linux/net/mctp/route.c
Kuniyuki Iwashima d51705614f mctp: Handle error of rtnl_register_module().
Since introduced, mctp has been ignoring the returned value of
rtnl_register_module(), which could fail silently.

Handling the error allows users to view a module as an all-or-nothing
thing in terms of the rtnetlink functionality.  This prevents syzkaller
from reporting spurious errors from its tests, where OOM often occurs
and module is automatically loaded.

Let's handle the errors by rtnl_register_many().

Fixes: 583be982d9 ("mctp: Add device handling and netlink interface")
Fixes: 831119f887 ("mctp: Add neighbour netlink interface")
Fixes: 06d2f4c583 ("mctp: Add netlink route management")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Jeremy Kerr <jk@codeconstruct.com.au>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2024-10-10 15:39:35 +02:00

1516 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Management Component Transport Protocol (MCTP) - routing
* implementation.
*
* This is currently based on a simple routing table, with no dst cache. The
* number of routes should stay fairly small, so the lookup cost is small.
*
* Copyright (c) 2021 Code Construct
* Copyright (c) 2021 Google
*/
#include <linux/idr.h>
#include <linux/kconfig.h>
#include <linux/mctp.h>
#include <linux/netdevice.h>
#include <linux/rtnetlink.h>
#include <linux/skbuff.h>
#include <uapi/linux/if_arp.h>
#include <net/mctp.h>
#include <net/mctpdevice.h>
#include <net/netlink.h>
#include <net/sock.h>
#include <trace/events/mctp.h>
static const unsigned int mctp_message_maxlen = 64 * 1024;
static const unsigned long mctp_key_lifetime = 6 * CONFIG_HZ;
static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev);
/* route output callbacks */
static int mctp_route_discard(struct mctp_route *route, struct sk_buff *skb)
{
kfree_skb(skb);
return 0;
}
static struct mctp_sock *mctp_lookup_bind(struct net *net, struct sk_buff *skb)
{
struct mctp_skb_cb *cb = mctp_cb(skb);
struct mctp_hdr *mh;
struct sock *sk;
u8 type;
WARN_ON(!rcu_read_lock_held());
/* TODO: look up in skb->cb? */
mh = mctp_hdr(skb);
if (!skb_headlen(skb))
return NULL;
type = (*(u8 *)skb->data) & 0x7f;
sk_for_each_rcu(sk, &net->mctp.binds) {
struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk);
if (msk->bind_net != MCTP_NET_ANY && msk->bind_net != cb->net)
continue;
if (msk->bind_type != type)
continue;
if (!mctp_address_matches(msk->bind_addr, mh->dest))
continue;
return msk;
}
return NULL;
}
/* A note on the key allocations.
*
* struct net->mctp.keys contains our set of currently-allocated keys for
* MCTP tag management. The lookup tuple for these is the peer EID,
* local EID and MCTP tag.
*
* In some cases, the peer EID may be MCTP_EID_ANY: for example, when a
* broadcast message is sent, we may receive responses from any peer EID.
* Because the broadcast dest address is equivalent to ANY, we create
* a key with (local = local-eid, peer = ANY). This allows a match on the
* incoming broadcast responses from any peer.
*
* We perform lookups when packets are received, and when tags are allocated
* in two scenarios:
*
* - when a packet is sent, with a locally-owned tag: we need to find an
* unused tag value for the (local, peer) EID pair.
*
* - when a tag is manually allocated: we need to find an unused tag value
* for the peer EID, but don't have a specific local EID at that stage.
*
* in the latter case, on successful allocation, we end up with a tag with
* (local = ANY, peer = peer-eid).
*
* So, the key set allows both a local EID of ANY, as well as a peer EID of
* ANY in the lookup tuple. Both may be ANY if we prealloc for a broadcast.
* The matching (in mctp_key_match()) during lookup allows the match value to
* be ANY in either the dest or source addresses.
*
* When allocating (+ inserting) a tag, we need to check for conflicts amongst
* the existing tag set. This requires macthing either exactly on the local
* and peer addresses, or either being ANY.
*/
static bool mctp_key_match(struct mctp_sk_key *key, unsigned int net,
mctp_eid_t local, mctp_eid_t peer, u8 tag)
{
if (key->net != net)
return false;
if (!mctp_address_matches(key->local_addr, local))
return false;
if (!mctp_address_matches(key->peer_addr, peer))
return false;
if (key->tag != tag)
return false;
return true;
}
/* returns a key (with key->lock held, and refcounted), or NULL if no such
* key exists.
*/
static struct mctp_sk_key *mctp_lookup_key(struct net *net, struct sk_buff *skb,
unsigned int netid, mctp_eid_t peer,
unsigned long *irqflags)
__acquires(&key->lock)
{
struct mctp_sk_key *key, *ret;
unsigned long flags;
struct mctp_hdr *mh;
u8 tag;
mh = mctp_hdr(skb);
tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
ret = NULL;
spin_lock_irqsave(&net->mctp.keys_lock, flags);
hlist_for_each_entry(key, &net->mctp.keys, hlist) {
if (!mctp_key_match(key, netid, mh->dest, peer, tag))
continue;
spin_lock(&key->lock);
if (key->valid) {
refcount_inc(&key->refs);
ret = key;
break;
}
spin_unlock(&key->lock);
}
if (ret) {
spin_unlock(&net->mctp.keys_lock);
*irqflags = flags;
} else {
spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
}
return ret;
}
static struct mctp_sk_key *mctp_key_alloc(struct mctp_sock *msk,
unsigned int net,
mctp_eid_t local, mctp_eid_t peer,
u8 tag, gfp_t gfp)
{
struct mctp_sk_key *key;
key = kzalloc(sizeof(*key), gfp);
if (!key)
return NULL;
key->net = net;
key->peer_addr = peer;
key->local_addr = local;
key->tag = tag;
key->sk = &msk->sk;
key->valid = true;
spin_lock_init(&key->lock);
refcount_set(&key->refs, 1);
sock_hold(key->sk);
return key;
}
void mctp_key_unref(struct mctp_sk_key *key)
{
unsigned long flags;
if (!refcount_dec_and_test(&key->refs))
return;
/* even though no refs exist here, the lock allows us to stay
* consistent with the locking requirement of mctp_dev_release_key
*/
spin_lock_irqsave(&key->lock, flags);
mctp_dev_release_key(key->dev, key);
spin_unlock_irqrestore(&key->lock, flags);
sock_put(key->sk);
kfree(key);
}
static int mctp_key_add(struct mctp_sk_key *key, struct mctp_sock *msk)
{
struct net *net = sock_net(&msk->sk);
struct mctp_sk_key *tmp;
unsigned long flags;
int rc = 0;
spin_lock_irqsave(&net->mctp.keys_lock, flags);
if (sock_flag(&msk->sk, SOCK_DEAD)) {
rc = -EINVAL;
goto out_unlock;
}
hlist_for_each_entry(tmp, &net->mctp.keys, hlist) {
if (mctp_key_match(tmp, key->net, key->local_addr,
key->peer_addr, key->tag)) {
spin_lock(&tmp->lock);
if (tmp->valid)
rc = -EEXIST;
spin_unlock(&tmp->lock);
if (rc)
break;
}
}
if (!rc) {
refcount_inc(&key->refs);
key->expiry = jiffies + mctp_key_lifetime;
timer_reduce(&msk->key_expiry, key->expiry);
hlist_add_head(&key->hlist, &net->mctp.keys);
hlist_add_head(&key->sklist, &msk->keys);
}
out_unlock:
spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
return rc;
}
/* Helper for mctp_route_input().
* We're done with the key; unlock and unref the key.
* For the usual case of automatic expiry we remove the key from lists.
* In the case that manual allocation is set on a key we release the lock
* and local ref, reset reassembly, but don't remove from lists.
*/
static void __mctp_key_done_in(struct mctp_sk_key *key, struct net *net,
unsigned long flags, unsigned long reason)
__releases(&key->lock)
{
struct sk_buff *skb;
trace_mctp_key_release(key, reason);
skb = key->reasm_head;
key->reasm_head = NULL;
if (!key->manual_alloc) {
key->reasm_dead = true;
key->valid = false;
mctp_dev_release_key(key->dev, key);
}
spin_unlock_irqrestore(&key->lock, flags);
if (!key->manual_alloc) {
spin_lock_irqsave(&net->mctp.keys_lock, flags);
if (!hlist_unhashed(&key->hlist)) {
hlist_del_init(&key->hlist);
hlist_del_init(&key->sklist);
mctp_key_unref(key);
}
spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
}
/* and one for the local reference */
mctp_key_unref(key);
kfree_skb(skb);
}
#ifdef CONFIG_MCTP_FLOWS
static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key)
{
struct mctp_flow *flow;
flow = skb_ext_add(skb, SKB_EXT_MCTP);
if (!flow)
return;
refcount_inc(&key->refs);
flow->key = key;
}
static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev)
{
struct mctp_sk_key *key;
struct mctp_flow *flow;
flow = skb_ext_find(skb, SKB_EXT_MCTP);
if (!flow)
return;
key = flow->key;
if (WARN_ON(key->dev && key->dev != dev))
return;
mctp_dev_set_key(dev, key);
}
#else
static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key) {}
static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev) {}
#endif
static int mctp_frag_queue(struct mctp_sk_key *key, struct sk_buff *skb)
{
struct mctp_hdr *hdr = mctp_hdr(skb);
u8 exp_seq, this_seq;
this_seq = (hdr->flags_seq_tag >> MCTP_HDR_SEQ_SHIFT)
& MCTP_HDR_SEQ_MASK;
if (!key->reasm_head) {
key->reasm_head = skb;
key->reasm_tailp = &(skb_shinfo(skb)->frag_list);
key->last_seq = this_seq;
return 0;
}
exp_seq = (key->last_seq + 1) & MCTP_HDR_SEQ_MASK;
if (this_seq != exp_seq)
return -EINVAL;
if (key->reasm_head->len + skb->len > mctp_message_maxlen)
return -EINVAL;
skb->next = NULL;
skb->sk = NULL;
*key->reasm_tailp = skb;
key->reasm_tailp = &skb->next;
key->last_seq = this_seq;
key->reasm_head->data_len += skb->len;
key->reasm_head->len += skb->len;
key->reasm_head->truesize += skb->truesize;
return 0;
}
static int mctp_route_input(struct mctp_route *route, struct sk_buff *skb)
{
struct mctp_sk_key *key, *any_key = NULL;
struct net *net = dev_net(skb->dev);
struct mctp_sock *msk;
struct mctp_hdr *mh;
unsigned int netid;
unsigned long f;
u8 tag, flags;
int rc;
msk = NULL;
rc = -EINVAL;
/* we may be receiving a locally-routed packet; drop source sk
* accounting
*/
skb_orphan(skb);
/* ensure we have enough data for a header and a type */
if (skb->len < sizeof(struct mctp_hdr) + 1)
goto out;
/* grab header, advance data ptr */
mh = mctp_hdr(skb);
netid = mctp_cb(skb)->net;
skb_pull(skb, sizeof(struct mctp_hdr));
if (mh->ver != 1)
goto out;
flags = mh->flags_seq_tag & (MCTP_HDR_FLAG_SOM | MCTP_HDR_FLAG_EOM);
tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
rcu_read_lock();
/* lookup socket / reasm context, exactly matching (src,dest,tag).
* we hold a ref on the key, and key->lock held.
*/
key = mctp_lookup_key(net, skb, netid, mh->src, &f);
if (flags & MCTP_HDR_FLAG_SOM) {
if (key) {
msk = container_of(key->sk, struct mctp_sock, sk);
} else {
/* first response to a broadcast? do a more general
* key lookup to find the socket, but don't use this
* key for reassembly - we'll create a more specific
* one for future packets if required (ie, !EOM).
*
* this lookup requires key->peer to be MCTP_ADDR_ANY,
* it doesn't match just any key->peer.
*/
any_key = mctp_lookup_key(net, skb, netid,
MCTP_ADDR_ANY, &f);
if (any_key) {
msk = container_of(any_key->sk,
struct mctp_sock, sk);
spin_unlock_irqrestore(&any_key->lock, f);
}
}
if (!key && !msk && (tag & MCTP_HDR_FLAG_TO))
msk = mctp_lookup_bind(net, skb);
if (!msk) {
rc = -ENOENT;
goto out_unlock;
}
/* single-packet message? deliver to socket, clean up any
* pending key.
*/
if (flags & MCTP_HDR_FLAG_EOM) {
sock_queue_rcv_skb(&msk->sk, skb);
if (key) {
/* we've hit a pending reassembly; not much we
* can do but drop it
*/
__mctp_key_done_in(key, net, f,
MCTP_TRACE_KEY_REPLIED);
key = NULL;
}
rc = 0;
goto out_unlock;
}
/* broadcast response or a bind() - create a key for further
* packets for this message
*/
if (!key) {
key = mctp_key_alloc(msk, netid, mh->dest, mh->src,
tag, GFP_ATOMIC);
if (!key) {
rc = -ENOMEM;
goto out_unlock;
}
/* we can queue without the key lock here, as the
* key isn't observable yet
*/
mctp_frag_queue(key, skb);
/* if the key_add fails, we've raced with another
* SOM packet with the same src, dest and tag. There's
* no way to distinguish future packets, so all we
* can do is drop; we'll free the skb on exit from
* this function.
*/
rc = mctp_key_add(key, msk);
if (!rc)
trace_mctp_key_acquire(key);
/* we don't need to release key->lock on exit, so
* clean up here and suppress the unlock via
* setting to NULL
*/
mctp_key_unref(key);
key = NULL;
} else {
if (key->reasm_head || key->reasm_dead) {
/* duplicate start? drop everything */
__mctp_key_done_in(key, net, f,
MCTP_TRACE_KEY_INVALIDATED);
rc = -EEXIST;
key = NULL;
} else {
rc = mctp_frag_queue(key, skb);
}
}
} else if (key) {
/* this packet continues a previous message; reassemble
* using the message-specific key
*/
/* we need to be continuing an existing reassembly... */
if (!key->reasm_head)
rc = -EINVAL;
else
rc = mctp_frag_queue(key, skb);
/* end of message? deliver to socket, and we're done with
* the reassembly/response key
*/
if (!rc && flags & MCTP_HDR_FLAG_EOM) {
sock_queue_rcv_skb(key->sk, key->reasm_head);
key->reasm_head = NULL;
__mctp_key_done_in(key, net, f, MCTP_TRACE_KEY_REPLIED);
key = NULL;
}
} else {
/* not a start, no matching key */
rc = -ENOENT;
}
out_unlock:
rcu_read_unlock();
if (key) {
spin_unlock_irqrestore(&key->lock, f);
mctp_key_unref(key);
}
if (any_key)
mctp_key_unref(any_key);
out:
if (rc)
kfree_skb(skb);
return rc;
}
static unsigned int mctp_route_mtu(struct mctp_route *rt)
{
return rt->mtu ?: READ_ONCE(rt->dev->dev->mtu);
}
static int mctp_route_output(struct mctp_route *route, struct sk_buff *skb)
{
struct mctp_skb_cb *cb = mctp_cb(skb);
struct mctp_hdr *hdr = mctp_hdr(skb);
char daddr_buf[MAX_ADDR_LEN];
char *daddr = NULL;
unsigned int mtu;
int rc;
skb->protocol = htons(ETH_P_MCTP);
mtu = READ_ONCE(skb->dev->mtu);
if (skb->len > mtu) {
kfree_skb(skb);
return -EMSGSIZE;
}
if (cb->ifindex) {
/* direct route; use the hwaddr we stashed in sendmsg */
if (cb->halen != skb->dev->addr_len) {
/* sanity check, sendmsg should have already caught this */
kfree_skb(skb);
return -EMSGSIZE;
}
daddr = cb->haddr;
} else {
/* If lookup fails let the device handle daddr==NULL */
if (mctp_neigh_lookup(route->dev, hdr->dest, daddr_buf) == 0)
daddr = daddr_buf;
}
rc = dev_hard_header(skb, skb->dev, ntohs(skb->protocol),
daddr, skb->dev->dev_addr, skb->len);
if (rc < 0) {
kfree_skb(skb);
return -EHOSTUNREACH;
}
mctp_flow_prepare_output(skb, route->dev);
rc = dev_queue_xmit(skb);
if (rc)
rc = net_xmit_errno(rc);
return rc;
}
/* route alloc/release */
static void mctp_route_release(struct mctp_route *rt)
{
if (refcount_dec_and_test(&rt->refs)) {
mctp_dev_put(rt->dev);
kfree_rcu(rt, rcu);
}
}
/* returns a route with the refcount at 1 */
static struct mctp_route *mctp_route_alloc(void)
{
struct mctp_route *rt;
rt = kzalloc(sizeof(*rt), GFP_KERNEL);
if (!rt)
return NULL;
INIT_LIST_HEAD(&rt->list);
refcount_set(&rt->refs, 1);
rt->output = mctp_route_discard;
return rt;
}
unsigned int mctp_default_net(struct net *net)
{
return READ_ONCE(net->mctp.default_net);
}
int mctp_default_net_set(struct net *net, unsigned int index)
{
if (index == 0)
return -EINVAL;
WRITE_ONCE(net->mctp.default_net, index);
return 0;
}
/* tag management */
static void mctp_reserve_tag(struct net *net, struct mctp_sk_key *key,
struct mctp_sock *msk)
{
struct netns_mctp *mns = &net->mctp;
lockdep_assert_held(&mns->keys_lock);
key->expiry = jiffies + mctp_key_lifetime;
timer_reduce(&msk->key_expiry, key->expiry);
/* we hold the net->key_lock here, allowing updates to both
* then net and sk
*/
hlist_add_head_rcu(&key->hlist, &mns->keys);
hlist_add_head_rcu(&key->sklist, &msk->keys);
refcount_inc(&key->refs);
}
/* Allocate a locally-owned tag value for (local, peer), and reserve
* it for the socket msk
*/
struct mctp_sk_key *mctp_alloc_local_tag(struct mctp_sock *msk,
unsigned int netid,
mctp_eid_t local, mctp_eid_t peer,
bool manual, u8 *tagp)
{
struct net *net = sock_net(&msk->sk);
struct netns_mctp *mns = &net->mctp;
struct mctp_sk_key *key, *tmp;
unsigned long flags;
u8 tagbits;
/* for NULL destination EIDs, we may get a response from any peer */
if (peer == MCTP_ADDR_NULL)
peer = MCTP_ADDR_ANY;
/* be optimistic, alloc now */
key = mctp_key_alloc(msk, netid, local, peer, 0, GFP_KERNEL);
if (!key)
return ERR_PTR(-ENOMEM);
/* 8 possible tag values */
tagbits = 0xff;
spin_lock_irqsave(&mns->keys_lock, flags);
/* Walk through the existing keys, looking for potential conflicting
* tags. If we find a conflict, clear that bit from tagbits
*/
hlist_for_each_entry(tmp, &mns->keys, hlist) {
/* We can check the lookup fields (*_addr, tag) without the
* lock held, they don't change over the lifetime of the key.
*/
/* tags are net-specific */
if (tmp->net != netid)
continue;
/* if we don't own the tag, it can't conflict */
if (tmp->tag & MCTP_HDR_FLAG_TO)
continue;
/* Since we're avoiding conflicting entries, match peer and
* local addresses, including with a wildcard on ANY. See
* 'A note on key allocations' for background.
*/
if (peer != MCTP_ADDR_ANY &&
!mctp_address_matches(tmp->peer_addr, peer))
continue;
if (local != MCTP_ADDR_ANY &&
!mctp_address_matches(tmp->local_addr, local))
continue;
spin_lock(&tmp->lock);
/* key must still be valid. If we find a match, clear the
* potential tag value
*/
if (tmp->valid)
tagbits &= ~(1 << tmp->tag);
spin_unlock(&tmp->lock);
if (!tagbits)
break;
}
if (tagbits) {
key->tag = __ffs(tagbits);
mctp_reserve_tag(net, key, msk);
trace_mctp_key_acquire(key);
key->manual_alloc = manual;
*tagp = key->tag;
}
spin_unlock_irqrestore(&mns->keys_lock, flags);
if (!tagbits) {
mctp_key_unref(key);
return ERR_PTR(-EBUSY);
}
return key;
}
static struct mctp_sk_key *mctp_lookup_prealloc_tag(struct mctp_sock *msk,
unsigned int netid,
mctp_eid_t daddr,
u8 req_tag, u8 *tagp)
{
struct net *net = sock_net(&msk->sk);
struct netns_mctp *mns = &net->mctp;
struct mctp_sk_key *key, *tmp;
unsigned long flags;
req_tag &= ~(MCTP_TAG_PREALLOC | MCTP_TAG_OWNER);
key = NULL;
spin_lock_irqsave(&mns->keys_lock, flags);
hlist_for_each_entry(tmp, &mns->keys, hlist) {
if (tmp->net != netid)
continue;
if (tmp->tag != req_tag)
continue;
if (!mctp_address_matches(tmp->peer_addr, daddr))
continue;
if (!tmp->manual_alloc)
continue;
spin_lock(&tmp->lock);
if (tmp->valid) {
key = tmp;
refcount_inc(&key->refs);
spin_unlock(&tmp->lock);
break;
}
spin_unlock(&tmp->lock);
}
spin_unlock_irqrestore(&mns->keys_lock, flags);
if (!key)
return ERR_PTR(-ENOENT);
if (tagp)
*tagp = key->tag;
return key;
}
/* routing lookups */
static bool mctp_rt_match_eid(struct mctp_route *rt,
unsigned int net, mctp_eid_t eid)
{
return READ_ONCE(rt->dev->net) == net &&
rt->min <= eid && rt->max >= eid;
}
/* compares match, used for duplicate prevention */
static bool mctp_rt_compare_exact(struct mctp_route *rt1,
struct mctp_route *rt2)
{
ASSERT_RTNL();
return rt1->dev->net == rt2->dev->net &&
rt1->min == rt2->min &&
rt1->max == rt2->max;
}
struct mctp_route *mctp_route_lookup(struct net *net, unsigned int dnet,
mctp_eid_t daddr)
{
struct mctp_route *tmp, *rt = NULL;
rcu_read_lock();
list_for_each_entry_rcu(tmp, &net->mctp.routes, list) {
/* TODO: add metrics */
if (mctp_rt_match_eid(tmp, dnet, daddr)) {
if (refcount_inc_not_zero(&tmp->refs)) {
rt = tmp;
break;
}
}
}
rcu_read_unlock();
return rt;
}
static struct mctp_route *mctp_route_lookup_null(struct net *net,
struct net_device *dev)
{
struct mctp_route *tmp, *rt = NULL;
rcu_read_lock();
list_for_each_entry_rcu(tmp, &net->mctp.routes, list) {
if (tmp->dev->dev == dev && tmp->type == RTN_LOCAL &&
refcount_inc_not_zero(&tmp->refs)) {
rt = tmp;
break;
}
}
rcu_read_unlock();
return rt;
}
static int mctp_do_fragment_route(struct mctp_route *rt, struct sk_buff *skb,
unsigned int mtu, u8 tag)
{
const unsigned int hlen = sizeof(struct mctp_hdr);
struct mctp_hdr *hdr, *hdr2;
unsigned int pos, size, headroom;
struct sk_buff *skb2;
int rc;
u8 seq;
hdr = mctp_hdr(skb);
seq = 0;
rc = 0;
if (mtu < hlen + 1) {
kfree_skb(skb);
return -EMSGSIZE;
}
/* keep same headroom as the original skb */
headroom = skb_headroom(skb);
/* we've got the header */
skb_pull(skb, hlen);
for (pos = 0; pos < skb->len;) {
/* size of message payload */
size = min(mtu - hlen, skb->len - pos);
skb2 = alloc_skb(headroom + hlen + size, GFP_KERNEL);
if (!skb2) {
rc = -ENOMEM;
break;
}
/* generic skb copy */
skb2->protocol = skb->protocol;
skb2->priority = skb->priority;
skb2->dev = skb->dev;
memcpy(skb2->cb, skb->cb, sizeof(skb2->cb));
if (skb->sk)
skb_set_owner_w(skb2, skb->sk);
/* establish packet */
skb_reserve(skb2, headroom);
skb_reset_network_header(skb2);
skb_put(skb2, hlen + size);
skb2->transport_header = skb2->network_header + hlen;
/* copy header fields, calculate SOM/EOM flags & seq */
hdr2 = mctp_hdr(skb2);
hdr2->ver = hdr->ver;
hdr2->dest = hdr->dest;
hdr2->src = hdr->src;
hdr2->flags_seq_tag = tag &
(MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
if (pos == 0)
hdr2->flags_seq_tag |= MCTP_HDR_FLAG_SOM;
if (pos + size == skb->len)
hdr2->flags_seq_tag |= MCTP_HDR_FLAG_EOM;
hdr2->flags_seq_tag |= seq << MCTP_HDR_SEQ_SHIFT;
/* copy message payload */
skb_copy_bits(skb, pos, skb_transport_header(skb2), size);
/* we need to copy the extensions, for MCTP flow data */
skb_ext_copy(skb2, skb);
/* do route */
rc = rt->output(rt, skb2);
if (rc)
break;
seq = (seq + 1) & MCTP_HDR_SEQ_MASK;
pos += size;
}
consume_skb(skb);
return rc;
}
int mctp_local_output(struct sock *sk, struct mctp_route *rt,
struct sk_buff *skb, mctp_eid_t daddr, u8 req_tag)
{
struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk);
struct mctp_skb_cb *cb = mctp_cb(skb);
struct mctp_route tmp_rt = {0};
struct mctp_sk_key *key;
struct mctp_hdr *hdr;
unsigned long flags;
unsigned int netid;
unsigned int mtu;
mctp_eid_t saddr;
bool ext_rt;
int rc;
u8 tag;
rc = -ENODEV;
if (rt) {
ext_rt = false;
if (WARN_ON(!rt->dev))
goto out_release;
} else if (cb->ifindex) {
struct net_device *dev;
ext_rt = true;
rt = &tmp_rt;
rcu_read_lock();
dev = dev_get_by_index_rcu(sock_net(sk), cb->ifindex);
if (!dev) {
rcu_read_unlock();
goto out_free;
}
rt->dev = __mctp_dev_get(dev);
rcu_read_unlock();
if (!rt->dev)
goto out_release;
/* establish temporary route - we set up enough to keep
* mctp_route_output happy
*/
rt->output = mctp_route_output;
rt->mtu = 0;
} else {
rc = -EINVAL;
goto out_free;
}
spin_lock_irqsave(&rt->dev->addrs_lock, flags);
if (rt->dev->num_addrs == 0) {
rc = -EHOSTUNREACH;
} else {
/* use the outbound interface's first address as our source */
saddr = rt->dev->addrs[0];
rc = 0;
}
spin_unlock_irqrestore(&rt->dev->addrs_lock, flags);
netid = READ_ONCE(rt->dev->net);
if (rc)
goto out_release;
if (req_tag & MCTP_TAG_OWNER) {
if (req_tag & MCTP_TAG_PREALLOC)
key = mctp_lookup_prealloc_tag(msk, netid, daddr,
req_tag, &tag);
else
key = mctp_alloc_local_tag(msk, netid, saddr, daddr,
false, &tag);
if (IS_ERR(key)) {
rc = PTR_ERR(key);
goto out_release;
}
mctp_skb_set_flow(skb, key);
/* done with the key in this scope */
mctp_key_unref(key);
tag |= MCTP_HDR_FLAG_TO;
} else {
key = NULL;
tag = req_tag & MCTP_TAG_MASK;
}
skb->protocol = htons(ETH_P_MCTP);
skb->priority = 0;
skb_reset_transport_header(skb);
skb_push(skb, sizeof(struct mctp_hdr));
skb_reset_network_header(skb);
skb->dev = rt->dev->dev;
/* cb->net will have been set on initial ingress */
cb->src = saddr;
/* set up common header fields */
hdr = mctp_hdr(skb);
hdr->ver = 1;
hdr->dest = daddr;
hdr->src = saddr;
mtu = mctp_route_mtu(rt);
if (skb->len + sizeof(struct mctp_hdr) <= mtu) {
hdr->flags_seq_tag = MCTP_HDR_FLAG_SOM |
MCTP_HDR_FLAG_EOM | tag;
rc = rt->output(rt, skb);
} else {
rc = mctp_do_fragment_route(rt, skb, mtu, tag);
}
/* route output functions consume the skb, even on error */
skb = NULL;
out_release:
if (!ext_rt)
mctp_route_release(rt);
mctp_dev_put(tmp_rt.dev);
out_free:
kfree_skb(skb);
return rc;
}
/* route management */
static int mctp_route_add(struct mctp_dev *mdev, mctp_eid_t daddr_start,
unsigned int daddr_extent, unsigned int mtu,
unsigned char type)
{
int (*rtfn)(struct mctp_route *rt, struct sk_buff *skb);
struct net *net = dev_net(mdev->dev);
struct mctp_route *rt, *ert;
if (!mctp_address_unicast(daddr_start))
return -EINVAL;
if (daddr_extent > 0xff || daddr_start + daddr_extent >= 255)
return -EINVAL;
switch (type) {
case RTN_LOCAL:
rtfn = mctp_route_input;
break;
case RTN_UNICAST:
rtfn = mctp_route_output;
break;
default:
return -EINVAL;
}
rt = mctp_route_alloc();
if (!rt)
return -ENOMEM;
rt->min = daddr_start;
rt->max = daddr_start + daddr_extent;
rt->mtu = mtu;
rt->dev = mdev;
mctp_dev_hold(rt->dev);
rt->type = type;
rt->output = rtfn;
ASSERT_RTNL();
/* Prevent duplicate identical routes. */
list_for_each_entry(ert, &net->mctp.routes, list) {
if (mctp_rt_compare_exact(rt, ert)) {
mctp_route_release(rt);
return -EEXIST;
}
}
list_add_rcu(&rt->list, &net->mctp.routes);
return 0;
}
static int mctp_route_remove(struct mctp_dev *mdev, mctp_eid_t daddr_start,
unsigned int daddr_extent, unsigned char type)
{
struct net *net = dev_net(mdev->dev);
struct mctp_route *rt, *tmp;
mctp_eid_t daddr_end;
bool dropped;
if (daddr_extent > 0xff || daddr_start + daddr_extent >= 255)
return -EINVAL;
daddr_end = daddr_start + daddr_extent;
dropped = false;
ASSERT_RTNL();
list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) {
if (rt->dev == mdev &&
rt->min == daddr_start && rt->max == daddr_end &&
rt->type == type) {
list_del_rcu(&rt->list);
/* TODO: immediate RTM_DELROUTE */
mctp_route_release(rt);
dropped = true;
}
}
return dropped ? 0 : -ENOENT;
}
int mctp_route_add_local(struct mctp_dev *mdev, mctp_eid_t addr)
{
return mctp_route_add(mdev, addr, 0, 0, RTN_LOCAL);
}
int mctp_route_remove_local(struct mctp_dev *mdev, mctp_eid_t addr)
{
return mctp_route_remove(mdev, addr, 0, RTN_LOCAL);
}
/* removes all entries for a given device */
void mctp_route_remove_dev(struct mctp_dev *mdev)
{
struct net *net = dev_net(mdev->dev);
struct mctp_route *rt, *tmp;
ASSERT_RTNL();
list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) {
if (rt->dev == mdev) {
list_del_rcu(&rt->list);
/* TODO: immediate RTM_DELROUTE */
mctp_route_release(rt);
}
}
}
/* Incoming packet-handling */
static int mctp_pkttype_receive(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt,
struct net_device *orig_dev)
{
struct net *net = dev_net(dev);
struct mctp_dev *mdev;
struct mctp_skb_cb *cb;
struct mctp_route *rt;
struct mctp_hdr *mh;
rcu_read_lock();
mdev = __mctp_dev_get(dev);
rcu_read_unlock();
if (!mdev) {
/* basic non-data sanity checks */
goto err_drop;
}
if (!pskb_may_pull(skb, sizeof(struct mctp_hdr)))
goto err_drop;
skb_reset_transport_header(skb);
skb_reset_network_header(skb);
/* We have enough for a header; decode and route */
mh = mctp_hdr(skb);
if (mh->ver < MCTP_VER_MIN || mh->ver > MCTP_VER_MAX)
goto err_drop;
/* source must be valid unicast or null; drop reserved ranges and
* broadcast
*/
if (!(mctp_address_unicast(mh->src) || mctp_address_null(mh->src)))
goto err_drop;
/* dest address: as above, but allow broadcast */
if (!(mctp_address_unicast(mh->dest) || mctp_address_null(mh->dest) ||
mctp_address_broadcast(mh->dest)))
goto err_drop;
/* MCTP drivers must populate halen/haddr */
if (dev->type == ARPHRD_MCTP) {
cb = mctp_cb(skb);
} else {
cb = __mctp_cb(skb);
cb->halen = 0;
}
cb->net = READ_ONCE(mdev->net);
cb->ifindex = dev->ifindex;
rt = mctp_route_lookup(net, cb->net, mh->dest);
/* NULL EID, but addressed to our physical address */
if (!rt && mh->dest == MCTP_ADDR_NULL && skb->pkt_type == PACKET_HOST)
rt = mctp_route_lookup_null(net, dev);
if (!rt)
goto err_drop;
rt->output(rt, skb);
mctp_route_release(rt);
mctp_dev_put(mdev);
return NET_RX_SUCCESS;
err_drop:
kfree_skb(skb);
mctp_dev_put(mdev);
return NET_RX_DROP;
}
static struct packet_type mctp_packet_type = {
.type = cpu_to_be16(ETH_P_MCTP),
.func = mctp_pkttype_receive,
};
/* netlink interface */
static const struct nla_policy rta_mctp_policy[RTA_MAX + 1] = {
[RTA_DST] = { .type = NLA_U8 },
[RTA_METRICS] = { .type = NLA_NESTED },
[RTA_OIF] = { .type = NLA_U32 },
};
/* Common part for RTM_NEWROUTE and RTM_DELROUTE parsing.
* tb must hold RTA_MAX+1 elements.
*/
static int mctp_route_nlparse(struct sk_buff *skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack,
struct nlattr **tb, struct rtmsg **rtm,
struct mctp_dev **mdev, mctp_eid_t *daddr_start)
{
struct net *net = sock_net(skb->sk);
struct net_device *dev;
unsigned int ifindex;
int rc;
rc = nlmsg_parse(nlh, sizeof(struct rtmsg), tb, RTA_MAX,
rta_mctp_policy, extack);
if (rc < 0) {
NL_SET_ERR_MSG(extack, "incorrect format");
return rc;
}
if (!tb[RTA_DST]) {
NL_SET_ERR_MSG(extack, "dst EID missing");
return -EINVAL;
}
*daddr_start = nla_get_u8(tb[RTA_DST]);
if (!tb[RTA_OIF]) {
NL_SET_ERR_MSG(extack, "ifindex missing");
return -EINVAL;
}
ifindex = nla_get_u32(tb[RTA_OIF]);
*rtm = nlmsg_data(nlh);
if ((*rtm)->rtm_family != AF_MCTP) {
NL_SET_ERR_MSG(extack, "route family must be AF_MCTP");
return -EINVAL;
}
dev = __dev_get_by_index(net, ifindex);
if (!dev) {
NL_SET_ERR_MSG(extack, "bad ifindex");
return -ENODEV;
}
*mdev = mctp_dev_get_rtnl(dev);
if (!*mdev)
return -ENODEV;
if (dev->flags & IFF_LOOPBACK) {
NL_SET_ERR_MSG(extack, "no routes to loopback");
return -EINVAL;
}
return 0;
}
static const struct nla_policy rta_metrics_policy[RTAX_MAX + 1] = {
[RTAX_MTU] = { .type = NLA_U32 },
};
static int mctp_newroute(struct sk_buff *skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[RTA_MAX + 1];
struct nlattr *tbx[RTAX_MAX + 1];
mctp_eid_t daddr_start;
struct mctp_dev *mdev;
struct rtmsg *rtm;
unsigned int mtu;
int rc;
rc = mctp_route_nlparse(skb, nlh, extack, tb,
&rtm, &mdev, &daddr_start);
if (rc < 0)
return rc;
if (rtm->rtm_type != RTN_UNICAST) {
NL_SET_ERR_MSG(extack, "rtm_type must be RTN_UNICAST");
return -EINVAL;
}
mtu = 0;
if (tb[RTA_METRICS]) {
rc = nla_parse_nested(tbx, RTAX_MAX, tb[RTA_METRICS],
rta_metrics_policy, NULL);
if (rc < 0)
return rc;
if (tbx[RTAX_MTU])
mtu = nla_get_u32(tbx[RTAX_MTU]);
}
rc = mctp_route_add(mdev, daddr_start, rtm->rtm_dst_len, mtu,
rtm->rtm_type);
return rc;
}
static int mctp_delroute(struct sk_buff *skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[RTA_MAX + 1];
mctp_eid_t daddr_start;
struct mctp_dev *mdev;
struct rtmsg *rtm;
int rc;
rc = mctp_route_nlparse(skb, nlh, extack, tb,
&rtm, &mdev, &daddr_start);
if (rc < 0)
return rc;
/* we only have unicast routes */
if (rtm->rtm_type != RTN_UNICAST)
return -EINVAL;
rc = mctp_route_remove(mdev, daddr_start, rtm->rtm_dst_len, RTN_UNICAST);
return rc;
}
static int mctp_fill_rtinfo(struct sk_buff *skb, struct mctp_route *rt,
u32 portid, u32 seq, int event, unsigned int flags)
{
struct nlmsghdr *nlh;
struct rtmsg *hdr;
void *metrics;
nlh = nlmsg_put(skb, portid, seq, event, sizeof(*hdr), flags);
if (!nlh)
return -EMSGSIZE;
hdr = nlmsg_data(nlh);
hdr->rtm_family = AF_MCTP;
/* we use the _len fields as a number of EIDs, rather than
* a number of bits in the address
*/
hdr->rtm_dst_len = rt->max - rt->min;
hdr->rtm_src_len = 0;
hdr->rtm_tos = 0;
hdr->rtm_table = RT_TABLE_DEFAULT;
hdr->rtm_protocol = RTPROT_STATIC; /* everything is user-defined */
hdr->rtm_scope = RT_SCOPE_LINK; /* TODO: scope in mctp_route? */
hdr->rtm_type = rt->type;
if (nla_put_u8(skb, RTA_DST, rt->min))
goto cancel;
metrics = nla_nest_start_noflag(skb, RTA_METRICS);
if (!metrics)
goto cancel;
if (rt->mtu) {
if (nla_put_u32(skb, RTAX_MTU, rt->mtu))
goto cancel;
}
nla_nest_end(skb, metrics);
if (rt->dev) {
if (nla_put_u32(skb, RTA_OIF, rt->dev->dev->ifindex))
goto cancel;
}
/* TODO: conditional neighbour physaddr? */
nlmsg_end(skb, nlh);
return 0;
cancel:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
static int mctp_dump_rtinfo(struct sk_buff *skb, struct netlink_callback *cb)
{
struct net *net = sock_net(skb->sk);
struct mctp_route *rt;
int s_idx, idx;
/* TODO: allow filtering on route data, possibly under
* cb->strict_check
*/
/* TODO: change to struct overlay */
s_idx = cb->args[0];
idx = 0;
rcu_read_lock();
list_for_each_entry_rcu(rt, &net->mctp.routes, list) {
if (idx++ < s_idx)
continue;
if (mctp_fill_rtinfo(skb, rt,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
RTM_NEWROUTE, NLM_F_MULTI) < 0)
break;
}
rcu_read_unlock();
cb->args[0] = idx;
return skb->len;
}
/* net namespace implementation */
static int __net_init mctp_routes_net_init(struct net *net)
{
struct netns_mctp *ns = &net->mctp;
INIT_LIST_HEAD(&ns->routes);
INIT_HLIST_HEAD(&ns->binds);
mutex_init(&ns->bind_lock);
INIT_HLIST_HEAD(&ns->keys);
spin_lock_init(&ns->keys_lock);
WARN_ON(mctp_default_net_set(net, MCTP_INITIAL_DEFAULT_NET));
return 0;
}
static void __net_exit mctp_routes_net_exit(struct net *net)
{
struct mctp_route *rt;
rcu_read_lock();
list_for_each_entry_rcu(rt, &net->mctp.routes, list)
mctp_route_release(rt);
rcu_read_unlock();
}
static struct pernet_operations mctp_net_ops = {
.init = mctp_routes_net_init,
.exit = mctp_routes_net_exit,
};
static const struct rtnl_msg_handler mctp_route_rtnl_msg_handlers[] = {
{THIS_MODULE, PF_MCTP, RTM_NEWROUTE, mctp_newroute, NULL, 0},
{THIS_MODULE, PF_MCTP, RTM_DELROUTE, mctp_delroute, NULL, 0},
{THIS_MODULE, PF_MCTP, RTM_GETROUTE, NULL, mctp_dump_rtinfo, 0},
};
int __init mctp_routes_init(void)
{
int err;
dev_add_pack(&mctp_packet_type);
err = register_pernet_subsys(&mctp_net_ops);
if (err)
goto err_pernet;
err = rtnl_register_many(mctp_route_rtnl_msg_handlers);
if (err)
goto err_rtnl;
return 0;
err_rtnl:
unregister_pernet_subsys(&mctp_net_ops);
err_pernet:
dev_remove_pack(&mctp_packet_type);
return err;
}
void mctp_routes_exit(void)
{
rtnl_unregister_many(mctp_route_rtnl_msg_handlers);
unregister_pernet_subsys(&mctp_net_ops);
dev_remove_pack(&mctp_packet_type);
}
#if IS_ENABLED(CONFIG_MCTP_TEST)
#include "test/route-test.c"
#endif