mirror of
https://github.com/torvalds/linux.git
synced 2024-12-25 12:21:37 +00:00
6df9a95e63
When adjusting the enospc rules for relocation I ran into a deadlock because we were relocating the only system chunk and that forced us to try and allocate a new system chunk while holding locks in the chunk tree, which caused us to deadlock. To fix this I've moved all of the dev extent addition and chunk addition out to the delayed chunk completion stuff. We still keep the in-memory stuff which makes sure everything is consistent. One change I had to make was to search the commit root of the device tree to find a free dev extent, and hold onto any chunk em's that we allocated in that transaction so we do not allocate the same dev extent twice. This has the side effect of fixing a bug with balance that has been there ever since balance existed. Basically you can free a block group and it's dev extent and then immediately allocate that dev extent for a new block group and write stuff to that dev extent, all within the same transaction. So if you happen to crash during a balance you could come back to a completely broken file system. This patch should keep these sort of things from happening in the future since we won't be able to allocate free'd dev extents until after the transaction commits. This has passed all of the xfstests and my super annoying stress test followed by a balance. Thanks, Signed-off-by: Josef Bacik <jbacik@fusionio.com>
1948 lines
53 KiB
C
1948 lines
53 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/uuid.h>
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "locking.h"
|
|
#include "tree-log.h"
|
|
#include "inode-map.h"
|
|
#include "volumes.h"
|
|
#include "dev-replace.h"
|
|
|
|
#define BTRFS_ROOT_TRANS_TAG 0
|
|
|
|
static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
|
|
[TRANS_STATE_RUNNING] = 0U,
|
|
[TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
|
|
__TRANS_START),
|
|
[TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
|
|
__TRANS_START |
|
|
__TRANS_ATTACH),
|
|
[TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
|
|
__TRANS_START |
|
|
__TRANS_ATTACH |
|
|
__TRANS_JOIN),
|
|
[TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
|
|
__TRANS_START |
|
|
__TRANS_ATTACH |
|
|
__TRANS_JOIN |
|
|
__TRANS_JOIN_NOLOCK),
|
|
[TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
|
|
__TRANS_START |
|
|
__TRANS_ATTACH |
|
|
__TRANS_JOIN |
|
|
__TRANS_JOIN_NOLOCK),
|
|
};
|
|
|
|
static void put_transaction(struct btrfs_transaction *transaction)
|
|
{
|
|
WARN_ON(atomic_read(&transaction->use_count) == 0);
|
|
if (atomic_dec_and_test(&transaction->use_count)) {
|
|
BUG_ON(!list_empty(&transaction->list));
|
|
WARN_ON(transaction->delayed_refs.root.rb_node);
|
|
while (!list_empty(&transaction->pending_chunks)) {
|
|
struct extent_map *em;
|
|
|
|
em = list_first_entry(&transaction->pending_chunks,
|
|
struct extent_map, list);
|
|
list_del_init(&em->list);
|
|
free_extent_map(em);
|
|
}
|
|
kmem_cache_free(btrfs_transaction_cachep, transaction);
|
|
}
|
|
}
|
|
|
|
static noinline void switch_commit_root(struct btrfs_root *root)
|
|
{
|
|
free_extent_buffer(root->commit_root);
|
|
root->commit_root = btrfs_root_node(root);
|
|
}
|
|
|
|
static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
|
|
unsigned int type)
|
|
{
|
|
if (type & TRANS_EXTWRITERS)
|
|
atomic_inc(&trans->num_extwriters);
|
|
}
|
|
|
|
static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
|
|
unsigned int type)
|
|
{
|
|
if (type & TRANS_EXTWRITERS)
|
|
atomic_dec(&trans->num_extwriters);
|
|
}
|
|
|
|
static inline void extwriter_counter_init(struct btrfs_transaction *trans,
|
|
unsigned int type)
|
|
{
|
|
atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
|
|
}
|
|
|
|
static inline int extwriter_counter_read(struct btrfs_transaction *trans)
|
|
{
|
|
return atomic_read(&trans->num_extwriters);
|
|
}
|
|
|
|
/*
|
|
* either allocate a new transaction or hop into the existing one
|
|
*/
|
|
static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
|
|
{
|
|
struct btrfs_transaction *cur_trans;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
loop:
|
|
/* The file system has been taken offline. No new transactions. */
|
|
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
return -EROFS;
|
|
}
|
|
|
|
cur_trans = fs_info->running_transaction;
|
|
if (cur_trans) {
|
|
if (cur_trans->aborted) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
return cur_trans->aborted;
|
|
}
|
|
if (btrfs_blocked_trans_types[cur_trans->state] & type) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
return -EBUSY;
|
|
}
|
|
atomic_inc(&cur_trans->use_count);
|
|
atomic_inc(&cur_trans->num_writers);
|
|
extwriter_counter_inc(cur_trans, type);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
return 0;
|
|
}
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
/*
|
|
* If we are ATTACH, we just want to catch the current transaction,
|
|
* and commit it. If there is no transaction, just return ENOENT.
|
|
*/
|
|
if (type == TRANS_ATTACH)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* JOIN_NOLOCK only happens during the transaction commit, so
|
|
* it is impossible that ->running_transaction is NULL
|
|
*/
|
|
BUG_ON(type == TRANS_JOIN_NOLOCK);
|
|
|
|
cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
|
|
if (!cur_trans)
|
|
return -ENOMEM;
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
if (fs_info->running_transaction) {
|
|
/*
|
|
* someone started a transaction after we unlocked. Make sure
|
|
* to redo the checks above
|
|
*/
|
|
kmem_cache_free(btrfs_transaction_cachep, cur_trans);
|
|
goto loop;
|
|
} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
kmem_cache_free(btrfs_transaction_cachep, cur_trans);
|
|
return -EROFS;
|
|
}
|
|
|
|
atomic_set(&cur_trans->num_writers, 1);
|
|
extwriter_counter_init(cur_trans, type);
|
|
init_waitqueue_head(&cur_trans->writer_wait);
|
|
init_waitqueue_head(&cur_trans->commit_wait);
|
|
cur_trans->state = TRANS_STATE_RUNNING;
|
|
/*
|
|
* One for this trans handle, one so it will live on until we
|
|
* commit the transaction.
|
|
*/
|
|
atomic_set(&cur_trans->use_count, 2);
|
|
cur_trans->start_time = get_seconds();
|
|
|
|
cur_trans->delayed_refs.root = RB_ROOT;
|
|
cur_trans->delayed_refs.num_entries = 0;
|
|
cur_trans->delayed_refs.num_heads_ready = 0;
|
|
cur_trans->delayed_refs.num_heads = 0;
|
|
cur_trans->delayed_refs.flushing = 0;
|
|
cur_trans->delayed_refs.run_delayed_start = 0;
|
|
|
|
/*
|
|
* although the tree mod log is per file system and not per transaction,
|
|
* the log must never go across transaction boundaries.
|
|
*/
|
|
smp_mb();
|
|
if (!list_empty(&fs_info->tree_mod_seq_list))
|
|
WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
|
|
"creating a fresh transaction\n");
|
|
if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
|
|
WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
|
|
"creating a fresh transaction\n");
|
|
atomic64_set(&fs_info->tree_mod_seq, 0);
|
|
|
|
spin_lock_init(&cur_trans->delayed_refs.lock);
|
|
atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
|
|
atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
|
|
init_waitqueue_head(&cur_trans->delayed_refs.wait);
|
|
|
|
INIT_LIST_HEAD(&cur_trans->pending_snapshots);
|
|
INIT_LIST_HEAD(&cur_trans->ordered_operations);
|
|
INIT_LIST_HEAD(&cur_trans->pending_chunks);
|
|
list_add_tail(&cur_trans->list, &fs_info->trans_list);
|
|
extent_io_tree_init(&cur_trans->dirty_pages,
|
|
fs_info->btree_inode->i_mapping);
|
|
fs_info->generation++;
|
|
cur_trans->transid = fs_info->generation;
|
|
fs_info->running_transaction = cur_trans;
|
|
cur_trans->aborted = 0;
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this does all the record keeping required to make sure that a reference
|
|
* counted root is properly recorded in a given transaction. This is required
|
|
* to make sure the old root from before we joined the transaction is deleted
|
|
* when the transaction commits
|
|
*/
|
|
static int record_root_in_trans(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
if (root->ref_cows && root->last_trans < trans->transid) {
|
|
WARN_ON(root == root->fs_info->extent_root);
|
|
WARN_ON(root->commit_root != root->node);
|
|
|
|
/*
|
|
* see below for in_trans_setup usage rules
|
|
* we have the reloc mutex held now, so there
|
|
* is only one writer in this function
|
|
*/
|
|
root->in_trans_setup = 1;
|
|
|
|
/* make sure readers find in_trans_setup before
|
|
* they find our root->last_trans update
|
|
*/
|
|
smp_wmb();
|
|
|
|
spin_lock(&root->fs_info->fs_roots_radix_lock);
|
|
if (root->last_trans == trans->transid) {
|
|
spin_unlock(&root->fs_info->fs_roots_radix_lock);
|
|
return 0;
|
|
}
|
|
radix_tree_tag_set(&root->fs_info->fs_roots_radix,
|
|
(unsigned long)root->root_key.objectid,
|
|
BTRFS_ROOT_TRANS_TAG);
|
|
spin_unlock(&root->fs_info->fs_roots_radix_lock);
|
|
root->last_trans = trans->transid;
|
|
|
|
/* this is pretty tricky. We don't want to
|
|
* take the relocation lock in btrfs_record_root_in_trans
|
|
* unless we're really doing the first setup for this root in
|
|
* this transaction.
|
|
*
|
|
* Normally we'd use root->last_trans as a flag to decide
|
|
* if we want to take the expensive mutex.
|
|
*
|
|
* But, we have to set root->last_trans before we
|
|
* init the relocation root, otherwise, we trip over warnings
|
|
* in ctree.c. The solution used here is to flag ourselves
|
|
* with root->in_trans_setup. When this is 1, we're still
|
|
* fixing up the reloc trees and everyone must wait.
|
|
*
|
|
* When this is zero, they can trust root->last_trans and fly
|
|
* through btrfs_record_root_in_trans without having to take the
|
|
* lock. smp_wmb() makes sure that all the writes above are
|
|
* done before we pop in the zero below
|
|
*/
|
|
btrfs_init_reloc_root(trans, root);
|
|
smp_wmb();
|
|
root->in_trans_setup = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
if (!root->ref_cows)
|
|
return 0;
|
|
|
|
/*
|
|
* see record_root_in_trans for comments about in_trans_setup usage
|
|
* and barriers
|
|
*/
|
|
smp_rmb();
|
|
if (root->last_trans == trans->transid &&
|
|
!root->in_trans_setup)
|
|
return 0;
|
|
|
|
mutex_lock(&root->fs_info->reloc_mutex);
|
|
record_root_in_trans(trans, root);
|
|
mutex_unlock(&root->fs_info->reloc_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int is_transaction_blocked(struct btrfs_transaction *trans)
|
|
{
|
|
return (trans->state >= TRANS_STATE_BLOCKED &&
|
|
trans->state < TRANS_STATE_UNBLOCKED &&
|
|
!trans->aborted);
|
|
}
|
|
|
|
/* wait for commit against the current transaction to become unblocked
|
|
* when this is done, it is safe to start a new transaction, but the current
|
|
* transaction might not be fully on disk.
|
|
*/
|
|
static void wait_current_trans(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_transaction *cur_trans;
|
|
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
cur_trans = root->fs_info->running_transaction;
|
|
if (cur_trans && is_transaction_blocked(cur_trans)) {
|
|
atomic_inc(&cur_trans->use_count);
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
|
|
wait_event(root->fs_info->transaction_wait,
|
|
cur_trans->state >= TRANS_STATE_UNBLOCKED ||
|
|
cur_trans->aborted);
|
|
put_transaction(cur_trans);
|
|
} else {
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
}
|
|
}
|
|
|
|
static int may_wait_transaction(struct btrfs_root *root, int type)
|
|
{
|
|
if (root->fs_info->log_root_recovering)
|
|
return 0;
|
|
|
|
if (type == TRANS_USERSPACE)
|
|
return 1;
|
|
|
|
if (type == TRANS_START &&
|
|
!atomic_read(&root->fs_info->open_ioctl_trans))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct btrfs_trans_handle *
|
|
start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
|
|
enum btrfs_reserve_flush_enum flush)
|
|
{
|
|
struct btrfs_trans_handle *h;
|
|
struct btrfs_transaction *cur_trans;
|
|
u64 num_bytes = 0;
|
|
int ret;
|
|
u64 qgroup_reserved = 0;
|
|
|
|
if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
|
|
return ERR_PTR(-EROFS);
|
|
|
|
if (current->journal_info) {
|
|
WARN_ON(type & TRANS_EXTWRITERS);
|
|
h = current->journal_info;
|
|
h->use_count++;
|
|
WARN_ON(h->use_count > 2);
|
|
h->orig_rsv = h->block_rsv;
|
|
h->block_rsv = NULL;
|
|
goto got_it;
|
|
}
|
|
|
|
/*
|
|
* Do the reservation before we join the transaction so we can do all
|
|
* the appropriate flushing if need be.
|
|
*/
|
|
if (num_items > 0 && root != root->fs_info->chunk_root) {
|
|
if (root->fs_info->quota_enabled &&
|
|
is_fstree(root->root_key.objectid)) {
|
|
qgroup_reserved = num_items * root->leafsize;
|
|
ret = btrfs_qgroup_reserve(root, qgroup_reserved);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
|
|
ret = btrfs_block_rsv_add(root,
|
|
&root->fs_info->trans_block_rsv,
|
|
num_bytes, flush);
|
|
if (ret)
|
|
goto reserve_fail;
|
|
}
|
|
again:
|
|
h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
|
|
if (!h) {
|
|
ret = -ENOMEM;
|
|
goto alloc_fail;
|
|
}
|
|
|
|
/*
|
|
* If we are JOIN_NOLOCK we're already committing a transaction and
|
|
* waiting on this guy, so we don't need to do the sb_start_intwrite
|
|
* because we're already holding a ref. We need this because we could
|
|
* have raced in and did an fsync() on a file which can kick a commit
|
|
* and then we deadlock with somebody doing a freeze.
|
|
*
|
|
* If we are ATTACH, it means we just want to catch the current
|
|
* transaction and commit it, so we needn't do sb_start_intwrite().
|
|
*/
|
|
if (type & __TRANS_FREEZABLE)
|
|
sb_start_intwrite(root->fs_info->sb);
|
|
|
|
if (may_wait_transaction(root, type))
|
|
wait_current_trans(root);
|
|
|
|
do {
|
|
ret = join_transaction(root, type);
|
|
if (ret == -EBUSY) {
|
|
wait_current_trans(root);
|
|
if (unlikely(type == TRANS_ATTACH))
|
|
ret = -ENOENT;
|
|
}
|
|
} while (ret == -EBUSY);
|
|
|
|
if (ret < 0) {
|
|
/* We must get the transaction if we are JOIN_NOLOCK. */
|
|
BUG_ON(type == TRANS_JOIN_NOLOCK);
|
|
goto join_fail;
|
|
}
|
|
|
|
cur_trans = root->fs_info->running_transaction;
|
|
|
|
h->transid = cur_trans->transid;
|
|
h->transaction = cur_trans;
|
|
h->blocks_used = 0;
|
|
h->bytes_reserved = 0;
|
|
h->root = root;
|
|
h->delayed_ref_updates = 0;
|
|
h->use_count = 1;
|
|
h->adding_csums = 0;
|
|
h->block_rsv = NULL;
|
|
h->orig_rsv = NULL;
|
|
h->aborted = 0;
|
|
h->qgroup_reserved = 0;
|
|
h->delayed_ref_elem.seq = 0;
|
|
h->type = type;
|
|
h->allocating_chunk = false;
|
|
INIT_LIST_HEAD(&h->qgroup_ref_list);
|
|
INIT_LIST_HEAD(&h->new_bgs);
|
|
|
|
smp_mb();
|
|
if (cur_trans->state >= TRANS_STATE_BLOCKED &&
|
|
may_wait_transaction(root, type)) {
|
|
btrfs_commit_transaction(h, root);
|
|
goto again;
|
|
}
|
|
|
|
if (num_bytes) {
|
|
trace_btrfs_space_reservation(root->fs_info, "transaction",
|
|
h->transid, num_bytes, 1);
|
|
h->block_rsv = &root->fs_info->trans_block_rsv;
|
|
h->bytes_reserved = num_bytes;
|
|
}
|
|
h->qgroup_reserved = qgroup_reserved;
|
|
|
|
got_it:
|
|
btrfs_record_root_in_trans(h, root);
|
|
|
|
if (!current->journal_info && type != TRANS_USERSPACE)
|
|
current->journal_info = h;
|
|
return h;
|
|
|
|
join_fail:
|
|
if (type & __TRANS_FREEZABLE)
|
|
sb_end_intwrite(root->fs_info->sb);
|
|
kmem_cache_free(btrfs_trans_handle_cachep, h);
|
|
alloc_fail:
|
|
if (num_bytes)
|
|
btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
|
|
num_bytes);
|
|
reserve_fail:
|
|
if (qgroup_reserved)
|
|
btrfs_qgroup_free(root, qgroup_reserved);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
|
|
int num_items)
|
|
{
|
|
return start_transaction(root, num_items, TRANS_START,
|
|
BTRFS_RESERVE_FLUSH_ALL);
|
|
}
|
|
|
|
struct btrfs_trans_handle *btrfs_start_transaction_lflush(
|
|
struct btrfs_root *root, int num_items)
|
|
{
|
|
return start_transaction(root, num_items, TRANS_START,
|
|
BTRFS_RESERVE_FLUSH_LIMIT);
|
|
}
|
|
|
|
struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
|
|
{
|
|
return start_transaction(root, 0, TRANS_JOIN, 0);
|
|
}
|
|
|
|
struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
|
|
{
|
|
return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
|
|
}
|
|
|
|
struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
|
|
{
|
|
return start_transaction(root, 0, TRANS_USERSPACE, 0);
|
|
}
|
|
|
|
/*
|
|
* btrfs_attach_transaction() - catch the running transaction
|
|
*
|
|
* It is used when we want to commit the current the transaction, but
|
|
* don't want to start a new one.
|
|
*
|
|
* Note: If this function return -ENOENT, it just means there is no
|
|
* running transaction. But it is possible that the inactive transaction
|
|
* is still in the memory, not fully on disk. If you hope there is no
|
|
* inactive transaction in the fs when -ENOENT is returned, you should
|
|
* invoke
|
|
* btrfs_attach_transaction_barrier()
|
|
*/
|
|
struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
|
|
{
|
|
return start_transaction(root, 0, TRANS_ATTACH, 0);
|
|
}
|
|
|
|
/*
|
|
* btrfs_attach_transaction_barrier() - catch the running transaction
|
|
*
|
|
* It is similar to the above function, the differentia is this one
|
|
* will wait for all the inactive transactions until they fully
|
|
* complete.
|
|
*/
|
|
struct btrfs_trans_handle *
|
|
btrfs_attach_transaction_barrier(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
|
|
trans = start_transaction(root, 0, TRANS_ATTACH, 0);
|
|
if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
|
|
btrfs_wait_for_commit(root, 0);
|
|
|
|
return trans;
|
|
}
|
|
|
|
/* wait for a transaction commit to be fully complete */
|
|
static noinline void wait_for_commit(struct btrfs_root *root,
|
|
struct btrfs_transaction *commit)
|
|
{
|
|
wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
|
|
}
|
|
|
|
int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
|
|
{
|
|
struct btrfs_transaction *cur_trans = NULL, *t;
|
|
int ret = 0;
|
|
|
|
if (transid) {
|
|
if (transid <= root->fs_info->last_trans_committed)
|
|
goto out;
|
|
|
|
ret = -EINVAL;
|
|
/* find specified transaction */
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
list_for_each_entry(t, &root->fs_info->trans_list, list) {
|
|
if (t->transid == transid) {
|
|
cur_trans = t;
|
|
atomic_inc(&cur_trans->use_count);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
if (t->transid > transid) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
/* The specified transaction doesn't exist */
|
|
if (!cur_trans)
|
|
goto out;
|
|
} else {
|
|
/* find newest transaction that is committing | committed */
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
list_for_each_entry_reverse(t, &root->fs_info->trans_list,
|
|
list) {
|
|
if (t->state >= TRANS_STATE_COMMIT_START) {
|
|
if (t->state == TRANS_STATE_COMPLETED)
|
|
break;
|
|
cur_trans = t;
|
|
atomic_inc(&cur_trans->use_count);
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
if (!cur_trans)
|
|
goto out; /* nothing committing|committed */
|
|
}
|
|
|
|
wait_for_commit(root, cur_trans);
|
|
put_transaction(cur_trans);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_throttle(struct btrfs_root *root)
|
|
{
|
|
if (!atomic_read(&root->fs_info->open_ioctl_trans))
|
|
wait_current_trans(root);
|
|
}
|
|
|
|
static int should_end_transaction(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
if (root->fs_info->global_block_rsv.space_info->full &&
|
|
btrfs_should_throttle_delayed_refs(trans, root))
|
|
return 1;
|
|
|
|
return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
|
|
}
|
|
|
|
int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
int updates;
|
|
int err;
|
|
|
|
smp_mb();
|
|
if (cur_trans->state >= TRANS_STATE_BLOCKED ||
|
|
cur_trans->delayed_refs.flushing)
|
|
return 1;
|
|
|
|
updates = trans->delayed_ref_updates;
|
|
trans->delayed_ref_updates = 0;
|
|
if (updates) {
|
|
err = btrfs_run_delayed_refs(trans, root, updates);
|
|
if (err) /* Error code will also eval true */
|
|
return err;
|
|
}
|
|
|
|
return should_end_transaction(trans, root);
|
|
}
|
|
|
|
static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, int throttle)
|
|
{
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
unsigned long cur = trans->delayed_ref_updates;
|
|
int lock = (trans->type != TRANS_JOIN_NOLOCK);
|
|
int err = 0;
|
|
|
|
if (--trans->use_count) {
|
|
trans->block_rsv = trans->orig_rsv;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* do the qgroup accounting as early as possible
|
|
*/
|
|
err = btrfs_delayed_refs_qgroup_accounting(trans, info);
|
|
|
|
btrfs_trans_release_metadata(trans, root);
|
|
trans->block_rsv = NULL;
|
|
|
|
if (trans->qgroup_reserved) {
|
|
/*
|
|
* the same root has to be passed here between start_transaction
|
|
* and end_transaction. Subvolume quota depends on this.
|
|
*/
|
|
btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
|
|
trans->qgroup_reserved = 0;
|
|
}
|
|
|
|
if (!list_empty(&trans->new_bgs))
|
|
btrfs_create_pending_block_groups(trans, root);
|
|
|
|
trans->delayed_ref_updates = 0;
|
|
if (btrfs_should_throttle_delayed_refs(trans, root)) {
|
|
cur = max_t(unsigned long, cur, 1);
|
|
trans->delayed_ref_updates = 0;
|
|
btrfs_run_delayed_refs(trans, root, cur);
|
|
}
|
|
|
|
btrfs_trans_release_metadata(trans, root);
|
|
trans->block_rsv = NULL;
|
|
|
|
if (!list_empty(&trans->new_bgs))
|
|
btrfs_create_pending_block_groups(trans, root);
|
|
|
|
if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
|
|
should_end_transaction(trans, root) &&
|
|
ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
|
|
spin_lock(&info->trans_lock);
|
|
if (cur_trans->state == TRANS_STATE_RUNNING)
|
|
cur_trans->state = TRANS_STATE_BLOCKED;
|
|
spin_unlock(&info->trans_lock);
|
|
}
|
|
|
|
if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
|
|
if (throttle) {
|
|
/*
|
|
* We may race with somebody else here so end up having
|
|
* to call end_transaction on ourselves again, so inc
|
|
* our use_count.
|
|
*/
|
|
trans->use_count++;
|
|
return btrfs_commit_transaction(trans, root);
|
|
} else {
|
|
wake_up_process(info->transaction_kthread);
|
|
}
|
|
}
|
|
|
|
if (trans->type & __TRANS_FREEZABLE)
|
|
sb_end_intwrite(root->fs_info->sb);
|
|
|
|
WARN_ON(cur_trans != info->running_transaction);
|
|
WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
|
|
atomic_dec(&cur_trans->num_writers);
|
|
extwriter_counter_dec(cur_trans, trans->type);
|
|
|
|
smp_mb();
|
|
if (waitqueue_active(&cur_trans->writer_wait))
|
|
wake_up(&cur_trans->writer_wait);
|
|
put_transaction(cur_trans);
|
|
|
|
if (current->journal_info == trans)
|
|
current->journal_info = NULL;
|
|
|
|
if (throttle)
|
|
btrfs_run_delayed_iputs(root);
|
|
|
|
if (trans->aborted ||
|
|
test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
|
|
err = -EIO;
|
|
assert_qgroups_uptodate(trans);
|
|
|
|
kmem_cache_free(btrfs_trans_handle_cachep, trans);
|
|
return err;
|
|
}
|
|
|
|
int btrfs_end_transaction(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
return __btrfs_end_transaction(trans, root, 0);
|
|
}
|
|
|
|
int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
return __btrfs_end_transaction(trans, root, 1);
|
|
}
|
|
|
|
int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
return __btrfs_end_transaction(trans, root, 1);
|
|
}
|
|
|
|
/*
|
|
* when btree blocks are allocated, they have some corresponding bits set for
|
|
* them in one of two extent_io trees. This is used to make sure all of
|
|
* those extents are sent to disk but does not wait on them
|
|
*/
|
|
int btrfs_write_marked_extents(struct btrfs_root *root,
|
|
struct extent_io_tree *dirty_pages, int mark)
|
|
{
|
|
int err = 0;
|
|
int werr = 0;
|
|
struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
|
|
struct extent_state *cached_state = NULL;
|
|
u64 start = 0;
|
|
u64 end;
|
|
|
|
while (!find_first_extent_bit(dirty_pages, start, &start, &end,
|
|
mark, &cached_state)) {
|
|
convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
|
|
mark, &cached_state, GFP_NOFS);
|
|
cached_state = NULL;
|
|
err = filemap_fdatawrite_range(mapping, start, end);
|
|
if (err)
|
|
werr = err;
|
|
cond_resched();
|
|
start = end + 1;
|
|
}
|
|
if (err)
|
|
werr = err;
|
|
return werr;
|
|
}
|
|
|
|
/*
|
|
* when btree blocks are allocated, they have some corresponding bits set for
|
|
* them in one of two extent_io trees. This is used to make sure all of
|
|
* those extents are on disk for transaction or log commit. We wait
|
|
* on all the pages and clear them from the dirty pages state tree
|
|
*/
|
|
int btrfs_wait_marked_extents(struct btrfs_root *root,
|
|
struct extent_io_tree *dirty_pages, int mark)
|
|
{
|
|
int err = 0;
|
|
int werr = 0;
|
|
struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
|
|
struct extent_state *cached_state = NULL;
|
|
u64 start = 0;
|
|
u64 end;
|
|
|
|
while (!find_first_extent_bit(dirty_pages, start, &start, &end,
|
|
EXTENT_NEED_WAIT, &cached_state)) {
|
|
clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
|
|
0, 0, &cached_state, GFP_NOFS);
|
|
err = filemap_fdatawait_range(mapping, start, end);
|
|
if (err)
|
|
werr = err;
|
|
cond_resched();
|
|
start = end + 1;
|
|
}
|
|
if (err)
|
|
werr = err;
|
|
return werr;
|
|
}
|
|
|
|
/*
|
|
* when btree blocks are allocated, they have some corresponding bits set for
|
|
* them in one of two extent_io trees. This is used to make sure all of
|
|
* those extents are on disk for transaction or log commit
|
|
*/
|
|
int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
|
|
struct extent_io_tree *dirty_pages, int mark)
|
|
{
|
|
int ret;
|
|
int ret2;
|
|
struct blk_plug plug;
|
|
|
|
blk_start_plug(&plug);
|
|
ret = btrfs_write_marked_extents(root, dirty_pages, mark);
|
|
blk_finish_plug(&plug);
|
|
ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
|
|
|
|
if (ret)
|
|
return ret;
|
|
if (ret2)
|
|
return ret2;
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
if (!trans || !trans->transaction) {
|
|
struct inode *btree_inode;
|
|
btree_inode = root->fs_info->btree_inode;
|
|
return filemap_write_and_wait(btree_inode->i_mapping);
|
|
}
|
|
return btrfs_write_and_wait_marked_extents(root,
|
|
&trans->transaction->dirty_pages,
|
|
EXTENT_DIRTY);
|
|
}
|
|
|
|
/*
|
|
* this is used to update the root pointer in the tree of tree roots.
|
|
*
|
|
* But, in the case of the extent allocation tree, updating the root
|
|
* pointer may allocate blocks which may change the root of the extent
|
|
* allocation tree.
|
|
*
|
|
* So, this loops and repeats and makes sure the cowonly root didn't
|
|
* change while the root pointer was being updated in the metadata.
|
|
*/
|
|
static int update_cowonly_root(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
int ret;
|
|
u64 old_root_bytenr;
|
|
u64 old_root_used;
|
|
struct btrfs_root *tree_root = root->fs_info->tree_root;
|
|
|
|
old_root_used = btrfs_root_used(&root->root_item);
|
|
btrfs_write_dirty_block_groups(trans, root);
|
|
|
|
while (1) {
|
|
old_root_bytenr = btrfs_root_bytenr(&root->root_item);
|
|
if (old_root_bytenr == root->node->start &&
|
|
old_root_used == btrfs_root_used(&root->root_item))
|
|
break;
|
|
|
|
btrfs_set_root_node(&root->root_item, root->node);
|
|
ret = btrfs_update_root(trans, tree_root,
|
|
&root->root_key,
|
|
&root->root_item);
|
|
if (ret)
|
|
return ret;
|
|
|
|
old_root_used = btrfs_root_used(&root->root_item);
|
|
ret = btrfs_write_dirty_block_groups(trans, root);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (root != root->fs_info->extent_root)
|
|
switch_commit_root(root);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* update all the cowonly tree roots on disk
|
|
*
|
|
* The error handling in this function may not be obvious. Any of the
|
|
* failures will cause the file system to go offline. We still need
|
|
* to clean up the delayed refs.
|
|
*/
|
|
static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct list_head *next;
|
|
struct extent_buffer *eb;
|
|
int ret;
|
|
|
|
ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
eb = btrfs_lock_root_node(fs_info->tree_root);
|
|
ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
|
|
0, &eb);
|
|
btrfs_tree_unlock(eb);
|
|
free_extent_buffer(eb);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = btrfs_run_dev_stats(trans, root->fs_info);
|
|
WARN_ON(ret);
|
|
ret = btrfs_run_dev_replace(trans, root->fs_info);
|
|
WARN_ON(ret);
|
|
|
|
ret = btrfs_run_qgroups(trans, root->fs_info);
|
|
BUG_ON(ret);
|
|
|
|
/* run_qgroups might have added some more refs */
|
|
ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
|
|
BUG_ON(ret);
|
|
|
|
while (!list_empty(&fs_info->dirty_cowonly_roots)) {
|
|
next = fs_info->dirty_cowonly_roots.next;
|
|
list_del_init(next);
|
|
root = list_entry(next, struct btrfs_root, dirty_list);
|
|
|
|
ret = update_cowonly_root(trans, root);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
down_write(&fs_info->extent_commit_sem);
|
|
switch_commit_root(fs_info->extent_root);
|
|
up_write(&fs_info->extent_commit_sem);
|
|
|
|
btrfs_after_dev_replace_commit(fs_info);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* dead roots are old snapshots that need to be deleted. This allocates
|
|
* a dirty root struct and adds it into the list of dead roots that need to
|
|
* be deleted
|
|
*/
|
|
int btrfs_add_dead_root(struct btrfs_root *root)
|
|
{
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
list_add_tail(&root->root_list, &root->fs_info->dead_roots);
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* update all the cowonly tree roots on disk
|
|
*/
|
|
static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_root *gang[8];
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int i;
|
|
int ret;
|
|
int err = 0;
|
|
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
while (1) {
|
|
ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
|
|
(void **)gang, 0,
|
|
ARRAY_SIZE(gang),
|
|
BTRFS_ROOT_TRANS_TAG);
|
|
if (ret == 0)
|
|
break;
|
|
for (i = 0; i < ret; i++) {
|
|
root = gang[i];
|
|
radix_tree_tag_clear(&fs_info->fs_roots_radix,
|
|
(unsigned long)root->root_key.objectid,
|
|
BTRFS_ROOT_TRANS_TAG);
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
|
|
btrfs_free_log(trans, root);
|
|
btrfs_update_reloc_root(trans, root);
|
|
btrfs_orphan_commit_root(trans, root);
|
|
|
|
btrfs_save_ino_cache(root, trans);
|
|
|
|
/* see comments in should_cow_block() */
|
|
root->force_cow = 0;
|
|
smp_wmb();
|
|
|
|
if (root->commit_root != root->node) {
|
|
mutex_lock(&root->fs_commit_mutex);
|
|
switch_commit_root(root);
|
|
btrfs_unpin_free_ino(root);
|
|
mutex_unlock(&root->fs_commit_mutex);
|
|
|
|
btrfs_set_root_node(&root->root_item,
|
|
root->node);
|
|
}
|
|
|
|
err = btrfs_update_root(trans, fs_info->tree_root,
|
|
&root->root_key,
|
|
&root->root_item);
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
if (err)
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* defrag a given btree.
|
|
* Every leaf in the btree is read and defragged.
|
|
*/
|
|
int btrfs_defrag_root(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
|
|
if (xchg(&root->defrag_running, 1))
|
|
return 0;
|
|
|
|
while (1) {
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
ret = btrfs_defrag_leaves(trans, root);
|
|
|
|
btrfs_end_transaction(trans, root);
|
|
btrfs_btree_balance_dirty(info->tree_root);
|
|
cond_resched();
|
|
|
|
if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
|
|
break;
|
|
|
|
if (btrfs_defrag_cancelled(root->fs_info)) {
|
|
printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
}
|
|
root->defrag_running = 0;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* new snapshots need to be created at a very specific time in the
|
|
* transaction commit. This does the actual creation.
|
|
*
|
|
* Note:
|
|
* If the error which may affect the commitment of the current transaction
|
|
* happens, we should return the error number. If the error which just affect
|
|
* the creation of the pending snapshots, just return 0.
|
|
*/
|
|
static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info,
|
|
struct btrfs_pending_snapshot *pending)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_root_item *new_root_item;
|
|
struct btrfs_root *tree_root = fs_info->tree_root;
|
|
struct btrfs_root *root = pending->root;
|
|
struct btrfs_root *parent_root;
|
|
struct btrfs_block_rsv *rsv;
|
|
struct inode *parent_inode;
|
|
struct btrfs_path *path;
|
|
struct btrfs_dir_item *dir_item;
|
|
struct dentry *dentry;
|
|
struct extent_buffer *tmp;
|
|
struct extent_buffer *old;
|
|
struct timespec cur_time = CURRENT_TIME;
|
|
int ret = 0;
|
|
u64 to_reserve = 0;
|
|
u64 index = 0;
|
|
u64 objectid;
|
|
u64 root_flags;
|
|
uuid_le new_uuid;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
pending->error = -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
|
|
if (!new_root_item) {
|
|
pending->error = -ENOMEM;
|
|
goto root_item_alloc_fail;
|
|
}
|
|
|
|
pending->error = btrfs_find_free_objectid(tree_root, &objectid);
|
|
if (pending->error)
|
|
goto no_free_objectid;
|
|
|
|
btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
|
|
|
|
if (to_reserve > 0) {
|
|
pending->error = btrfs_block_rsv_add(root,
|
|
&pending->block_rsv,
|
|
to_reserve,
|
|
BTRFS_RESERVE_NO_FLUSH);
|
|
if (pending->error)
|
|
goto no_free_objectid;
|
|
}
|
|
|
|
pending->error = btrfs_qgroup_inherit(trans, fs_info,
|
|
root->root_key.objectid,
|
|
objectid, pending->inherit);
|
|
if (pending->error)
|
|
goto no_free_objectid;
|
|
|
|
key.objectid = objectid;
|
|
key.offset = (u64)-1;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
|
|
rsv = trans->block_rsv;
|
|
trans->block_rsv = &pending->block_rsv;
|
|
trans->bytes_reserved = trans->block_rsv->reserved;
|
|
|
|
dentry = pending->dentry;
|
|
parent_inode = pending->dir;
|
|
parent_root = BTRFS_I(parent_inode)->root;
|
|
record_root_in_trans(trans, parent_root);
|
|
|
|
/*
|
|
* insert the directory item
|
|
*/
|
|
ret = btrfs_set_inode_index(parent_inode, &index);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
|
|
/* check if there is a file/dir which has the same name. */
|
|
dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
|
|
btrfs_ino(parent_inode),
|
|
dentry->d_name.name,
|
|
dentry->d_name.len, 0);
|
|
if (dir_item != NULL && !IS_ERR(dir_item)) {
|
|
pending->error = -EEXIST;
|
|
goto dir_item_existed;
|
|
} else if (IS_ERR(dir_item)) {
|
|
ret = PTR_ERR(dir_item);
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto fail;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* pull in the delayed directory update
|
|
* and the delayed inode item
|
|
* otherwise we corrupt the FS during
|
|
* snapshot
|
|
*/
|
|
ret = btrfs_run_delayed_items(trans, root);
|
|
if (ret) { /* Transaction aborted */
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto fail;
|
|
}
|
|
|
|
record_root_in_trans(trans, root);
|
|
btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
|
|
memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
|
|
btrfs_check_and_init_root_item(new_root_item);
|
|
|
|
root_flags = btrfs_root_flags(new_root_item);
|
|
if (pending->readonly)
|
|
root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
|
|
else
|
|
root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
|
|
btrfs_set_root_flags(new_root_item, root_flags);
|
|
|
|
btrfs_set_root_generation_v2(new_root_item,
|
|
trans->transid);
|
|
uuid_le_gen(&new_uuid);
|
|
memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
|
|
memcpy(new_root_item->parent_uuid, root->root_item.uuid,
|
|
BTRFS_UUID_SIZE);
|
|
if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
|
|
memset(new_root_item->received_uuid, 0,
|
|
sizeof(new_root_item->received_uuid));
|
|
memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
|
|
memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
|
|
btrfs_set_root_stransid(new_root_item, 0);
|
|
btrfs_set_root_rtransid(new_root_item, 0);
|
|
}
|
|
new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
|
|
new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
|
|
btrfs_set_root_otransid(new_root_item, trans->transid);
|
|
|
|
old = btrfs_lock_root_node(root);
|
|
ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
|
|
if (ret) {
|
|
btrfs_tree_unlock(old);
|
|
free_extent_buffer(old);
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto fail;
|
|
}
|
|
|
|
btrfs_set_lock_blocking(old);
|
|
|
|
ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
|
|
/* clean up in any case */
|
|
btrfs_tree_unlock(old);
|
|
free_extent_buffer(old);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto fail;
|
|
}
|
|
|
|
/* see comments in should_cow_block() */
|
|
root->force_cow = 1;
|
|
smp_wmb();
|
|
|
|
btrfs_set_root_node(new_root_item, tmp);
|
|
/* record when the snapshot was created in key.offset */
|
|
key.offset = trans->transid;
|
|
ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
|
|
btrfs_tree_unlock(tmp);
|
|
free_extent_buffer(tmp);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* insert root back/forward references
|
|
*/
|
|
ret = btrfs_add_root_ref(trans, tree_root, objectid,
|
|
parent_root->root_key.objectid,
|
|
btrfs_ino(parent_inode), index,
|
|
dentry->d_name.name, dentry->d_name.len);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto fail;
|
|
}
|
|
|
|
key.offset = (u64)-1;
|
|
pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
|
|
if (IS_ERR(pending->snap)) {
|
|
ret = PTR_ERR(pending->snap);
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto fail;
|
|
}
|
|
|
|
ret = btrfs_reloc_post_snapshot(trans, pending);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto fail;
|
|
}
|
|
|
|
ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto fail;
|
|
}
|
|
|
|
ret = btrfs_insert_dir_item(trans, parent_root,
|
|
dentry->d_name.name, dentry->d_name.len,
|
|
parent_inode, &key,
|
|
BTRFS_FT_DIR, index);
|
|
/* We have check then name at the beginning, so it is impossible. */
|
|
BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto fail;
|
|
}
|
|
|
|
btrfs_i_size_write(parent_inode, parent_inode->i_size +
|
|
dentry->d_name.len * 2);
|
|
parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
|
|
ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
|
|
if (ret)
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
fail:
|
|
pending->error = ret;
|
|
dir_item_existed:
|
|
trans->block_rsv = rsv;
|
|
trans->bytes_reserved = 0;
|
|
no_free_objectid:
|
|
kfree(new_root_item);
|
|
root_item_alloc_fail:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* create all the snapshots we've scheduled for creation
|
|
*/
|
|
static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_pending_snapshot *pending, *next;
|
|
struct list_head *head = &trans->transaction->pending_snapshots;
|
|
int ret = 0;
|
|
|
|
list_for_each_entry_safe(pending, next, head, list) {
|
|
list_del(&pending->list);
|
|
ret = create_pending_snapshot(trans, fs_info, pending);
|
|
if (ret)
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void update_super_roots(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_root_item *root_item;
|
|
struct btrfs_super_block *super;
|
|
|
|
super = root->fs_info->super_copy;
|
|
|
|
root_item = &root->fs_info->chunk_root->root_item;
|
|
super->chunk_root = root_item->bytenr;
|
|
super->chunk_root_generation = root_item->generation;
|
|
super->chunk_root_level = root_item->level;
|
|
|
|
root_item = &root->fs_info->tree_root->root_item;
|
|
super->root = root_item->bytenr;
|
|
super->generation = root_item->generation;
|
|
super->root_level = root_item->level;
|
|
if (btrfs_test_opt(root, SPACE_CACHE))
|
|
super->cache_generation = root_item->generation;
|
|
}
|
|
|
|
int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
|
|
{
|
|
struct btrfs_transaction *trans;
|
|
int ret = 0;
|
|
|
|
spin_lock(&info->trans_lock);
|
|
trans = info->running_transaction;
|
|
if (trans)
|
|
ret = (trans->state >= TRANS_STATE_COMMIT_START);
|
|
spin_unlock(&info->trans_lock);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_transaction_blocked(struct btrfs_fs_info *info)
|
|
{
|
|
struct btrfs_transaction *trans;
|
|
int ret = 0;
|
|
|
|
spin_lock(&info->trans_lock);
|
|
trans = info->running_transaction;
|
|
if (trans)
|
|
ret = is_transaction_blocked(trans);
|
|
spin_unlock(&info->trans_lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* wait for the current transaction commit to start and block subsequent
|
|
* transaction joins
|
|
*/
|
|
static void wait_current_trans_commit_start(struct btrfs_root *root,
|
|
struct btrfs_transaction *trans)
|
|
{
|
|
wait_event(root->fs_info->transaction_blocked_wait,
|
|
trans->state >= TRANS_STATE_COMMIT_START ||
|
|
trans->aborted);
|
|
}
|
|
|
|
/*
|
|
* wait for the current transaction to start and then become unblocked.
|
|
* caller holds ref.
|
|
*/
|
|
static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
|
|
struct btrfs_transaction *trans)
|
|
{
|
|
wait_event(root->fs_info->transaction_wait,
|
|
trans->state >= TRANS_STATE_UNBLOCKED ||
|
|
trans->aborted);
|
|
}
|
|
|
|
/*
|
|
* commit transactions asynchronously. once btrfs_commit_transaction_async
|
|
* returns, any subsequent transaction will not be allowed to join.
|
|
*/
|
|
struct btrfs_async_commit {
|
|
struct btrfs_trans_handle *newtrans;
|
|
struct btrfs_root *root;
|
|
struct work_struct work;
|
|
};
|
|
|
|
static void do_async_commit(struct work_struct *work)
|
|
{
|
|
struct btrfs_async_commit *ac =
|
|
container_of(work, struct btrfs_async_commit, work);
|
|
|
|
/*
|
|
* We've got freeze protection passed with the transaction.
|
|
* Tell lockdep about it.
|
|
*/
|
|
if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
|
|
rwsem_acquire_read(
|
|
&ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
|
|
0, 1, _THIS_IP_);
|
|
|
|
current->journal_info = ac->newtrans;
|
|
|
|
btrfs_commit_transaction(ac->newtrans, ac->root);
|
|
kfree(ac);
|
|
}
|
|
|
|
int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
int wait_for_unblock)
|
|
{
|
|
struct btrfs_async_commit *ac;
|
|
struct btrfs_transaction *cur_trans;
|
|
|
|
ac = kmalloc(sizeof(*ac), GFP_NOFS);
|
|
if (!ac)
|
|
return -ENOMEM;
|
|
|
|
INIT_WORK(&ac->work, do_async_commit);
|
|
ac->root = root;
|
|
ac->newtrans = btrfs_join_transaction(root);
|
|
if (IS_ERR(ac->newtrans)) {
|
|
int err = PTR_ERR(ac->newtrans);
|
|
kfree(ac);
|
|
return err;
|
|
}
|
|
|
|
/* take transaction reference */
|
|
cur_trans = trans->transaction;
|
|
atomic_inc(&cur_trans->use_count);
|
|
|
|
btrfs_end_transaction(trans, root);
|
|
|
|
/*
|
|
* Tell lockdep we've released the freeze rwsem, since the
|
|
* async commit thread will be the one to unlock it.
|
|
*/
|
|
if (trans->type < TRANS_JOIN_NOLOCK)
|
|
rwsem_release(
|
|
&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
|
|
1, _THIS_IP_);
|
|
|
|
schedule_work(&ac->work);
|
|
|
|
/* wait for transaction to start and unblock */
|
|
if (wait_for_unblock)
|
|
wait_current_trans_commit_start_and_unblock(root, cur_trans);
|
|
else
|
|
wait_current_trans_commit_start(root, cur_trans);
|
|
|
|
if (current->journal_info == trans)
|
|
current->journal_info = NULL;
|
|
|
|
put_transaction(cur_trans);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void cleanup_transaction(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, int err)
|
|
{
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
DEFINE_WAIT(wait);
|
|
|
|
WARN_ON(trans->use_count > 1);
|
|
|
|
btrfs_abort_transaction(trans, root, err);
|
|
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
|
|
/*
|
|
* If the transaction is removed from the list, it means this
|
|
* transaction has been committed successfully, so it is impossible
|
|
* to call the cleanup function.
|
|
*/
|
|
BUG_ON(list_empty(&cur_trans->list));
|
|
|
|
list_del_init(&cur_trans->list);
|
|
if (cur_trans == root->fs_info->running_transaction) {
|
|
cur_trans->state = TRANS_STATE_COMMIT_DOING;
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
wait_event(cur_trans->writer_wait,
|
|
atomic_read(&cur_trans->num_writers) == 1);
|
|
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
}
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
|
|
btrfs_cleanup_one_transaction(trans->transaction, root);
|
|
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
if (cur_trans == root->fs_info->running_transaction)
|
|
root->fs_info->running_transaction = NULL;
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
|
|
put_transaction(cur_trans);
|
|
put_transaction(cur_trans);
|
|
|
|
trace_btrfs_transaction_commit(root);
|
|
|
|
btrfs_scrub_continue(root);
|
|
|
|
if (current->journal_info == trans)
|
|
current->journal_info = NULL;
|
|
|
|
kmem_cache_free(btrfs_trans_handle_cachep, trans);
|
|
}
|
|
|
|
static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
int ret;
|
|
|
|
ret = btrfs_run_delayed_items(trans, root);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* running the delayed items may have added new refs. account
|
|
* them now so that they hinder processing of more delayed refs
|
|
* as little as possible.
|
|
*/
|
|
btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
|
|
|
|
/*
|
|
* rename don't use btrfs_join_transaction, so, once we
|
|
* set the transaction to blocked above, we aren't going
|
|
* to get any new ordered operations. We can safely run
|
|
* it here and no for sure that nothing new will be added
|
|
* to the list
|
|
*/
|
|
ret = btrfs_run_ordered_operations(trans, root, 1);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
|
|
{
|
|
if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
|
|
return btrfs_start_all_delalloc_inodes(fs_info, 1);
|
|
return 0;
|
|
}
|
|
|
|
static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
|
|
{
|
|
if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
|
|
btrfs_wait_all_ordered_extents(fs_info, 1);
|
|
}
|
|
|
|
int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
struct btrfs_transaction *prev_trans = NULL;
|
|
int ret;
|
|
|
|
ret = btrfs_run_ordered_operations(trans, root, 0);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
btrfs_end_transaction(trans, root);
|
|
return ret;
|
|
}
|
|
|
|
/* Stop the commit early if ->aborted is set */
|
|
if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
|
|
ret = cur_trans->aborted;
|
|
btrfs_end_transaction(trans, root);
|
|
return ret;
|
|
}
|
|
|
|
/* make a pass through all the delayed refs we have so far
|
|
* any runnings procs may add more while we are here
|
|
*/
|
|
ret = btrfs_run_delayed_refs(trans, root, 0);
|
|
if (ret) {
|
|
btrfs_end_transaction(trans, root);
|
|
return ret;
|
|
}
|
|
|
|
btrfs_trans_release_metadata(trans, root);
|
|
trans->block_rsv = NULL;
|
|
if (trans->qgroup_reserved) {
|
|
btrfs_qgroup_free(root, trans->qgroup_reserved);
|
|
trans->qgroup_reserved = 0;
|
|
}
|
|
|
|
cur_trans = trans->transaction;
|
|
|
|
/*
|
|
* set the flushing flag so procs in this transaction have to
|
|
* start sending their work down.
|
|
*/
|
|
cur_trans->delayed_refs.flushing = 1;
|
|
smp_wmb();
|
|
|
|
if (!list_empty(&trans->new_bgs))
|
|
btrfs_create_pending_block_groups(trans, root);
|
|
|
|
ret = btrfs_run_delayed_refs(trans, root, 0);
|
|
if (ret) {
|
|
btrfs_end_transaction(trans, root);
|
|
return ret;
|
|
}
|
|
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
atomic_inc(&cur_trans->use_count);
|
|
ret = btrfs_end_transaction(trans, root);
|
|
|
|
wait_for_commit(root, cur_trans);
|
|
|
|
put_transaction(cur_trans);
|
|
|
|
return ret;
|
|
}
|
|
|
|
cur_trans->state = TRANS_STATE_COMMIT_START;
|
|
wake_up(&root->fs_info->transaction_blocked_wait);
|
|
|
|
if (cur_trans->list.prev != &root->fs_info->trans_list) {
|
|
prev_trans = list_entry(cur_trans->list.prev,
|
|
struct btrfs_transaction, list);
|
|
if (prev_trans->state != TRANS_STATE_COMPLETED) {
|
|
atomic_inc(&prev_trans->use_count);
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
|
|
wait_for_commit(root, prev_trans);
|
|
|
|
put_transaction(prev_trans);
|
|
} else {
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
}
|
|
} else {
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
}
|
|
|
|
extwriter_counter_dec(cur_trans, trans->type);
|
|
|
|
ret = btrfs_start_delalloc_flush(root->fs_info);
|
|
if (ret)
|
|
goto cleanup_transaction;
|
|
|
|
ret = btrfs_flush_all_pending_stuffs(trans, root);
|
|
if (ret)
|
|
goto cleanup_transaction;
|
|
|
|
wait_event(cur_trans->writer_wait,
|
|
extwriter_counter_read(cur_trans) == 0);
|
|
|
|
/* some pending stuffs might be added after the previous flush. */
|
|
ret = btrfs_flush_all_pending_stuffs(trans, root);
|
|
if (ret)
|
|
goto cleanup_transaction;
|
|
|
|
btrfs_wait_delalloc_flush(root->fs_info);
|
|
/*
|
|
* Ok now we need to make sure to block out any other joins while we
|
|
* commit the transaction. We could have started a join before setting
|
|
* COMMIT_DOING so make sure to wait for num_writers to == 1 again.
|
|
*/
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
cur_trans->state = TRANS_STATE_COMMIT_DOING;
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
wait_event(cur_trans->writer_wait,
|
|
atomic_read(&cur_trans->num_writers) == 1);
|
|
|
|
/* ->aborted might be set after the previous check, so check it */
|
|
if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
|
|
ret = cur_trans->aborted;
|
|
goto cleanup_transaction;
|
|
}
|
|
/*
|
|
* the reloc mutex makes sure that we stop
|
|
* the balancing code from coming in and moving
|
|
* extents around in the middle of the commit
|
|
*/
|
|
mutex_lock(&root->fs_info->reloc_mutex);
|
|
|
|
/*
|
|
* We needn't worry about the delayed items because we will
|
|
* deal with them in create_pending_snapshot(), which is the
|
|
* core function of the snapshot creation.
|
|
*/
|
|
ret = create_pending_snapshots(trans, root->fs_info);
|
|
if (ret) {
|
|
mutex_unlock(&root->fs_info->reloc_mutex);
|
|
goto cleanup_transaction;
|
|
}
|
|
|
|
/*
|
|
* We insert the dir indexes of the snapshots and update the inode
|
|
* of the snapshots' parents after the snapshot creation, so there
|
|
* are some delayed items which are not dealt with. Now deal with
|
|
* them.
|
|
*
|
|
* We needn't worry that this operation will corrupt the snapshots,
|
|
* because all the tree which are snapshoted will be forced to COW
|
|
* the nodes and leaves.
|
|
*/
|
|
ret = btrfs_run_delayed_items(trans, root);
|
|
if (ret) {
|
|
mutex_unlock(&root->fs_info->reloc_mutex);
|
|
goto cleanup_transaction;
|
|
}
|
|
|
|
ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
|
|
if (ret) {
|
|
mutex_unlock(&root->fs_info->reloc_mutex);
|
|
goto cleanup_transaction;
|
|
}
|
|
|
|
/*
|
|
* make sure none of the code above managed to slip in a
|
|
* delayed item
|
|
*/
|
|
btrfs_assert_delayed_root_empty(root);
|
|
|
|
WARN_ON(cur_trans != trans->transaction);
|
|
|
|
btrfs_scrub_pause(root);
|
|
/* btrfs_commit_tree_roots is responsible for getting the
|
|
* various roots consistent with each other. Every pointer
|
|
* in the tree of tree roots has to point to the most up to date
|
|
* root for every subvolume and other tree. So, we have to keep
|
|
* the tree logging code from jumping in and changing any
|
|
* of the trees.
|
|
*
|
|
* At this point in the commit, there can't be any tree-log
|
|
* writers, but a little lower down we drop the trans mutex
|
|
* and let new people in. By holding the tree_log_mutex
|
|
* from now until after the super is written, we avoid races
|
|
* with the tree-log code.
|
|
*/
|
|
mutex_lock(&root->fs_info->tree_log_mutex);
|
|
|
|
ret = commit_fs_roots(trans, root);
|
|
if (ret) {
|
|
mutex_unlock(&root->fs_info->tree_log_mutex);
|
|
mutex_unlock(&root->fs_info->reloc_mutex);
|
|
goto cleanup_transaction;
|
|
}
|
|
|
|
/* commit_fs_roots gets rid of all the tree log roots, it is now
|
|
* safe to free the root of tree log roots
|
|
*/
|
|
btrfs_free_log_root_tree(trans, root->fs_info);
|
|
|
|
ret = commit_cowonly_roots(trans, root);
|
|
if (ret) {
|
|
mutex_unlock(&root->fs_info->tree_log_mutex);
|
|
mutex_unlock(&root->fs_info->reloc_mutex);
|
|
goto cleanup_transaction;
|
|
}
|
|
|
|
/*
|
|
* The tasks which save the space cache and inode cache may also
|
|
* update ->aborted, check it.
|
|
*/
|
|
if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
|
|
ret = cur_trans->aborted;
|
|
mutex_unlock(&root->fs_info->tree_log_mutex);
|
|
mutex_unlock(&root->fs_info->reloc_mutex);
|
|
goto cleanup_transaction;
|
|
}
|
|
|
|
btrfs_prepare_extent_commit(trans, root);
|
|
|
|
cur_trans = root->fs_info->running_transaction;
|
|
|
|
btrfs_set_root_node(&root->fs_info->tree_root->root_item,
|
|
root->fs_info->tree_root->node);
|
|
switch_commit_root(root->fs_info->tree_root);
|
|
|
|
btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
|
|
root->fs_info->chunk_root->node);
|
|
switch_commit_root(root->fs_info->chunk_root);
|
|
|
|
assert_qgroups_uptodate(trans);
|
|
update_super_roots(root);
|
|
|
|
if (!root->fs_info->log_root_recovering) {
|
|
btrfs_set_super_log_root(root->fs_info->super_copy, 0);
|
|
btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
|
|
}
|
|
|
|
memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
|
|
sizeof(*root->fs_info->super_copy));
|
|
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
cur_trans->state = TRANS_STATE_UNBLOCKED;
|
|
root->fs_info->running_transaction = NULL;
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
mutex_unlock(&root->fs_info->reloc_mutex);
|
|
|
|
wake_up(&root->fs_info->transaction_wait);
|
|
|
|
ret = btrfs_write_and_wait_transaction(trans, root);
|
|
if (ret) {
|
|
btrfs_error(root->fs_info, ret,
|
|
"Error while writing out transaction");
|
|
mutex_unlock(&root->fs_info->tree_log_mutex);
|
|
goto cleanup_transaction;
|
|
}
|
|
|
|
ret = write_ctree_super(trans, root, 0);
|
|
if (ret) {
|
|
mutex_unlock(&root->fs_info->tree_log_mutex);
|
|
goto cleanup_transaction;
|
|
}
|
|
|
|
/*
|
|
* the super is written, we can safely allow the tree-loggers
|
|
* to go about their business
|
|
*/
|
|
mutex_unlock(&root->fs_info->tree_log_mutex);
|
|
|
|
btrfs_finish_extent_commit(trans, root);
|
|
|
|
root->fs_info->last_trans_committed = cur_trans->transid;
|
|
/*
|
|
* We needn't acquire the lock here because there is no other task
|
|
* which can change it.
|
|
*/
|
|
cur_trans->state = TRANS_STATE_COMPLETED;
|
|
wake_up(&cur_trans->commit_wait);
|
|
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
list_del_init(&cur_trans->list);
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
|
|
put_transaction(cur_trans);
|
|
put_transaction(cur_trans);
|
|
|
|
if (trans->type & __TRANS_FREEZABLE)
|
|
sb_end_intwrite(root->fs_info->sb);
|
|
|
|
trace_btrfs_transaction_commit(root);
|
|
|
|
btrfs_scrub_continue(root);
|
|
|
|
if (current->journal_info == trans)
|
|
current->journal_info = NULL;
|
|
|
|
kmem_cache_free(btrfs_trans_handle_cachep, trans);
|
|
|
|
if (current != root->fs_info->transaction_kthread)
|
|
btrfs_run_delayed_iputs(root);
|
|
|
|
return ret;
|
|
|
|
cleanup_transaction:
|
|
btrfs_trans_release_metadata(trans, root);
|
|
trans->block_rsv = NULL;
|
|
if (trans->qgroup_reserved) {
|
|
btrfs_qgroup_free(root, trans->qgroup_reserved);
|
|
trans->qgroup_reserved = 0;
|
|
}
|
|
btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
|
|
if (current->journal_info == trans)
|
|
current->journal_info = NULL;
|
|
cleanup_transaction(trans, root, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* return < 0 if error
|
|
* 0 if there are no more dead_roots at the time of call
|
|
* 1 there are more to be processed, call me again
|
|
*
|
|
* The return value indicates there are certainly more snapshots to delete, but
|
|
* if there comes a new one during processing, it may return 0. We don't mind,
|
|
* because btrfs_commit_super will poke cleaner thread and it will process it a
|
|
* few seconds later.
|
|
*/
|
|
int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
|
|
{
|
|
int ret;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
if (list_empty(&fs_info->dead_roots)) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
return 0;
|
|
}
|
|
root = list_first_entry(&fs_info->dead_roots,
|
|
struct btrfs_root, root_list);
|
|
list_del(&root->root_list);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
pr_debug("btrfs: cleaner removing %llu\n",
|
|
(unsigned long long)root->objectid);
|
|
|
|
btrfs_kill_all_delayed_nodes(root);
|
|
|
|
if (btrfs_header_backref_rev(root->node) <
|
|
BTRFS_MIXED_BACKREF_REV)
|
|
ret = btrfs_drop_snapshot(root, NULL, 0, 0);
|
|
else
|
|
ret = btrfs_drop_snapshot(root, NULL, 1, 0);
|
|
/*
|
|
* If we encounter a transaction abort during snapshot cleaning, we
|
|
* don't want to crash here
|
|
*/
|
|
BUG_ON(ret < 0 && ret != -EAGAIN && ret != -EROFS);
|
|
return 1;
|
|
}
|