdist_nmi_refs;
static struct gic_kvm_info gic_v3_kvm_info __initdata;
static DEFINE_PER_CPU(bool, has_rss);
#define MPIDR_RS(mpidr) (((mpidr) & 0xF0UL) >> 4)
#define gic_data_rdist() (this_cpu_ptr(gic_data.rdists.rdist))
#define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
#define gic_data_rdist_sgi_base() (gic_data_rdist_rd_base() + SZ_64K)
/* Our default, arbitrary priority value. Linux only uses one anyway. */
#define DEFAULT_PMR_VALUE 0xf0
enum gic_intid_range {
SGI_RANGE,
PPI_RANGE,
SPI_RANGE,
EPPI_RANGE,
ESPI_RANGE,
LPI_RANGE,
__INVALID_RANGE__
};
static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
{
switch (hwirq) {
case 0 ... 15:
return SGI_RANGE;
case 16 ... 31:
return PPI_RANGE;
case 32 ... 1019:
return SPI_RANGE;
case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
return EPPI_RANGE;
case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
return ESPI_RANGE;
case 8192 ... GENMASK(23, 0):
return LPI_RANGE;
default:
return __INVALID_RANGE__;
}
}
static enum gic_intid_range get_intid_range(struct irq_data *d)
{
return __get_intid_range(d->hwirq);
}
static inline bool gic_irq_in_rdist(struct irq_data *d)
{
switch (get_intid_range(d)) {
case SGI_RANGE:
case PPI_RANGE:
case EPPI_RANGE:
return true;
default:
return false;
}
}
static inline void __iomem *gic_dist_base_alias(struct irq_data *d)
{
if (static_branch_unlikely(&gic_nvidia_t241_erratum)) {
irq_hw_number_t hwirq = irqd_to_hwirq(d);
u32 chip;
/*
* For the erratum T241-FABRIC-4, read accesses to GICD_In{E}
* registers are directed to the chip that owns the SPI. The
* the alias region can also be used for writes to the
* GICD_In{E} except GICD_ICENABLERn. Each chip has support
* for 320 {E}SPIs. Mappings for all 4 chips:
* Chip0 = 32-351
* Chip1 = 352-671
* Chip2 = 672-991
* Chip3 = 4096-4415
*/
switch (__get_intid_range(hwirq)) {
case SPI_RANGE:
chip = (hwirq - 32) / 320;
break;
case ESPI_RANGE:
chip = 3;
break;
default:
unreachable();
}
return t241_dist_base_alias[chip];
}
return gic_data.dist_base;
}
static inline void __iomem *gic_dist_base(struct irq_data *d)
{
switch (get_intid_range(d)) {
case SGI_RANGE:
case PPI_RANGE:
case EPPI_RANGE:
/* SGI+PPI -> SGI_base for this CPU */
return gic_data_rdist_sgi_base();
case SPI_RANGE:
case ESPI_RANGE:
/* SPI -> dist_base */
return gic_data.dist_base;
default:
return NULL;
}
}
static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
{
u32 val;
int ret;
ret = readl_relaxed_poll_timeout_atomic(base + GICD_CTLR, val, !(val & bit),
1, USEC_PER_SEC);
if (ret == -ETIMEDOUT)
pr_err_ratelimited("RWP timeout, gone fishing\n");
}
/* Wait for completion of a distributor change */
static void gic_dist_wait_for_rwp(void)
{
gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
}
/* Wait for completion of a redistributor change */
static void gic_redist_wait_for_rwp(void)
{
gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
}
static void gic_enable_redist(bool enable)
{
void __iomem *rbase;
u32 val;
int ret;
if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
return;
rbase = gic_data_rdist_rd_base();
val = readl_relaxed(rbase + GICR_WAKER);
if (enable)
/* Wake up this CPU redistributor */
val &= ~GICR_WAKER_ProcessorSleep;
else
val |= GICR_WAKER_ProcessorSleep;
writel_relaxed(val, rbase + GICR_WAKER);
if (!enable) { /* Check that GICR_WAKER is writeable */
val = readl_relaxed(rbase + GICR_WAKER);
if (!(val & GICR_WAKER_ProcessorSleep))
return; /* No PM support in this redistributor */
}
ret = readl_relaxed_poll_timeout_atomic(rbase + GICR_WAKER, val,
enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep),
1, USEC_PER_SEC);
if (ret == -ETIMEDOUT) {
pr_err_ratelimited("redistributor failed to %s...\n",
enable ? "wakeup" : "sleep");
}
}
/*
* Routines to disable, enable, EOI and route interrupts
*/
static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
{
switch (get_intid_range(d)) {
case SGI_RANGE:
case PPI_RANGE:
case SPI_RANGE:
*index = d->hwirq;
return offset;
case EPPI_RANGE:
/*
* Contrary to the ESPI range, the EPPI range is contiguous
* to the PPI range in the registers, so let's adjust the
* displacement accordingly. Consistency is overrated.
*/
*index = d->hwirq - EPPI_BASE_INTID + 32;
return offset;
case ESPI_RANGE:
*index = d->hwirq - ESPI_BASE_INTID;
switch (offset) {
case GICD_ISENABLER:
return GICD_ISENABLERnE;
case GICD_ICENABLER:
return GICD_ICENABLERnE;
case GICD_ISPENDR:
return GICD_ISPENDRnE;
case GICD_ICPENDR:
return GICD_ICPENDRnE;
case GICD_ISACTIVER:
return GICD_ISACTIVERnE;
case GICD_ICACTIVER:
return GICD_ICACTIVERnE;
case GICD_IPRIORITYR:
return GICD_IPRIORITYRnE;
case GICD_ICFGR:
return GICD_ICFGRnE;
case GICD_IROUTER:
return GICD_IROUTERnE;
default:
break;
}
break;
default:
break;
}
WARN_ON(1);
*index = d->hwirq;
return offset;
}
static int gic_peek_irq(struct irq_data *d, u32 offset)
{
void __iomem *base;
u32 index, mask;
offset = convert_offset_index(d, offset, &index);
mask = 1 << (index % 32);
if (gic_irq_in_rdist(d))
base = gic_data_rdist_sgi_base();
else
base = gic_dist_base_alias(d);
return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
}
static void gic_poke_irq(struct irq_data *d, u32 offset)
{
void __iomem *base;
u32 index, mask;
offset = convert_offset_index(d, offset, &index);
mask = 1 << (index % 32);
if (gic_irq_in_rdist(d))
base = gic_data_rdist_sgi_base();
else
base = gic_data.dist_base;
writel_relaxed(mask, base + offset + (index / 32) * 4);
}
static void gic_mask_irq(struct irq_data *d)
{
gic_poke_irq(d, GICD_ICENABLER);
if (gic_irq_in_rdist(d))
gic_redist_wait_for_rwp();
else
gic_dist_wait_for_rwp();
}
static void gic_eoimode1_mask_irq(struct irq_data *d)
{
gic_mask_irq(d);
/*
* When masking a forwarded interrupt, make sure it is
* deactivated as well.
*
* This ensures that an interrupt that is getting
* disabled/masked will not get "stuck", because there is
* noone to deactivate it (guest is being terminated).
*/
if (irqd_is_forwarded_to_vcpu(d))
gic_poke_irq(d, GICD_ICACTIVER);
}
static void gic_unmask_irq(struct irq_data *d)
{
gic_poke_irq(d, GICD_ISENABLER);
}
static inline bool gic_supports_nmi(void)
{
return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
static_branch_likely(&supports_pseudo_nmis);
}
static int gic_irq_set_irqchip_state(struct irq_data *d,
enum irqchip_irq_state which, bool val)
{
u32 reg;
if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
return -EINVAL;
switch (which) {
case IRQCHIP_STATE_PENDING:
reg = val ? GICD_ISPENDR : GICD_ICPENDR;
break;
case IRQCHIP_STATE_ACTIVE:
reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
break;
case IRQCHIP_STATE_MASKED:
if (val) {
gic_mask_irq(d);
return 0;
}
reg = GICD_ISENABLER;
break;
default:
return -EINVAL;
}
gic_poke_irq(d, reg);
/*
* Force read-back to guarantee that the active state has taken
* effect, and won't race with a guest-driven deactivation.
*/
if (reg == GICD_ISACTIVER)
gic_peek_irq(d, reg);
return 0;
}
static int gic_irq_get_irqchip_state(struct irq_data *d,
enum irqchip_irq_state which, bool *val)
{
if (d->hwirq >= 8192) /* PPI/SPI only */
return -EINVAL;
switch (which) {
case IRQCHIP_STATE_PENDING:
*val = gic_peek_irq(d, GICD_ISPENDR);
break;
case IRQCHIP_STATE_ACTIVE:
*val = gic_peek_irq(d, GICD_ISACTIVER);
break;
case IRQCHIP_STATE_MASKED:
*val = !gic_peek_irq(d, GICD_ISENABLER);
break;
default:
return -EINVAL;
}
return 0;
}
static void gic_irq_set_prio(struct irq_data *d, u8 prio)
{
void __iomem *base = gic_dist_base(d);
u32 offset, index;
offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
writeb_relaxed(prio, base + offset + index);
}
static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
{
switch (__get_intid_range(hwirq)) {
case PPI_RANGE:
return hwirq - 16;
case EPPI_RANGE:
return hwirq - EPPI_BASE_INTID + 16;
default:
unreachable();
}
}
static u32 __gic_get_rdist_index(irq_hw_number_t hwirq)
{
switch (__get_intid_range(hwirq)) {
case SGI_RANGE:
case PPI_RANGE:
return hwirq;
case EPPI_RANGE:
return hwirq - EPPI_BASE_INTID + 32;
default:
unreachable();
}
}
static u32 gic_get_rdist_index(struct irq_data *d)
{
return __gic_get_rdist_index(d->hwirq);
}
static int gic_irq_nmi_setup(struct irq_data *d)
{
struct irq_desc *desc = irq_to_desc(d->irq);
if (!gic_supports_nmi())
return -EINVAL;
if (gic_peek_irq(d, GICD_ISENABLER)) {
pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
return -EINVAL;
}
/*
* A secondary irq_chip should be in charge of LPI request,
* it should not be possible to get there
*/
if (WARN_ON(irqd_to_hwirq(d) >= 8192))
return -EINVAL;
/* desc lock should already be held */
if (gic_irq_in_rdist(d)) {
u32 idx = gic_get_rdist_index(d);
/*
* Setting up a percpu interrupt as NMI, only switch handler
* for first NMI
*/
if (!refcount_inc_not_zero(&rdist_nmi_refs[idx])) {
refcount_set(&rdist_nmi_refs[idx], 1);
desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
}
} else {
desc->handle_irq = handle_fasteoi_nmi;
}
gic_irq_set_prio(d, dist_prio_nmi);
return 0;
}
static void gic_irq_nmi_teardown(struct irq_data *d)
{
struct irq_desc *desc = irq_to_desc(d->irq);
if (WARN_ON(!gic_supports_nmi()))
return;
if (gic_peek_irq(d, GICD_ISENABLER)) {
pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
return;
}
/*
* A secondary irq_chip should be in charge of LPI request,
* it should not be possible to get there
*/
if (WARN_ON(irqd_to_hwirq(d) >= 8192))
return;
/* desc lock should already be held */
if (gic_irq_in_rdist(d)) {
u32 idx = gic_get_rdist_index(d);
/* Tearing down NMI, only switch handler for last NMI */
if (refcount_dec_and_test(&rdist_nmi_refs[idx]))
desc->handle_irq = handle_percpu_devid_irq;
} else {
desc->handle_irq = handle_fasteoi_irq;
}
gic_irq_set_prio(d, dist_prio_irq);
}
static bool gic_arm64_erratum_2941627_needed(struct irq_data *d)
{
enum gic_intid_range range;
if (!static_branch_unlikely(&gic_arm64_2941627_erratum))
return false;
range = get_intid_range(d);
/*
* The workaround is needed if the IRQ is an SPI and
* the target cpu is different from the one we are
* executing on.
*/
return (range == SPI_RANGE || range == ESPI_RANGE) &&
!cpumask_test_cpu(raw_smp_processor_id(),
irq_data_get_effective_affinity_mask(d));
}
static void gic_eoi_irq(struct irq_data *d)
{
write_gicreg(irqd_to_hwirq(d), ICC_EOIR1_EL1);
isb();
if (gic_arm64_erratum_2941627_needed(d)) {
/*
* Make sure the GIC stream deactivate packet
* issued by ICC_EOIR1_EL1 has completed before
* deactivating through GICD_IACTIVER.
*/
dsb(sy);
gic_poke_irq(d, GICD_ICACTIVER);
}
}
static void gic_eoimode1_eoi_irq(struct irq_data *d)
{
/*
* No need to deactivate an LPI, or an interrupt that
* is is getting forwarded to a vcpu.
*/
if (irqd_to_hwirq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
return;
if (!gic_arm64_erratum_2941627_needed(d))
gic_write_dir(irqd_to_hwirq(d));
else
gic_poke_irq(d, GICD_ICACTIVER);
}
static int gic_set_type(struct irq_data *d, unsigned int type)
{
irq_hw_number_t irq = irqd_to_hwirq(d);
enum gic_intid_range range;
void __iomem *base;
u32 offset, index;
int ret;
range = get_intid_range(d);
/* Interrupt configuration for SGIs can't be changed */
if (range == SGI_RANGE)
return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
/* SPIs have restrictions on the supported types */
if ((range == SPI_RANGE || range == ESPI_RANGE) &&
type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
return -EINVAL;
if (gic_irq_in_rdist(d))
base = gic_data_rdist_sgi_base();
else
base = gic_dist_base_alias(d);
offset = convert_offset_index(d, GICD_ICFGR, &index);
ret = gic_configure_irq(index, type, base + offset);
if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
/* Misconfigured PPIs are usually not fatal */
pr_warn("GIC: PPI INTID%ld is secure or misconfigured\n", irq);
ret = 0;
}
return ret;
}
static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
{
if (get_intid_range(d) == SGI_RANGE)
return -EINVAL;
if (vcpu)
irqd_set_forwarded_to_vcpu(d);
else
irqd_clr_forwarded_to_vcpu(d);
return 0;
}
static u64 gic_cpu_to_affinity(int cpu)
{
u64 mpidr = cpu_logical_map(cpu);
u64 aff;
/* ASR8601 needs to have its affinities shifted down... */
if (unlikely(gic_data.flags & FLAGS_WORKAROUND_ASR_ERRATUM_8601001))
mpidr = (MPIDR_AFFINITY_LEVEL(mpidr, 1) |
(MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8));
aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
MPIDR_AFFINITY_LEVEL(mpidr, 0));
return aff;
}
static void gic_deactivate_unhandled(u32 irqnr)
{
if (static_branch_likely(&supports_deactivate_key)) {
if (irqnr < 8192)
gic_write_dir(irqnr);
} else {
write_gicreg(irqnr, ICC_EOIR1_EL1);
isb();
}
}
/*
* Follow a read of the IAR with any HW maintenance that needs to happen prior
* to invoking the relevant IRQ handler. We must do two things:
*
* (1) Ensure instruction ordering between a read of IAR and subsequent
* instructions in the IRQ handler using an ISB.
*
* It is possible for the IAR to report an IRQ which was signalled *after*
* the CPU took an IRQ exception as multiple interrupts can race to be
* recognized by the GIC, earlier interrupts could be withdrawn, and/or
* later interrupts could be prioritized by the GIC.
*
* For devices which are tightly coupled to the CPU, such as PMUs, a
* context synchronization event is necessary to ensure that system
* register state is not stale, as these may have been indirectly written
* *after* exception entry.
*
* (2) Deactivate the interrupt when EOI mode 1 is in use.
*/
static inline void gic_complete_ack(u32 irqnr)
{
if (static_branch_likely(&supports_deactivate_key))
write_gicreg(irqnr, ICC_EOIR1_EL1);
isb();
}
static bool gic_rpr_is_nmi_prio(void)
{
if (!gic_supports_nmi())
return false;
return unlikely(gic_read_rpr() == GICV3_PRIO_NMI);
}
static bool gic_irqnr_is_special(u32 irqnr)
{
return irqnr >= 1020 && irqnr <= 1023;
}
static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
{
if (gic_irqnr_is_special(irqnr))
return;
gic_complete_ack(irqnr);
if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
gic_deactivate_unhandled(irqnr);
}
}
static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
{
if (gic_irqnr_is_special(irqnr))
return;
gic_complete_ack(irqnr);
if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
gic_deactivate_unhandled(irqnr);
}
}
/*
* An exception has been taken from a context with IRQs enabled, and this could
* be an IRQ or an NMI.
*
* The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
* DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
* after handling any NMI but before handling any IRQ.
*
* The entry code has performed IRQ entry, and if an NMI is detected we must
* perform NMI entry/exit around invoking the handler.
*/
static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
{
bool is_nmi;
u32 irqnr;
irqnr = gic_read_iar();
is_nmi = gic_rpr_is_nmi_prio();
if (is_nmi) {
nmi_enter();
__gic_handle_nmi(irqnr, regs);
nmi_exit();
}
if (gic_prio_masking_enabled()) {
gic_pmr_mask_irqs();
gic_arch_enable_irqs();
}
if (!is_nmi)
__gic_handle_irq(irqnr, regs);
}
/*
* An exception has been taken from a context with IRQs disabled, which can only
* be an NMI.
*
* The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
* DAIF.IF (and ICC_PMR_EL1) unchanged.
*
* The entry code has performed NMI entry.
*/
static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
{
u64 pmr;
u32 irqnr;
/*
* We were in a context with IRQs disabled. However, the
* entry code has set PMR to a value that allows any
* interrupt to be acknowledged, and not just NMIs. This can
* lead to surprising effects if the NMI has been retired in
* the meantime, and that there is an IRQ pending. The IRQ
* would then be taken in NMI context, something that nobody
* wants to debug twice.
*
* Until we sort this, drop PMR again to a level that will
* actually only allow NMIs before reading IAR, and then
* restore it to what it was.
*/
pmr = gic_read_pmr();
gic_pmr_mask_irqs();
isb();
irqnr = gic_read_iar();
gic_write_pmr(pmr);
__gic_handle_nmi(irqnr, regs);
}
static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
{
if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
__gic_handle_irq_from_irqsoff(regs);
else
__gic_handle_irq_from_irqson(regs);
}
static void __init gic_dist_init(void)
{
unsigned int i;
u64 affinity;
void __iomem *base = gic_data.dist_base;
u32 val;
/* Disable the distributor */
writel_relaxed(0, base + GICD_CTLR);
gic_dist_wait_for_rwp();
/*
* Configure SPIs as non-secure Group-1. This will only matter
* if the GIC only has a single security state. This will not
* do the right thing if the kernel is running in secure mode,
* but that's not the intended use case anyway.
*/
for (i = 32; i < GIC_LINE_NR; i += 32)
writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
/* Extended SPI range, not handled by the GICv2/GICv3 common code */
for (i = 0; i < GIC_ESPI_NR; i += 32) {
writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
}
for (i = 0; i < GIC_ESPI_NR; i += 32)
writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
for (i = 0; i < GIC_ESPI_NR; i += 16)
writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
for (i = 0; i < GIC_ESPI_NR; i += 4)
writel_relaxed(REPEAT_BYTE_U32(dist_prio_irq),
base + GICD_IPRIORITYRnE + i);
/* Now do the common stuff */
gic_dist_config(base, GIC_LINE_NR, dist_prio_irq);
val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
pr_info("Enabling SGIs without active state\n");
val |= GICD_CTLR_nASSGIreq;
}
/* Enable distributor with ARE, Group1, and wait for it to drain */
writel_relaxed(val, base + GICD_CTLR);
gic_dist_wait_for_rwp();
/*
* Set all global interrupts to the boot CPU only. ARE must be
* enabled.
*/
affinity = gic_cpu_to_affinity(smp_processor_id());
for (i = 32; i < GIC_LINE_NR; i++)
gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
for (i = 0; i < GIC_ESPI_NR; i++)
gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
}
static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
{
int ret = -ENODEV;
int i;
for (i = 0; i < gic_data.nr_redist_regions; i++) {
void __iomem *ptr = gic_data.redist_regions[i].redist_base;
u64 typer;
u32 reg;
reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
if (reg != GIC_PIDR2_ARCH_GICv3 &&
reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
pr_warn("No redistributor present @%p\n", ptr);
break;
}
do {
typer = gic_read_typer(ptr + GICR_TYPER);
ret = fn(gic_data.redist_regions + i, ptr);
if (!ret)
return 0;
if (gic_data.redist_regions[i].single_redist)
break;
if (gic_data.redist_stride) {
ptr += gic_data.redist_stride;
} else {
ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
if (typer & GICR_TYPER_VLPIS)
ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
}
} while (!(typer & GICR_TYPER_LAST));
}
return ret ? -ENODEV : 0;
}
static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
{
unsigned long mpidr;
u64 typer;
u32 aff;
/*
* Convert affinity to a 32bit value that can be matched to
* GICR_TYPER bits [63:32].
*/
mpidr = gic_cpu_to_affinity(smp_processor_id());
aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
MPIDR_AFFINITY_LEVEL(mpidr, 0));
typer = gic_read_typer(ptr + GICR_TYPER);
if ((typer >> 32) == aff) {
u64 offset = ptr - region->redist_base;
raw_spin_lock_init(&gic_data_rdist()->rd_lock);
gic_data_rdist_rd_base() = ptr;
gic_data_rdist()->phys_base = region->phys_base + offset;
pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
smp_processor_id(), mpidr,
(int)(region - gic_data.redist_regions),
&gic_data_rdist()->phys_base);
return 0;
}
/* Try next one */
return 1;
}
static int gic_populate_rdist(void)
{
if (gic_iterate_rdists(__gic_populate_rdist) == 0)
return 0;
/* We couldn't even deal with ourselves... */
WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
smp_processor_id(),
(unsigned long)cpu_logical_map(smp_processor_id()));
return -ENODEV;
}
static int __gic_update_rdist_properties(struct redist_region *region,
void __iomem *ptr)
{
u64 typer = gic_read_typer(ptr + GICR_TYPER);
u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
/* Boot-time cleanup */
if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
u64 val;
/* Deactivate any present vPE */
val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
if (val & GICR_VPENDBASER_Valid)
gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
ptr + SZ_128K + GICR_VPENDBASER);
/* Mark the VPE table as invalid */
val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
val &= ~GICR_VPROPBASER_4_1_VALID;
gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
}
gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
/*
* TYPER.RVPEID implies some form of DirectLPI, no matter what the
* doc says... :-/ And CTLR.IR implies another subset of DirectLPI
* that the ITS driver can make use of for LPIs (and not VLPIs).
*
* These are 3 different ways to express the same thing, depending
* on the revision of the architecture and its relaxations over
* time. Just group them under the 'direct_lpi' banner.
*/
gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
!!(ctlr & GICR_CTLR_IR) |
gic_data.rdists.has_rvpeid);
gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
/* Detect non-sensical configurations */
if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
gic_data.rdists.has_direct_lpi = false;
gic_data.rdists.has_vlpis = false;
gic_data.rdists.has_rvpeid = false;
}
gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
return 1;
}
static void gic_update_rdist_properties(void)
{
gic_data.ppi_nr = UINT_MAX;
gic_iterate_rdists(__gic_update_rdist_properties);
if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
gic_data.ppi_nr = 0;
pr_info("GICv3 features: %d PPIs%s%s\n",
gic_data.ppi_nr,
gic_data.has_rss ? ", RSS" : "",
gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
if (gic_data.rdists.has_vlpis)
pr_info("GICv4 features: %s%s%s\n",
gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
gic_data.rdists.has_rvpeid ? "RVPEID " : "",
gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
}
static void gic_cpu_sys_reg_enable(void)
{
/*
* Need to check that the SRE bit has actually been set. If
* not, it means that SRE is disabled at EL2. We're going to
* die painfully, and there is nothing we can do about it.
*
* Kindly inform the luser.
*/
if (!gic_enable_sre())
pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
}
static void gic_cpu_sys_reg_init(void)
{
int i, cpu = smp_processor_id();
u64 mpidr = gic_cpu_to_affinity(cpu);
u64 need_rss = MPIDR_RS(mpidr);
bool group0;
u32 pribits;
pribits = gic_get_pribits();
group0 = gic_has_group0();
/* Set priority mask register */
if (!gic_prio_masking_enabled()) {
write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
} else if (gic_supports_nmi()) {
/*
* Check that all CPUs use the same priority space.
*
* If there's a mismatch with the boot CPU, the system is
* likely to die as interrupt masking will not work properly on
* all CPUs.
*/
WARN_ON(group0 != cpus_have_group0);
WARN_ON(gic_dist_security_disabled() != cpus_have_security_disabled);
}
/*
* Some firmwares hand over to the kernel with the BPR changed from
* its reset value (and with a value large enough to prevent
* any pre-emptive interrupts from working at all). Writing a zero
* to BPR restores is reset value.
*/
gic_write_bpr1(0);
if (static_branch_likely(&supports_deactivate_key)) {
/* EOI drops priority only (mode 1) */
gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
} else {
/* EOI deactivates interrupt too (mode 0) */
gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
}
/* Always whack Group0 before Group1 */
if (group0) {
switch(pribits) {
case 8:
case 7:
write_gicreg(0, ICC_AP0R3_EL1);
write_gicreg(0, ICC_AP0R2_EL1);
fallthrough;
case 6:
write_gicreg(0, ICC_AP0R1_EL1);
fallthrough;
case 5:
case 4:
write_gicreg(0, ICC_AP0R0_EL1);
}
isb();
}
switch(pribits) {
case 8:
case 7:
write_gicreg(0, ICC_AP1R3_EL1);
write_gicreg(0, ICC_AP1R2_EL1);
fallthrough;
case 6:
write_gicreg(0, ICC_AP1R1_EL1);
fallthrough;
case 5:
case 4:
write_gicreg(0, ICC_AP1R0_EL1);
}
isb();
/* ... and let's hit the road... */
gic_write_grpen1(1);
/* Keep the RSS capability status in per_cpu variable */
per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
/* Check all the CPUs have capable of sending SGIs to other CPUs */
for_each_online_cpu(i) {
bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
need_rss |= MPIDR_RS(gic_cpu_to_affinity(i));
if (need_rss && (!have_rss))
pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
cpu, (unsigned long)mpidr,
i, (unsigned long)gic_cpu_to_affinity(i));
}
/**
* GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
* writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
* UNPREDICTABLE choice of :
* - The write is ignored.
* - The RS field is treated as 0.
*/
if (need_rss && (!gic_data.has_rss))
pr_crit_once("RSS is required but GICD doesn't support it\n");
}
static bool gicv3_nolpi;
static int __init gicv3_nolpi_cfg(char *buf)
{
return kstrtobool(buf, &gicv3_nolpi);
}
early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
static int gic_dist_supports_lpis(void)
{
return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
!gicv3_nolpi);
}
static void gic_cpu_init(void)
{
void __iomem *rbase;
int i;
/* Register ourselves with the rest of the world */
if (gic_populate_rdist())
return;
gic_enable_redist(true);
WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
!(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
"Distributor has extended ranges, but CPU%d doesn't\n",
smp_processor_id());
rbase = gic_data_rdist_sgi_base();
/* Configure SGIs/PPIs as non-secure Group-1 */
for (i = 0; i < gic_data.ppi_nr + SGI_NR; i += 32)
writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
gic_cpu_config(rbase, gic_data.ppi_nr + SGI_NR, dist_prio_irq);
gic_redist_wait_for_rwp();
/* initialise system registers */
gic_cpu_sys_reg_init();
}
#ifdef CONFIG_SMP
#define MPIDR_TO_SGI_RS(mpidr) (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
#define MPIDR_TO_SGI_CLUSTER_ID(mpidr) ((mpidr) & ~0xFUL)
/*
* gic_starting_cpu() is called after the last point where cpuhp is allowed
* to fail. So pre check for problems earlier.
*/
static int gic_check_rdist(unsigned int cpu)
{
if (cpumask_test_cpu(cpu, &broken_rdists))
return -EINVAL;
return 0;
}
static int gic_starting_cpu(unsigned int cpu)
{
gic_cpu_sys_reg_enable();
gic_cpu_init();
if (gic_dist_supports_lpis())
its_cpu_init();
return 0;
}
static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
unsigned long cluster_id)
{
int next_cpu, cpu = *base_cpu;
unsigned long mpidr;
u16 tlist = 0;
mpidr = gic_cpu_to_affinity(cpu);
while (cpu < nr_cpu_ids) {
tlist |= 1 << (mpidr & 0xf);
next_cpu = cpumask_next(cpu, mask);
if (next_cpu >= nr_cpu_ids)
goto out;
cpu = next_cpu;
mpidr = gic_cpu_to_affinity(cpu);
if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
cpu--;
goto out;
}
}
out:
*base_cpu = cpu;
return tlist;
}
#define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
{
u64 val;
val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) |
MPIDR_TO_SGI_AFFINITY(cluster_id, 2) |
irq << ICC_SGI1R_SGI_ID_SHIFT |
MPIDR_TO_SGI_AFFINITY(cluster_id, 1) |
MPIDR_TO_SGI_RS(cluster_id) |
tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
gic_write_sgi1r(val);
}
static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
{
int cpu;
if (WARN_ON(d->hwirq >= 16))
return;
/*
* Ensure that stores to Normal memory are visible to the
* other CPUs before issuing the IPI.
*/
dsb(ishst);
for_each_cpu(cpu, mask) {
u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(gic_cpu_to_affinity(cpu));
u16 tlist;
tlist = gic_compute_target_list(&cpu, mask, cluster_id);
gic_send_sgi(cluster_id, tlist, d->hwirq);
}
/* Force the above writes to ICC_SGI1R_EL1 to be executed */
isb();
}
static void __init gic_smp_init(void)
{
struct irq_fwspec sgi_fwspec = {
.fwnode = gic_data.fwnode,
.param_count = 1,
};
int base_sgi;
cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
"irqchip/arm/gicv3:checkrdist",
gic_check_rdist, NULL);
cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
"irqchip/arm/gicv3:starting",
gic_starting_cpu, NULL);
/* Register all 8 non-secure SGIs */
base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec);
if (WARN_ON(base_sgi <= 0))
return;
set_smp_ipi_range(base_sgi, 8);
}
static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
bool force)
{
unsigned int cpu;
u32 offset, index;
void __iomem *reg;
int enabled;
u64 val;
if (force)
cpu = cpumask_first(mask_val);
else
cpu = cpumask_any_and(mask_val, cpu_online_mask);
if (cpu >= nr_cpu_ids)
return -EINVAL;
if (gic_irq_in_rdist(d))
return -EINVAL;
/* If interrupt was enabled, disable it first */
enabled = gic_peek_irq(d, GICD_ISENABLER);
if (enabled)
gic_mask_irq(d);
offset = convert_offset_index(d, GICD_IROUTER, &index);
reg = gic_dist_base(d) + offset + (index * 8);
val = gic_cpu_to_affinity(cpu);
gic_write_irouter(val, reg);
/*
* If the interrupt was enabled, enabled it again. Otherwise,
* just wait for the distributor to have digested our changes.
*/
if (enabled)
gic_unmask_irq(d);
irq_data_update_effective_affinity(d, cpumask_of(cpu));
return IRQ_SET_MASK_OK_DONE;
}
#else
#define gic_set_affinity NULL
#define gic_ipi_send_mask NULL
#define gic_smp_init() do { } while(0)
#endif
static int gic_retrigger(struct irq_data *data)
{
return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
}
#ifdef CONFIG_CPU_PM
static int gic_cpu_pm_notifier(struct notifier_block *self,
unsigned long cmd, void *v)
{
if (cmd == CPU_PM_EXIT) {
if (gic_dist_security_disabled())
gic_enable_redist(true);
gic_cpu_sys_reg_enable();
gic_cpu_sys_reg_init();
} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
gic_write_grpen1(0);
gic_enable_redist(false);
}
return NOTIFY_OK;
}
static struct notifier_block gic_cpu_pm_notifier_block = {
.notifier_call = gic_cpu_pm_notifier,
};
static void gic_cpu_pm_init(void)
{
cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
}
#else
static inline void gic_cpu_pm_init(void) { }
#endif /* CONFIG_CPU_PM */
static struct irq_chip gic_chip = {
.name = "GICv3",
.irq_mask = gic_mask_irq,
.irq_unmask = gic_unmask_irq,
.irq_eoi = gic_eoi_irq,
.irq_set_type = gic_set_type,
.irq_set_affinity = gic_set_affinity,
.irq_retrigger = gic_retrigger,
.irq_get_irqchip_state = gic_irq_get_irqchip_state,
.irq_set_irqchip_state = gic_irq_set_irqchip_state,
.irq_nmi_setup = gic_irq_nmi_setup,
.irq_nmi_teardown = gic_irq_nmi_teardown,
.ipi_send_mask = gic_ipi_send_mask,
.flags = IRQCHIP_SET_TYPE_MASKED |
IRQCHIP_SKIP_SET_WAKE |
IRQCHIP_MASK_ON_SUSPEND,
};
static struct irq_chip gic_eoimode1_chip = {
.name = "GICv3",
.irq_mask = gic_eoimode1_mask_irq,
.irq_unmask = gic_unmask_irq,
.irq_eoi = gic_eoimode1_eoi_irq,
.irq_set_type = gic_set_type,
.irq_set_affinity = gic_set_affinity,
.irq_retrigger = gic_retrigger,
.irq_get_irqchip_state = gic_irq_get_irqchip_state,
.irq_set_irqchip_state = gic_irq_set_irqchip_state,
.irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity,
.irq_nmi_setup = gic_irq_nmi_setup,
.irq_nmi_teardown = gic_irq_nmi_teardown,
.ipi_send_mask = gic_ipi_send_mask,
.flags = IRQCHIP_SET_TYPE_MASKED |
IRQCHIP_SKIP_SET_WAKE |
IRQCHIP_MASK_ON_SUSPEND,
};
static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
irq_hw_number_t hw)
{
struct irq_chip *chip = &gic_chip;
struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
if (static_branch_likely(&supports_deactivate_key))
chip = &gic_eoimode1_chip;
switch (__get_intid_range(hw)) {
case SGI_RANGE:
case PPI_RANGE:
case EPPI_RANGE:
irq_set_percpu_devid(irq);
irq_domain_set_info(d, irq, hw, chip, d->host_data,
handle_percpu_devid_irq, NULL, NULL);
break;
case SPI_RANGE:
case ESPI_RANGE:
irq_domain_set_info(d, irq, hw, chip, d->host_data,
handle_fasteoi_irq, NULL, NULL);
irq_set_probe(irq);
irqd_set_single_target(irqd);
break;
case LPI_RANGE:
if (!gic_dist_supports_lpis())
return -EPERM;
irq_domain_set_info(d, irq, hw, chip, d->host_data,
handle_fasteoi_irq, NULL, NULL);
break;
default:
return -EPERM;
}
/* Prevents SW retriggers which mess up the ACK/EOI ordering */
irqd_set_handle_enforce_irqctx(irqd);
return 0;
}
static int gic_irq_domain_translate(struct irq_domain *d,
struct irq_fwspec *fwspec,
unsigned long *hwirq,
unsigned int *type)
{
if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
*hwirq = fwspec->param[0];
*type = IRQ_TYPE_EDGE_RISING;
return 0;
}
if (is_of_node(fwspec->fwnode)) {
if (fwspec->param_count < 3)
return -EINVAL;
switch (fwspec->param[0]) {
case 0: /* SPI */
*hwirq = fwspec->param[1] + 32;
break;
case 1: /* PPI */
*hwirq = fwspec->param[1] + 16;
break;
case 2: /* ESPI */
*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
break;
case 3: /* EPPI */
*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
break;
case GIC_IRQ_TYPE_LPI: /* LPI */
*hwirq = fwspec->param[1];
break;
case GIC_IRQ_TYPE_PARTITION:
*hwirq = fwspec->param[1];
if (fwspec->param[1] >= 16)
*hwirq += EPPI_BASE_INTID - 16;
else
*hwirq += 16;
break;
default:
return -EINVAL;
}
*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
/*
* Make it clear that broken DTs are... broken.
* Partitioned PPIs are an unfortunate exception.
*/
WARN_ON(*type == IRQ_TYPE_NONE &&
fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
return 0;
}
if (is_fwnode_irqchip(fwspec->fwnode)) {
if(fwspec->param_count != 2)
return -EINVAL;
if (fwspec->param[0] < 16) {
pr_err(FW_BUG "Illegal GSI%d translation request\n",
fwspec->param[0]);
return -EINVAL;
}
*hwirq = fwspec->param[0];
*type = fwspec->param[1];
WARN_ON(*type == IRQ_TYPE_NONE);
return 0;
}
return -EINVAL;
}
static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
int i, ret;
irq_hw_number_t hwirq;
unsigned int type = IRQ_TYPE_NONE;
struct irq_fwspec *fwspec = arg;
ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
if (ret)
return ret;
for (i = 0; i < nr_irqs; i++) {
ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
if (ret)
return ret;
}
return 0;
}
static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
int i;
for (i = 0; i < nr_irqs; i++) {
struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
irq_set_handler(virq + i, NULL);
irq_domain_reset_irq_data(d);
}
}
static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
irq_hw_number_t hwirq)
{
enum gic_intid_range range;
if (!gic_data.ppi_descs)
return false;
if (!is_of_node(fwspec->fwnode))
return false;
if (fwspec->param_count < 4 || !fwspec->param[3])
return false;
range = __get_intid_range(hwirq);
if (range != PPI_RANGE && range != EPPI_RANGE)
return false;
return true;
}
static int gic_irq_domain_select(struct irq_domain *d,
struct irq_fwspec *fwspec,
enum irq_domain_bus_token bus_token)
{
unsigned int type, ret, ppi_idx;
irq_hw_number_t hwirq;
/* Not for us */
if (fwspec->fwnode != d->fwnode)
return 0;
/* Handle pure domain searches */
if (!fwspec->param_count)
return d->bus_token == bus_token;
/* If this is not DT, then we have a single domain */
if (!is_of_node(fwspec->fwnode))
return 1;
ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
if (WARN_ON_ONCE(ret))
return 0;
if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
return d == gic_data.domain;
/*
* If this is a PPI and we have a 4th (non-null) parameter,
* then we need to match the partition domain.
*/
ppi_idx = __gic_get_ppi_index(hwirq);
return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
}
static const struct irq_domain_ops gic_irq_domain_ops = {
.translate = gic_irq_domain_translate,
.alloc = gic_irq_domain_alloc,
.free = gic_irq_domain_free,
.select = gic_irq_domain_select,
};
static int partition_domain_translate(struct irq_domain *d,
struct irq_fwspec *fwspec,
unsigned long *hwirq,
unsigned int *type)
{
unsigned long ppi_intid;
struct device_node *np;
unsigned int ppi_idx;
int ret;
if (!gic_data.ppi_descs)
return -ENOMEM;
np = of_find_node_by_phandle(fwspec->param[3]);
if (WARN_ON(!np))
return -EINVAL;
ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
if (WARN_ON_ONCE(ret))
return 0;
ppi_idx = __gic_get_ppi_index(ppi_intid);
ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
of_node_to_fwnode(np));
if (ret < 0)
return ret;
*hwirq = ret;
*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
return 0;
}
static const struct irq_domain_ops partition_domain_ops = {
.translate = partition_domain_translate,
.select = gic_irq_domain_select,
};
static bool gic_enable_quirk_msm8996(void *data)
{
struct gic_chip_data *d = data;
d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
return true;
}
static bool gic_enable_quirk_cavium_38539(void *data)
{
struct gic_chip_data *d = data;
d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
return true;
}
static bool gic_enable_quirk_hip06_07(void *data)
{
struct gic_chip_data *d = data;
/*
* HIP06 GICD_IIDR clashes with GIC-600 product number (despite
* not being an actual ARM implementation). The saving grace is
* that GIC-600 doesn't have ESPI, so nothing to do in that case.
* HIP07 doesn't even have a proper IIDR, and still pretends to
* have ESPI. In both cases, put them right.
*/
if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
/* Zero both ESPI and the RES0 field next to it... */
d->rdists.gicd_typer &= ~GENMASK(9, 8);
return true;
}
return false;
}
#define T241_CHIPN_MASK GENMASK_ULL(45, 44)
#define T241_CHIP_GICDA_OFFSET 0x1580000
#define SMCCC_SOC_ID_T241 0x036b0241
static bool gic_enable_quirk_nvidia_t241(void *data)
{
s32 soc_id = arm_smccc_get_soc_id_version();
unsigned long chip_bmask = 0;
phys_addr_t phys;
u32 i;
/* Check JEP106 code for NVIDIA T241 chip (036b:0241) */
if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241))
return false;
/* Find the chips based on GICR regions PHYS addr */
for (i = 0; i < gic_data.nr_redist_regions; i++) {
chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK,
(u64)gic_data.redist_regions[i].phys_base));
}
if (hweight32(chip_bmask) < 3)
return false;
/* Setup GICD alias regions */
for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) {
if (chip_bmask & BIT(i)) {
phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET;
phys |= FIELD_PREP(T241_CHIPN_MASK, i);
t241_dist_base_alias[i] = ioremap(phys, SZ_64K);
WARN_ON_ONCE(!t241_dist_base_alias[i]);
}
}
static_branch_enable(&gic_nvidia_t241_erratum);
return true;
}
static bool gic_enable_quirk_asr8601(void *data)
{
struct gic_chip_data *d = data;
d->flags |= FLAGS_WORKAROUND_ASR_ERRATUM_8601001;
return true;
}
static bool gic_enable_quirk_arm64_2941627(void *data)
{
static_branch_enable(&gic_arm64_2941627_erratum);
return true;
}
static bool rd_set_non_coherent(void *data)
{
struct gic_chip_data *d = data;
d->rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
return true;
}
static const struct gic_quirk gic_quirks[] = {
{
.desc = "GICv3: Qualcomm MSM8996 broken firmware",
.compatible = "qcom,msm8996-gic-v3",
.init = gic_enable_quirk_msm8996,
},
{
.desc = "GICv3: ASR erratum 8601001",
.compatible = "asr,asr8601-gic-v3",
.init = gic_enable_quirk_asr8601,
},
{
.desc = "GICv3: HIP06 erratum 161010803",
.iidr = 0x0204043b,
.mask = 0xffffffff,
.init = gic_enable_quirk_hip06_07,
},
{
.desc = "GICv3: HIP07 erratum 161010803",
.iidr = 0x00000000,
.mask = 0xffffffff,
.init = gic_enable_quirk_hip06_07,
},
{
/*
* Reserved register accesses generate a Synchronous
* External Abort. This erratum applies to:
* - ThunderX: CN88xx
* - OCTEON TX: CN83xx, CN81xx
* - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
*/
.desc = "GICv3: Cavium erratum 38539",
.iidr = 0xa000034c,
.mask = 0xe8f00fff,
.init = gic_enable_quirk_cavium_38539,
},
{
.desc = "GICv3: NVIDIA erratum T241-FABRIC-4",
.iidr = 0x0402043b,
.mask = 0xffffffff,
.init = gic_enable_quirk_nvidia_t241,
},
{
/*
* GIC-700: 2941627 workaround - IP variant [0,1]
*
*/
.desc = "GICv3: ARM64 erratum 2941627",
.iidr = 0x0400043b,
.mask = 0xff0e0fff,
.init = gic_enable_quirk_arm64_2941627,
},
{
/*
* GIC-700: 2941627 workaround - IP variant [2]
*/
.desc = "GICv3: ARM64 erratum 2941627",
.iidr = 0x0402043b,
.mask = 0xff0f0fff,
.init = gic_enable_quirk_arm64_2941627,
},
{
.desc = "GICv3: non-coherent attribute",
.property = "dma-noncoherent",
.init = rd_set_non_coherent,
},
{
}
};
static void gic_enable_nmi_support(void)
{
int i;
if (!gic_prio_masking_enabled())
return;
rdist_nmi_refs = kcalloc(gic_data.ppi_nr + SGI_NR,
sizeof(*rdist_nmi_refs), GFP_KERNEL);
if (!rdist_nmi_refs)
return;
for (i = 0; i < gic_data.ppi_nr + SGI_NR; i++)
refcount_set(&rdist_nmi_refs[i], 0);
pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
gic_has_relaxed_pmr_sync() ? "relaxed" : "forced");
static_branch_enable(&supports_pseudo_nmis);
if (static_branch_likely(&supports_deactivate_key))
gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
else
gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
}
static int __init gic_init_bases(phys_addr_t dist_phys_base,
void __iomem *dist_base,
struct redist_region *rdist_regs,
u32 nr_redist_regions,
u64 redist_stride,
struct fwnode_handle *handle)
{
u32 typer;
int err;
if (!is_hyp_mode_available())
static_branch_disable(&supports_deactivate_key);
if (static_branch_likely(&supports_deactivate_key))
pr_info("GIC: Using split EOI/Deactivate mode\n");
gic_data.fwnode = handle;
gic_data.dist_phys_base = dist_phys_base;
gic_data.dist_base = dist_base;
gic_data.redist_regions = rdist_regs;
gic_data.nr_redist_regions = nr_redist_regions;
gic_data.redist_stride = redist_stride;
/*
* Find out how many interrupts are supported.
*/
typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
gic_data.rdists.gicd_typer = typer;
gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
gic_quirks, &gic_data);
pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
/*
* ThunderX1 explodes on reading GICD_TYPER2, in violation of the
* architecture spec (which says that reserved registers are RES0).
*/
if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
&gic_data);
gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) {
/* Disable GICv4.x features for the erratum T241-FABRIC-4 */
gic_data.rdists.has_rvpeid = true;
gic_data.rdists.has_vlpis = true;
gic_data.rdists.has_direct_lpi = true;
gic_data.rdists.has_vpend_valid_dirty = true;
}
if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
err = -ENOMEM;
goto out_free;
}
irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
if (typer & GICD_TYPER_MBIS) {
err = mbi_init(handle, gic_data.domain);
if (err)
pr_err("Failed to initialize MBIs\n");
}
set_handle_irq(gic_handle_irq);
gic_update_rdist_properties();
gic_cpu_sys_reg_enable();
gic_prio_init();
gic_dist_init();
gic_cpu_init();
gic_enable_nmi_support();
gic_smp_init();
gic_cpu_pm_init();
if (gic_dist_supports_lpis()) {
its_init(handle, &gic_data.rdists, gic_data.domain, dist_prio_irq);
its_cpu_init();
its_lpi_memreserve_init();
} else {
if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
gicv2m_init(handle, gic_data.domain);
}
return 0;
out_free:
if (gic_data.domain)
irq_domain_remove(gic_data.domain);
free_percpu(gic_data.rdists.rdist);
return err;
}
static int __init gic_validate_dist_version(void __iomem *dist_base)
{
u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
return -ENODEV;
return 0;
}
/* Create all possible partitions at boot time */
static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
{
struct device_node *parts_node, *child_part;
int part_idx = 0, i;
int nr_parts;
struct partition_affinity *parts;
parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
if (!parts_node)
return;
gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
if (!gic_data.ppi_descs)
goto out_put_node;
nr_parts = of_get_child_count(parts_node);
if (!nr_parts)
goto out_put_node;
parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
if (WARN_ON(!parts))
goto out_put_node;
for_each_child_of_node(parts_node, child_part) {
struct partition_affinity *part;
int n;
part = &parts[part_idx];
part->partition_id = of_node_to_fwnode(child_part);
pr_info("GIC: PPI partition %pOFn[%d] { ",
child_part, part_idx);
n = of_property_count_elems_of_size(child_part, "affinity",
sizeof(u32));
WARN_ON(n <= 0);
for (i = 0; i < n; i++) {
int err, cpu;
u32 cpu_phandle;
struct device_node *cpu_node;
err = of_property_read_u32_index(child_part, "affinity",
i, &cpu_phandle);
if (WARN_ON(err))
continue;
cpu_node = of_find_node_by_phandle(cpu_phandle);
if (WARN_ON(!cpu_node))
continue;
cpu = of_cpu_node_to_id(cpu_node);
if (WARN_ON(cpu < 0)) {
of_node_put(cpu_node);
continue;
}
pr_cont("%pOF[%d] ", cpu_node, cpu);
cpumask_set_cpu(cpu, &part->mask);
of_node_put(cpu_node);
}
pr_cont("}\n");
part_idx++;
}
for (i = 0; i < gic_data.ppi_nr; i++) {
unsigned int irq;
struct partition_desc *desc;
struct irq_fwspec ppi_fwspec = {
.fwnode = gic_data.fwnode,
.param_count = 3,
.param = {
[0] = GIC_IRQ_TYPE_PARTITION,
[1] = i,
[2] = IRQ_TYPE_NONE,
},
};
irq = irq_create_fwspec_mapping(&ppi_fwspec);
if (WARN_ON(!irq))
continue;
desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
irq, &partition_domain_ops);
if (WARN_ON(!desc))
continue;
gic_data.ppi_descs[i] = desc;
}
out_put_node:
of_node_put(parts_node);
}
static void __init gic_of_setup_kvm_info(struct device_node *node, u32 nr_redist_regions)
{
int ret;
struct resource r;
gic_v3_kvm_info.type = GIC_V3;
gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
if (!gic_v3_kvm_info.maint_irq)
return;
/* Also skip GICD, GICC, GICH */
ret = of_address_to_resource(node, nr_redist_regions + 3, &r);
if (!ret)
gic_v3_kvm_info.vcpu = r;
gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
vgic_set_kvm_info(&gic_v3_kvm_info);
}
static void gic_request_region(resource_size_t base, resource_size_t size,
const char *name)
{
if (!request_mem_region(base, size, name))
pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
name, &base);
}
static void __iomem *gic_of_iomap(struct device_node *node, int idx,
const char *name, struct resource *res)
{
void __iomem *base;
int ret;
ret = of_address_to_resource(node, idx, res);
if (ret)
return IOMEM_ERR_PTR(ret);
gic_request_region(res->start, resource_size(res), name);
base = of_iomap(node, idx);
return base ?: IOMEM_ERR_PTR(-ENOMEM);
}
static int __init gic_of_init(struct device_node *node, struct device_node *parent)
{
phys_addr_t dist_phys_base;
void __iomem *dist_base;
struct redist_region *rdist_regs;
struct resource res;
u64 redist_stride;
u32 nr_redist_regions;
int err, i;
dist_base = gic_of_iomap(node, 0, "GICD", &res);
if (IS_ERR(dist_base)) {
pr_err("%pOF: unable to map gic dist registers\n", node);
return PTR_ERR(dist_base);
}
dist_phys_base = res.start;
err = gic_validate_dist_version(dist_base);
if (err) {
pr_err("%pOF: no distributor detected, giving up\n", node);
goto out_unmap_dist;
}
if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
nr_redist_regions = 1;
rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
GFP_KERNEL);
if (!rdist_regs) {
err = -ENOMEM;
goto out_unmap_dist;
}
for (i = 0; i < nr_redist_regions; i++) {
rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res);
if (IS_ERR(rdist_regs[i].redist_base)) {
pr_err("%pOF: couldn't map region %d\n", node, i);
err = -ENODEV;
goto out_unmap_rdist;
}
rdist_regs[i].phys_base = res.start;
}
if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
redist_stride = 0;
gic_enable_of_quirks(node, gic_quirks, &gic_data);
err = gic_init_bases(dist_phys_base, dist_base, rdist_regs,
nr_redist_regions, redist_stride, &node->fwnode);
if (err)
goto out_unmap_rdist;
gic_populate_ppi_partitions(node);
if (static_branch_likely(&supports_deactivate_key))
gic_of_setup_kvm_info(node, nr_redist_regions);
return 0;
out_unmap_rdist:
for (i = 0; i < nr_redist_regions; i++)
if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
iounmap(rdist_regs[i].redist_base);
kfree(rdist_regs);
out_unmap_dist:
iounmap(dist_base);
return err;
}
IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
#ifdef CONFIG_ACPI
static struct
{
void __iomem *dist_base;
struct redist_region *redist_regs;
u32 nr_redist_regions;
bool single_redist;
int enabled_rdists;
u32 maint_irq;
int maint_irq_mode;
phys_addr_t vcpu_base;
} acpi_data __initdata;
static void __init
gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
{
static int count = 0;
acpi_data.redist_regs[count].phys_base = phys_base;
acpi_data.redist_regs[count].redist_base = redist_base;
acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
count++;
}
static int __init
gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_madt_generic_redistributor *redist =
(struct acpi_madt_generic_redistributor *)header;
void __iomem *redist_base;
redist_base = ioremap(redist->base_address, redist->length);
if (!redist_base) {
pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
return -ENOMEM;
}
if (acpi_get_madt_revision() >= 7 &&
(redist->flags & ACPI_MADT_GICR_NON_COHERENT))
gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
gic_request_region(redist->base_address, redist->length, "GICR");
gic_acpi_register_redist(redist->base_address, redist_base);
return 0;
}
static int __init
gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_madt_generic_interrupt *gicc =
(struct acpi_madt_generic_interrupt *)header;
u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
void __iomem *redist_base;
/* Neither enabled or online capable means it doesn't exist, skip it */
if (!(gicc->flags & (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE)))
return 0;
/*
* Capable but disabled CPUs can be brought online later. What about
* the redistributor? ACPI doesn't want to say!
* Virtual hotplug systems can use the MADT's "always-on" GICR entries.
* Otherwise, prevent such CPUs from being brought online.
*/
if (!(gicc->flags & ACPI_MADT_ENABLED)) {
int cpu = get_cpu_for_acpi_id(gicc->uid);
pr_warn("CPU %u's redistributor is inaccessible: this CPU can't be brought online\n", cpu);
if (cpu >= 0)
cpumask_set_cpu(cpu, &broken_rdists);
return 0;
}
redist_base = ioremap(gicc->gicr_base_address, size);
if (!redist_base)
return -ENOMEM;
gic_request_region(gicc->gicr_base_address, size, "GICR");
if (acpi_get_madt_revision() >= 7 &&
(gicc->flags & ACPI_MADT_GICC_NON_COHERENT))
gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
return 0;
}
static int __init gic_acpi_collect_gicr_base(void)
{
acpi_tbl_entry_handler redist_parser;
enum acpi_madt_type type;
if (acpi_data.single_redist) {
type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
redist_parser = gic_acpi_parse_madt_gicc;
} else {
type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
redist_parser = gic_acpi_parse_madt_redist;
}
/* Collect redistributor base addresses in GICR entries */
if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
return 0;
pr_info("No valid GICR entries exist\n");
return -ENODEV;
}
static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
const unsigned long end)
{
/* Subtable presence means that redist exists, that's it */
return 0;
}
static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_madt_generic_interrupt *gicc =
(struct acpi_madt_generic_interrupt *)header;
/*
* If GICC is enabled and has valid gicr base address, then it means
* GICR base is presented via GICC. The redistributor is only known to
* be accessible if the GICC is marked as enabled. If this bit is not
* set, we'd need to add the redistributor at runtime, which isn't
* supported.
*/
if (gicc->flags & ACPI_MADT_ENABLED && gicc->gicr_base_address)
acpi_data.enabled_rdists++;
return 0;
}
static int __init gic_acpi_count_gicr_regions(void)
{
int count;
/*
* Count how many redistributor regions we have. It is not allowed
* to mix redistributor description, GICR and GICC subtables have to be
* mutually exclusive.
*/
count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
gic_acpi_match_gicr, 0);
if (count > 0) {
acpi_data.single_redist = false;
return count;
}
count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
gic_acpi_match_gicc, 0);
if (count > 0) {
acpi_data.single_redist = true;
count = acpi_data.enabled_rdists;
}
return count;
}
static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
struct acpi_probe_entry *ape)
{
struct acpi_madt_generic_distributor *dist;
int count;
dist = (struct acpi_madt_generic_distributor *)header;
if (dist->version != ape->driver_data)
return false;
/* We need to do that exercise anyway, the sooner the better */
count = gic_acpi_count_gicr_regions();
if (count <= 0)
return false;
acpi_data.nr_redist_regions = count;
return true;
}
static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_madt_generic_interrupt *gicc =
(struct acpi_madt_generic_interrupt *)header;
int maint_irq_mode;
static int first_madt = true;
if (!(gicc->flags &
(ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE)))
return 0;
maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
if (first_madt) {
first_madt = false;
acpi_data.maint_irq = gicc->vgic_interrupt;
acpi_data.maint_irq_mode = maint_irq_mode;
acpi_data.vcpu_base = gicc->gicv_base_address;
return 0;
}
/*
* The maintenance interrupt and GICV should be the same for every CPU
*/
if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
(acpi_data.maint_irq_mode != maint_irq_mode) ||
(acpi_data.vcpu_base != gicc->gicv_base_address))
return -EINVAL;
return 0;
}
static bool __init gic_acpi_collect_virt_info(void)
{
int count;
count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
gic_acpi_parse_virt_madt_gicc, 0);
return (count > 0);
}
#define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
#define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K)
#define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K)
static void __init gic_acpi_setup_kvm_info(void)
{
int irq;
if (!gic_acpi_collect_virt_info()) {
pr_warn("Unable to get hardware information used for virtualization\n");
return;
}
gic_v3_kvm_info.type = GIC_V3;
irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
acpi_data.maint_irq_mode,
ACPI_ACTIVE_HIGH);
if (irq <= 0)
return;
gic_v3_kvm_info.maint_irq = irq;
if (acpi_data.vcpu_base) {
struct resource *vcpu = &gic_v3_kvm_info.vcpu;
vcpu->flags = IORESOURCE_MEM;
vcpu->start = acpi_data.vcpu_base;
vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
}
gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
vgic_set_kvm_info(&gic_v3_kvm_info);
}
static struct fwnode_handle *gsi_domain_handle;
static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
{
return gsi_domain_handle;
}
static int __init
gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
{
struct acpi_madt_generic_distributor *dist;
size_t size;
int i, err;
/* Get distributor base address */
dist = (struct acpi_madt_generic_distributor *)header;
acpi_data.dist_base = ioremap(dist->base_address,
ACPI_GICV3_DIST_MEM_SIZE);
if (!acpi_data.dist_base) {
pr_err("Unable to map GICD registers\n");
return -ENOMEM;
}
gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
err = gic_validate_dist_version(acpi_data.dist_base);
if (err) {
pr_err("No distributor detected at @%p, giving up\n",
acpi_data.dist_base);
goto out_dist_unmap;
}
size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
if (!acpi_data.redist_regs) {
err = -ENOMEM;
goto out_dist_unmap;
}
err = gic_acpi_collect_gicr_base();
if (err)
goto out_redist_unmap;
gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
if (!gsi_domain_handle) {
err = -ENOMEM;
goto out_redist_unmap;
}
err = gic_init_bases(dist->base_address, acpi_data.dist_base,
acpi_data.redist_regs, acpi_data.nr_redist_regions,
0, gsi_domain_handle);
if (err)
goto out_fwhandle_free;
acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
if (static_branch_likely(&supports_deactivate_key))
gic_acpi_setup_kvm_info();
return 0;
out_fwhandle_free:
irq_domain_free_fwnode(gsi_domain_handle);
out_redist_unmap:
for (i = 0; i < acpi_data.nr_redist_regions; i++)
if (acpi_data.redist_regs[i].redist_base)
iounmap(acpi_data.redist_regs[i].redist_base);
kfree(acpi_data.redist_regs);
out_dist_unmap:
iounmap(acpi_data.dist_base);
return err;
}
IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
gic_acpi_init);
IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
gic_acpi_init);
IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
gic_acpi_init);
#endif