linux/drivers/gpu/drm/nouveau/nv40_pm.c
Ben Skeggs 02a841d434 drm/nouveau: restructure source tree, split core from drm implementation
Future work will be headed in the way of separating the policy supplied by
the nouveau drm module from the mechanisms provided by the driver core.

There will be a couple of major classes (subdev, engine) of driver modules
that have clearly defined tasks, and the further directory structure change
is to reflect this.

No code changes here whatsoever, aside from fixing up a couple of include
file pathnames.

Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2012-10-03 13:12:43 +10:00

396 lines
9.7 KiB
C

/*
* Copyright 2011 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include "drmP.h"
#include "nouveau_drv.h"
#include <nouveau_bios.h>
#include "nouveau_pm.h"
#include "nouveau_hw.h"
#include <engine/fifo.h>
#define min2(a,b) ((a) < (b) ? (a) : (b))
static u32
read_pll_1(struct drm_device *dev, u32 reg)
{
u32 ctrl = nv_rd32(dev, reg + 0x00);
int P = (ctrl & 0x00070000) >> 16;
int N = (ctrl & 0x0000ff00) >> 8;
int M = (ctrl & 0x000000ff) >> 0;
u32 ref = 27000, clk = 0;
if (ctrl & 0x80000000)
clk = ref * N / M;
return clk >> P;
}
static u32
read_pll_2(struct drm_device *dev, u32 reg)
{
u32 ctrl = nv_rd32(dev, reg + 0x00);
u32 coef = nv_rd32(dev, reg + 0x04);
int N2 = (coef & 0xff000000) >> 24;
int M2 = (coef & 0x00ff0000) >> 16;
int N1 = (coef & 0x0000ff00) >> 8;
int M1 = (coef & 0x000000ff) >> 0;
int P = (ctrl & 0x00070000) >> 16;
u32 ref = 27000, clk = 0;
if ((ctrl & 0x80000000) && M1) {
clk = ref * N1 / M1;
if ((ctrl & 0x40000100) == 0x40000000) {
if (M2)
clk = clk * N2 / M2;
else
clk = 0;
}
}
return clk >> P;
}
static u32
read_clk(struct drm_device *dev, u32 src)
{
switch (src) {
case 3:
return read_pll_2(dev, 0x004000);
case 2:
return read_pll_1(dev, 0x004008);
default:
break;
}
return 0;
}
int
nv40_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
u32 ctrl = nv_rd32(dev, 0x00c040);
perflvl->core = read_clk(dev, (ctrl & 0x00000003) >> 0);
perflvl->shader = read_clk(dev, (ctrl & 0x00000030) >> 4);
perflvl->memory = read_pll_2(dev, 0x4020);
return 0;
}
struct nv40_pm_state {
u32 ctrl;
u32 npll_ctrl;
u32 npll_coef;
u32 spll;
u32 mpll_ctrl;
u32 mpll_coef;
};
static int
nv40_calc_pll(struct drm_device *dev, u32 reg, struct pll_lims *pll,
u32 clk, int *N1, int *M1, int *N2, int *M2, int *log2P)
{
struct nouveau_pll_vals coef;
int ret;
ret = get_pll_limits(dev, reg, pll);
if (ret)
return ret;
if (clk < pll->vco1.maxfreq)
pll->vco2.maxfreq = 0;
ret = nouveau_calc_pll_mnp(dev, pll, clk, &coef);
if (ret == 0)
return -ERANGE;
*N1 = coef.N1;
*M1 = coef.M1;
if (N2 && M2) {
if (pll->vco2.maxfreq) {
*N2 = coef.N2;
*M2 = coef.M2;
} else {
*N2 = 1;
*M2 = 1;
}
}
*log2P = coef.log2P;
return 0;
}
void *
nv40_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
struct nv40_pm_state *info;
struct pll_lims pll;
int N1, N2, M1, M2, log2P;
int ret;
info = kmalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return ERR_PTR(-ENOMEM);
/* core/geometric clock */
ret = nv40_calc_pll(dev, 0x004000, &pll, perflvl->core,
&N1, &M1, &N2, &M2, &log2P);
if (ret < 0)
goto out;
if (N2 == M2) {
info->npll_ctrl = 0x80000100 | (log2P << 16);
info->npll_coef = (N1 << 8) | M1;
} else {
info->npll_ctrl = 0xc0000000 | (log2P << 16);
info->npll_coef = (N2 << 24) | (M2 << 16) | (N1 << 8) | M1;
}
/* use the second PLL for shader/rop clock, if it differs from core */
if (perflvl->shader && perflvl->shader != perflvl->core) {
ret = nv40_calc_pll(dev, 0x004008, &pll, perflvl->shader,
&N1, &M1, NULL, NULL, &log2P);
if (ret < 0)
goto out;
info->spll = 0xc0000000 | (log2P << 16) | (N1 << 8) | M1;
info->ctrl = 0x00000223;
} else {
info->spll = 0x00000000;
info->ctrl = 0x00000333;
}
/* memory clock */
if (!perflvl->memory) {
info->mpll_ctrl = 0x00000000;
goto out;
}
ret = nv40_calc_pll(dev, 0x004020, &pll, perflvl->memory,
&N1, &M1, &N2, &M2, &log2P);
if (ret < 0)
goto out;
info->mpll_ctrl = 0x80000000 | (log2P << 16);
info->mpll_ctrl |= min2(pll.log2p_bias + log2P, pll.max_log2p) << 20;
if (N2 == M2) {
info->mpll_ctrl |= 0x00000100;
info->mpll_coef = (N1 << 8) | M1;
} else {
info->mpll_ctrl |= 0x40000000;
info->mpll_coef = (N2 << 24) | (M2 << 16) | (N1 << 8) | M1;
}
out:
if (ret < 0) {
kfree(info);
info = ERR_PTR(ret);
}
return info;
}
static bool
nv40_pm_gr_idle(void *data)
{
struct drm_device *dev = data;
if ((nv_rd32(dev, 0x400760) & 0x000000f0) >> 4 !=
(nv_rd32(dev, 0x400760) & 0x0000000f))
return false;
if (nv_rd32(dev, 0x400700))
return false;
return true;
}
int
nv40_pm_clocks_set(struct drm_device *dev, void *pre_state)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nv40_pm_state *info = pre_state;
unsigned long flags;
struct bit_entry M;
u32 crtc_mask = 0;
u8 sr1[2];
int i, ret = -EAGAIN;
/* determine which CRTCs are active, fetch VGA_SR1 for each */
for (i = 0; i < 2; i++) {
u32 vbl = nv_rd32(dev, 0x600808 + (i * 0x2000));
u32 cnt = 0;
do {
if (vbl != nv_rd32(dev, 0x600808 + (i * 0x2000))) {
nv_wr08(dev, 0x0c03c4 + (i * 0x2000), 0x01);
sr1[i] = nv_rd08(dev, 0x0c03c5 + (i * 0x2000));
if (!(sr1[i] & 0x20))
crtc_mask |= (1 << i);
break;
}
udelay(1);
} while (cnt++ < 32);
}
/* halt and idle engines */
spin_lock_irqsave(&dev_priv->context_switch_lock, flags);
nv_mask(dev, 0x002500, 0x00000001, 0x00000000);
if (!nv_wait(dev, 0x002500, 0x00000010, 0x00000000))
goto resume;
nv_mask(dev, 0x003220, 0x00000001, 0x00000000);
if (!nv_wait(dev, 0x003220, 0x00000010, 0x00000000))
goto resume;
nv_mask(dev, 0x003200, 0x00000001, 0x00000000);
nv04_fifo_cache_pull(dev, false);
if (!nv_wait_cb(dev, nv40_pm_gr_idle, dev))
goto resume;
ret = 0;
/* set engine clocks */
nv_mask(dev, 0x00c040, 0x00000333, 0x00000000);
nv_wr32(dev, 0x004004, info->npll_coef);
nv_mask(dev, 0x004000, 0xc0070100, info->npll_ctrl);
nv_mask(dev, 0x004008, 0xc007ffff, info->spll);
mdelay(5);
nv_mask(dev, 0x00c040, 0x00000333, info->ctrl);
if (!info->mpll_ctrl)
goto resume;
/* wait for vblank start on active crtcs, disable memory access */
for (i = 0; i < 2; i++) {
if (!(crtc_mask & (1 << i)))
continue;
nv_wait(dev, 0x600808 + (i * 0x2000), 0x00010000, 0x00000000);
nv_wait(dev, 0x600808 + (i * 0x2000), 0x00010000, 0x00010000);
nv_wr08(dev, 0x0c03c4 + (i * 0x2000), 0x01);
nv_wr08(dev, 0x0c03c5 + (i * 0x2000), sr1[i] | 0x20);
}
/* prepare ram for reclocking */
nv_wr32(dev, 0x1002d4, 0x00000001); /* precharge */
nv_wr32(dev, 0x1002d0, 0x00000001); /* refresh */
nv_wr32(dev, 0x1002d0, 0x00000001); /* refresh */
nv_mask(dev, 0x100210, 0x80000000, 0x00000000); /* no auto refresh */
nv_wr32(dev, 0x1002dc, 0x00000001); /* enable self-refresh */
/* change the PLL of each memory partition */
nv_mask(dev, 0x00c040, 0x0000c000, 0x00000000);
switch (dev_priv->chipset) {
case 0x40:
case 0x45:
case 0x41:
case 0x42:
case 0x47:
nv_mask(dev, 0x004044, 0xc0771100, info->mpll_ctrl);
nv_mask(dev, 0x00402c, 0xc0771100, info->mpll_ctrl);
nv_wr32(dev, 0x004048, info->mpll_coef);
nv_wr32(dev, 0x004030, info->mpll_coef);
case 0x43:
case 0x49:
case 0x4b:
nv_mask(dev, 0x004038, 0xc0771100, info->mpll_ctrl);
nv_wr32(dev, 0x00403c, info->mpll_coef);
default:
nv_mask(dev, 0x004020, 0xc0771100, info->mpll_ctrl);
nv_wr32(dev, 0x004024, info->mpll_coef);
break;
}
udelay(100);
nv_mask(dev, 0x00c040, 0x0000c000, 0x0000c000);
/* re-enable normal operation of memory controller */
nv_wr32(dev, 0x1002dc, 0x00000000);
nv_mask(dev, 0x100210, 0x80000000, 0x80000000);
udelay(100);
/* execute memory reset script from vbios */
if (!bit_table(dev, 'M', &M))
nouveau_bios_init_exec(dev, ROM16(M.data[0]));
/* make sure we're in vblank (hopefully the same one as before), and
* then re-enable crtc memory access
*/
for (i = 0; i < 2; i++) {
if (!(crtc_mask & (1 << i)))
continue;
nv_wait(dev, 0x600808 + (i * 0x2000), 0x00010000, 0x00010000);
nv_wr08(dev, 0x0c03c4 + (i * 0x2000), 0x01);
nv_wr08(dev, 0x0c03c5 + (i * 0x2000), sr1[i]);
}
/* resume engines */
resume:
nv_wr32(dev, 0x003250, 0x00000001);
nv_mask(dev, 0x003220, 0x00000001, 0x00000001);
nv_wr32(dev, 0x003200, 0x00000001);
nv_wr32(dev, 0x002500, 0x00000001);
spin_unlock_irqrestore(&dev_priv->context_switch_lock, flags);
kfree(info);
return ret;
}
int
nv40_pm_pwm_get(struct drm_device *dev, int line, u32 *divs, u32 *duty)
{
if (line == 2) {
u32 reg = nv_rd32(dev, 0x0010f0);
if (reg & 0x80000000) {
*duty = (reg & 0x7fff0000) >> 16;
*divs = (reg & 0x00007fff);
return 0;
}
} else
if (line == 9) {
u32 reg = nv_rd32(dev, 0x0015f4);
if (reg & 0x80000000) {
*divs = nv_rd32(dev, 0x0015f8);
*duty = (reg & 0x7fffffff);
return 0;
}
} else {
NV_ERROR(dev, "unknown pwm ctrl for gpio %d\n", line);
return -ENODEV;
}
return -EINVAL;
}
int
nv40_pm_pwm_set(struct drm_device *dev, int line, u32 divs, u32 duty)
{
if (line == 2) {
nv_wr32(dev, 0x0010f0, 0x80000000 | (duty << 16) | divs);
} else
if (line == 9) {
nv_wr32(dev, 0x0015f8, divs);
nv_wr32(dev, 0x0015f4, duty | 0x80000000);
} else {
NV_ERROR(dev, "unknown pwm ctrl for gpio %d\n", line);
return -ENODEV;
}
return 0;
}