mirror of
https://github.com/torvalds/linux.git
synced 2024-12-31 23:31:29 +00:00
b8f1b4f860
This switches early feature checks to use the non static key variant of the function. In later patches we will be switching cpu_has_feature() and mmu_has_feature() to use static keys and we can use them only after static key/jump label is initialized. Any check for feature before jump label init should be done using this new helper. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
436 lines
11 KiB
C
436 lines
11 KiB
C
/*
|
|
* PowerPC version
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
*
|
|
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
|
|
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
|
|
* Copyright (C) 1996 Paul Mackerras
|
|
*
|
|
* Derived from "arch/i386/mm/init.c"
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
*
|
|
* Dave Engebretsen <engebret@us.ibm.com>
|
|
* Rework for PPC64 port.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#undef DEBUG
|
|
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/module.h>
|
|
#include <linux/poison.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/page.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/io.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/eeh.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/mmzone.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/vdso.h>
|
|
|
|
#include "mmu_decl.h"
|
|
|
|
#ifdef CONFIG_PPC_STD_MMU_64
|
|
#if H_PGTABLE_RANGE > USER_VSID_RANGE
|
|
#warning Limited user VSID range means pagetable space is wasted
|
|
#endif
|
|
|
|
#if (TASK_SIZE_USER64 < H_PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
|
|
#warning TASK_SIZE is smaller than it needs to be.
|
|
#endif
|
|
#endif /* CONFIG_PPC_STD_MMU_64 */
|
|
|
|
phys_addr_t memstart_addr = ~0;
|
|
EXPORT_SYMBOL_GPL(memstart_addr);
|
|
phys_addr_t kernstart_addr;
|
|
EXPORT_SYMBOL_GPL(kernstart_addr);
|
|
|
|
static void pgd_ctor(void *addr)
|
|
{
|
|
memset(addr, 0, PGD_TABLE_SIZE);
|
|
}
|
|
|
|
static void pud_ctor(void *addr)
|
|
{
|
|
memset(addr, 0, PUD_TABLE_SIZE);
|
|
}
|
|
|
|
static void pmd_ctor(void *addr)
|
|
{
|
|
memset(addr, 0, PMD_TABLE_SIZE);
|
|
}
|
|
|
|
struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
|
|
|
|
/*
|
|
* Create a kmem_cache() for pagetables. This is not used for PTE
|
|
* pages - they're linked to struct page, come from the normal free
|
|
* pages pool and have a different entry size (see real_pte_t) to
|
|
* everything else. Caches created by this function are used for all
|
|
* the higher level pagetables, and for hugepage pagetables.
|
|
*/
|
|
void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
|
|
{
|
|
char *name;
|
|
unsigned long table_size = sizeof(void *) << shift;
|
|
unsigned long align = table_size;
|
|
|
|
/* When batching pgtable pointers for RCU freeing, we store
|
|
* the index size in the low bits. Table alignment must be
|
|
* big enough to fit it.
|
|
*
|
|
* Likewise, hugeapge pagetable pointers contain a (different)
|
|
* shift value in the low bits. All tables must be aligned so
|
|
* as to leave enough 0 bits in the address to contain it. */
|
|
unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
|
|
HUGEPD_SHIFT_MASK + 1);
|
|
struct kmem_cache *new;
|
|
|
|
/* It would be nice if this was a BUILD_BUG_ON(), but at the
|
|
* moment, gcc doesn't seem to recognize is_power_of_2 as a
|
|
* constant expression, so so much for that. */
|
|
BUG_ON(!is_power_of_2(minalign));
|
|
BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
|
|
|
|
if (PGT_CACHE(shift))
|
|
return; /* Already have a cache of this size */
|
|
|
|
align = max_t(unsigned long, align, minalign);
|
|
name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
|
|
new = kmem_cache_create(name, table_size, align, 0, ctor);
|
|
kfree(name);
|
|
pgtable_cache[shift - 1] = new;
|
|
pr_debug("Allocated pgtable cache for order %d\n", shift);
|
|
}
|
|
|
|
|
|
void pgtable_cache_init(void)
|
|
{
|
|
pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
|
|
pgtable_cache_add(PMD_CACHE_INDEX, pmd_ctor);
|
|
/*
|
|
* In all current configs, when the PUD index exists it's the
|
|
* same size as either the pgd or pmd index except with THP enabled
|
|
* on book3s 64
|
|
*/
|
|
if (PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE))
|
|
pgtable_cache_add(PUD_INDEX_SIZE, pud_ctor);
|
|
|
|
if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_CACHE_INDEX))
|
|
panic("Couldn't allocate pgtable caches");
|
|
if (PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE))
|
|
panic("Couldn't allocate pud pgtable caches");
|
|
}
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
/*
|
|
* Given an address within the vmemmap, determine the pfn of the page that
|
|
* represents the start of the section it is within. Note that we have to
|
|
* do this by hand as the proffered address may not be correctly aligned.
|
|
* Subtraction of non-aligned pointers produces undefined results.
|
|
*/
|
|
static unsigned long __meminit vmemmap_section_start(unsigned long page)
|
|
{
|
|
unsigned long offset = page - ((unsigned long)(vmemmap));
|
|
|
|
/* Return the pfn of the start of the section. */
|
|
return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
|
|
}
|
|
|
|
/*
|
|
* Check if this vmemmap page is already initialised. If any section
|
|
* which overlaps this vmemmap page is initialised then this page is
|
|
* initialised already.
|
|
*/
|
|
static int __meminit vmemmap_populated(unsigned long start, int page_size)
|
|
{
|
|
unsigned long end = start + page_size;
|
|
start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
|
|
|
|
for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
|
|
if (pfn_valid(page_to_pfn((struct page *)start)))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct vmemmap_backing *vmemmap_list;
|
|
static struct vmemmap_backing *next;
|
|
static int num_left;
|
|
static int num_freed;
|
|
|
|
static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
|
|
{
|
|
struct vmemmap_backing *vmem_back;
|
|
/* get from freed entries first */
|
|
if (num_freed) {
|
|
num_freed--;
|
|
vmem_back = next;
|
|
next = next->list;
|
|
|
|
return vmem_back;
|
|
}
|
|
|
|
/* allocate a page when required and hand out chunks */
|
|
if (!num_left) {
|
|
next = vmemmap_alloc_block(PAGE_SIZE, node);
|
|
if (unlikely(!next)) {
|
|
WARN_ON(1);
|
|
return NULL;
|
|
}
|
|
num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
|
|
}
|
|
|
|
num_left--;
|
|
|
|
return next++;
|
|
}
|
|
|
|
static __meminit void vmemmap_list_populate(unsigned long phys,
|
|
unsigned long start,
|
|
int node)
|
|
{
|
|
struct vmemmap_backing *vmem_back;
|
|
|
|
vmem_back = vmemmap_list_alloc(node);
|
|
if (unlikely(!vmem_back)) {
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
|
|
vmem_back->phys = phys;
|
|
vmem_back->virt_addr = start;
|
|
vmem_back->list = vmemmap_list;
|
|
|
|
vmemmap_list = vmem_back;
|
|
}
|
|
|
|
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
|
|
{
|
|
unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
|
|
|
|
/* Align to the page size of the linear mapping. */
|
|
start = _ALIGN_DOWN(start, page_size);
|
|
|
|
pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
|
|
|
|
for (; start < end; start += page_size) {
|
|
void *p;
|
|
int rc;
|
|
|
|
if (vmemmap_populated(start, page_size))
|
|
continue;
|
|
|
|
p = vmemmap_alloc_block(page_size, node);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
vmemmap_list_populate(__pa(p), start, node);
|
|
|
|
pr_debug(" * %016lx..%016lx allocated at %p\n",
|
|
start, start + page_size, p);
|
|
|
|
rc = vmemmap_create_mapping(start, page_size, __pa(p));
|
|
if (rc < 0) {
|
|
pr_warning(
|
|
"vmemmap_populate: Unable to create vmemmap mapping: %d\n",
|
|
rc);
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
static unsigned long vmemmap_list_free(unsigned long start)
|
|
{
|
|
struct vmemmap_backing *vmem_back, *vmem_back_prev;
|
|
|
|
vmem_back_prev = vmem_back = vmemmap_list;
|
|
|
|
/* look for it with prev pointer recorded */
|
|
for (; vmem_back; vmem_back = vmem_back->list) {
|
|
if (vmem_back->virt_addr == start)
|
|
break;
|
|
vmem_back_prev = vmem_back;
|
|
}
|
|
|
|
if (unlikely(!vmem_back)) {
|
|
WARN_ON(1);
|
|
return 0;
|
|
}
|
|
|
|
/* remove it from vmemmap_list */
|
|
if (vmem_back == vmemmap_list) /* remove head */
|
|
vmemmap_list = vmem_back->list;
|
|
else
|
|
vmem_back_prev->list = vmem_back->list;
|
|
|
|
/* next point to this freed entry */
|
|
vmem_back->list = next;
|
|
next = vmem_back;
|
|
num_freed++;
|
|
|
|
return vmem_back->phys;
|
|
}
|
|
|
|
void __ref vmemmap_free(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
|
|
|
|
start = _ALIGN_DOWN(start, page_size);
|
|
|
|
pr_debug("vmemmap_free %lx...%lx\n", start, end);
|
|
|
|
for (; start < end; start += page_size) {
|
|
unsigned long addr;
|
|
|
|
/*
|
|
* the section has already be marked as invalid, so
|
|
* vmemmap_populated() true means some other sections still
|
|
* in this page, so skip it.
|
|
*/
|
|
if (vmemmap_populated(start, page_size))
|
|
continue;
|
|
|
|
addr = vmemmap_list_free(start);
|
|
if (addr) {
|
|
struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
|
|
|
|
if (PageReserved(page)) {
|
|
/* allocated from bootmem */
|
|
if (page_size < PAGE_SIZE) {
|
|
/*
|
|
* this shouldn't happen, but if it is
|
|
* the case, leave the memory there
|
|
*/
|
|
WARN_ON_ONCE(1);
|
|
} else {
|
|
unsigned int nr_pages =
|
|
1 << get_order(page_size);
|
|
while (nr_pages--)
|
|
free_reserved_page(page++);
|
|
}
|
|
} else
|
|
free_pages((unsigned long)(__va(addr)),
|
|
get_order(page_size));
|
|
|
|
vmemmap_remove_mapping(start, page_size);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
void register_page_bootmem_memmap(unsigned long section_nr,
|
|
struct page *start_page, unsigned long size)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* We do not have access to the sparsemem vmemmap, so we fallback to
|
|
* walking the list of sparsemem blocks which we already maintain for
|
|
* the sake of crashdump. In the long run, we might want to maintain
|
|
* a tree if performance of that linear walk becomes a problem.
|
|
*
|
|
* realmode_pfn_to_page functions can fail due to:
|
|
* 1) As real sparsemem blocks do not lay in RAM continously (they
|
|
* are in virtual address space which is not available in the real mode),
|
|
* the requested page struct can be split between blocks so get_page/put_page
|
|
* may fail.
|
|
* 2) When huge pages are used, the get_page/put_page API will fail
|
|
* in real mode as the linked addresses in the page struct are virtual
|
|
* too.
|
|
*/
|
|
struct page *realmode_pfn_to_page(unsigned long pfn)
|
|
{
|
|
struct vmemmap_backing *vmem_back;
|
|
struct page *page;
|
|
unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
|
|
unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
|
|
|
|
for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
|
|
if (pg_va < vmem_back->virt_addr)
|
|
continue;
|
|
|
|
/* After vmemmap_list entry free is possible, need check all */
|
|
if ((pg_va + sizeof(struct page)) <=
|
|
(vmem_back->virt_addr + page_size)) {
|
|
page = (struct page *) (vmem_back->phys + pg_va -
|
|
vmem_back->virt_addr);
|
|
return page;
|
|
}
|
|
}
|
|
|
|
/* Probably that page struct is split between real pages */
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
|
|
|
|
#elif defined(CONFIG_FLATMEM)
|
|
|
|
struct page *realmode_pfn_to_page(unsigned long pfn)
|
|
{
|
|
struct page *page = pfn_to_page(pfn);
|
|
return page;
|
|
}
|
|
EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
|
|
|
|
#endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */
|
|
|
|
#ifdef CONFIG_PPC_STD_MMU_64
|
|
static bool disable_radix;
|
|
static int __init parse_disable_radix(char *p)
|
|
{
|
|
disable_radix = true;
|
|
return 0;
|
|
}
|
|
early_param("disable_radix", parse_disable_radix);
|
|
|
|
void __init mmu_early_init_devtree(void)
|
|
{
|
|
/* Disable radix mode based on kernel command line. */
|
|
if (disable_radix)
|
|
cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
|
|
|
|
if (early_radix_enabled())
|
|
radix__early_init_devtree();
|
|
else
|
|
hash__early_init_devtree();
|
|
}
|
|
#endif /* CONFIG_PPC_STD_MMU_64 */
|