linux/fs/xfs/libxfs/xfs_inode_buf.c
Darrick J. Wong 7297fd0beb xfs: enforce metadata inode flag
Add checks for the metadata inode flag so that we don't ever leak
metadata inodes out to userspace, and we don't ever try to read a
regular inode as metadata.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:31 -08:00

913 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_ag.h"
#include "xfs_inode.h"
#include "xfs_errortag.h"
#include "xfs_error.h"
#include "xfs_icache.h"
#include "xfs_trans.h"
#include "xfs_ialloc.h"
#include "xfs_dir2.h"
#include "xfs_health.h"
#include "xfs_metafile.h"
#include <linux/iversion.h>
/*
* If we are doing readahead on an inode buffer, we might be in log recovery
* reading an inode allocation buffer that hasn't yet been replayed, and hence
* has not had the inode cores stamped into it. Hence for readahead, the buffer
* may be potentially invalid.
*
* If the readahead buffer is invalid, we need to mark it with an error and
* clear the DONE status of the buffer so that a followup read will re-read it
* from disk. We don't report the error otherwise to avoid warnings during log
* recovery and we don't get unnecessary panics on debug kernels. We use EIO here
* because all we want to do is say readahead failed; there is no-one to report
* the error to, so this will distinguish it from a non-ra verifier failure.
* Changes to this readahead error behaviour also need to be reflected in
* xfs_dquot_buf_readahead_verify().
*/
static void
xfs_inode_buf_verify(
struct xfs_buf *bp,
bool readahead)
{
struct xfs_mount *mp = bp->b_mount;
int i;
int ni;
/*
* Validate the magic number and version of every inode in the buffer
*/
ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
for (i = 0; i < ni; i++) {
struct xfs_dinode *dip;
xfs_agino_t unlinked_ino;
int di_ok;
dip = xfs_buf_offset(bp, (i << mp->m_sb.sb_inodelog));
unlinked_ino = be32_to_cpu(dip->di_next_unlinked);
di_ok = xfs_verify_magic16(bp, dip->di_magic) &&
xfs_dinode_good_version(mp, dip->di_version) &&
xfs_verify_agino_or_null(bp->b_pag, unlinked_ino);
if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
XFS_ERRTAG_ITOBP_INOTOBP))) {
if (readahead) {
bp->b_flags &= ~XBF_DONE;
xfs_buf_ioerror(bp, -EIO);
return;
}
#ifdef DEBUG
xfs_alert(mp,
"bad inode magic/vsn daddr %lld #%d (magic=%x)",
(unsigned long long)xfs_buf_daddr(bp), i,
be16_to_cpu(dip->di_magic));
#endif
xfs_buf_verifier_error(bp, -EFSCORRUPTED,
__func__, dip, sizeof(*dip),
NULL);
return;
}
}
}
static void
xfs_inode_buf_read_verify(
struct xfs_buf *bp)
{
xfs_inode_buf_verify(bp, false);
}
static void
xfs_inode_buf_readahead_verify(
struct xfs_buf *bp)
{
xfs_inode_buf_verify(bp, true);
}
static void
xfs_inode_buf_write_verify(
struct xfs_buf *bp)
{
xfs_inode_buf_verify(bp, false);
}
const struct xfs_buf_ops xfs_inode_buf_ops = {
.name = "xfs_inode",
.magic16 = { cpu_to_be16(XFS_DINODE_MAGIC),
cpu_to_be16(XFS_DINODE_MAGIC) },
.verify_read = xfs_inode_buf_read_verify,
.verify_write = xfs_inode_buf_write_verify,
};
const struct xfs_buf_ops xfs_inode_buf_ra_ops = {
.name = "xfs_inode_ra",
.magic16 = { cpu_to_be16(XFS_DINODE_MAGIC),
cpu_to_be16(XFS_DINODE_MAGIC) },
.verify_read = xfs_inode_buf_readahead_verify,
.verify_write = xfs_inode_buf_write_verify,
};
/*
* This routine is called to map an inode to the buffer containing the on-disk
* version of the inode. It returns a pointer to the buffer containing the
* on-disk inode in the bpp parameter.
*/
int
xfs_imap_to_bp(
struct xfs_mount *mp,
struct xfs_trans *tp,
struct xfs_imap *imap,
struct xfs_buf **bpp)
{
int error;
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
imap->im_len, XBF_UNMAPPED, bpp, &xfs_inode_buf_ops);
if (xfs_metadata_is_sick(error))
xfs_agno_mark_sick(mp, xfs_daddr_to_agno(mp, imap->im_blkno),
XFS_SICK_AG_INODES);
return error;
}
static inline struct timespec64 xfs_inode_decode_bigtime(uint64_t ts)
{
struct timespec64 tv;
uint32_t n;
tv.tv_sec = xfs_bigtime_to_unix(div_u64_rem(ts, NSEC_PER_SEC, &n));
tv.tv_nsec = n;
return tv;
}
/* Convert an ondisk timestamp to an incore timestamp. */
struct timespec64
xfs_inode_from_disk_ts(
struct xfs_dinode *dip,
const xfs_timestamp_t ts)
{
struct timespec64 tv;
struct xfs_legacy_timestamp *lts;
if (xfs_dinode_has_bigtime(dip))
return xfs_inode_decode_bigtime(be64_to_cpu(ts));
lts = (struct xfs_legacy_timestamp *)&ts;
tv.tv_sec = (int)be32_to_cpu(lts->t_sec);
tv.tv_nsec = (int)be32_to_cpu(lts->t_nsec);
return tv;
}
int
xfs_inode_from_disk(
struct xfs_inode *ip,
struct xfs_dinode *from)
{
struct inode *inode = VFS_I(ip);
int error;
xfs_failaddr_t fa;
ASSERT(ip->i_cowfp == NULL);
fa = xfs_dinode_verify(ip->i_mount, ip->i_ino, from);
if (fa) {
xfs_inode_verifier_error(ip, -EFSCORRUPTED, "dinode", from,
sizeof(*from), fa);
return -EFSCORRUPTED;
}
/*
* First get the permanent information that is needed to allocate an
* inode. If the inode is unused, mode is zero and we shouldn't mess
* with the uninitialized part of it.
*/
if (!xfs_has_v3inodes(ip->i_mount))
ip->i_flushiter = be16_to_cpu(from->di_flushiter);
inode->i_generation = be32_to_cpu(from->di_gen);
inode->i_mode = be16_to_cpu(from->di_mode);
if (!inode->i_mode)
return 0;
/*
* Convert v1 inodes immediately to v2 inode format as this is the
* minimum inode version format we support in the rest of the code.
* They will also be unconditionally written back to disk as v2 inodes.
*/
if (unlikely(from->di_version == 1)) {
/* di_metatype used to be di_onlink */
set_nlink(inode, be16_to_cpu(from->di_metatype));
ip->i_projid = 0;
} else {
set_nlink(inode, be32_to_cpu(from->di_nlink));
ip->i_projid = (prid_t)be16_to_cpu(from->di_projid_hi) << 16 |
be16_to_cpu(from->di_projid_lo);
if (xfs_dinode_is_metadir(from))
ip->i_metatype = be16_to_cpu(from->di_metatype);
}
i_uid_write(inode, be32_to_cpu(from->di_uid));
i_gid_write(inode, be32_to_cpu(from->di_gid));
/*
* Time is signed, so need to convert to signed 32 bit before
* storing in inode timestamp which may be 64 bit. Otherwise
* a time before epoch is converted to a time long after epoch
* on 64 bit systems.
*/
inode_set_atime_to_ts(inode,
xfs_inode_from_disk_ts(from, from->di_atime));
inode_set_mtime_to_ts(inode,
xfs_inode_from_disk_ts(from, from->di_mtime));
inode_set_ctime_to_ts(inode,
xfs_inode_from_disk_ts(from, from->di_ctime));
ip->i_disk_size = be64_to_cpu(from->di_size);
ip->i_nblocks = be64_to_cpu(from->di_nblocks);
ip->i_extsize = be32_to_cpu(from->di_extsize);
ip->i_forkoff = from->di_forkoff;
ip->i_diflags = be16_to_cpu(from->di_flags);
ip->i_next_unlinked = be32_to_cpu(from->di_next_unlinked);
if (from->di_dmevmask || from->di_dmstate)
xfs_iflags_set(ip, XFS_IPRESERVE_DM_FIELDS);
if (xfs_has_v3inodes(ip->i_mount)) {
inode_set_iversion_queried(inode,
be64_to_cpu(from->di_changecount));
ip->i_crtime = xfs_inode_from_disk_ts(from, from->di_crtime);
ip->i_diflags2 = be64_to_cpu(from->di_flags2);
ip->i_cowextsize = be32_to_cpu(from->di_cowextsize);
}
error = xfs_iformat_data_fork(ip, from);
if (error)
return error;
if (from->di_forkoff) {
error = xfs_iformat_attr_fork(ip, from);
if (error)
goto out_destroy_data_fork;
}
if (xfs_is_reflink_inode(ip))
xfs_ifork_init_cow(ip);
return 0;
out_destroy_data_fork:
xfs_idestroy_fork(&ip->i_df);
return error;
}
/* Convert an incore timestamp to an ondisk timestamp. */
static inline xfs_timestamp_t
xfs_inode_to_disk_ts(
struct xfs_inode *ip,
const struct timespec64 tv)
{
struct xfs_legacy_timestamp *lts;
xfs_timestamp_t ts;
if (xfs_inode_has_bigtime(ip))
return cpu_to_be64(xfs_inode_encode_bigtime(tv));
lts = (struct xfs_legacy_timestamp *)&ts;
lts->t_sec = cpu_to_be32(tv.tv_sec);
lts->t_nsec = cpu_to_be32(tv.tv_nsec);
return ts;
}
static inline void
xfs_inode_to_disk_iext_counters(
struct xfs_inode *ip,
struct xfs_dinode *to)
{
if (xfs_inode_has_large_extent_counts(ip)) {
to->di_big_nextents = cpu_to_be64(xfs_ifork_nextents(&ip->i_df));
to->di_big_anextents = cpu_to_be32(xfs_ifork_nextents(&ip->i_af));
/*
* We might be upgrading the inode to use larger extent counters
* than was previously used. Hence zero the unused field.
*/
to->di_nrext64_pad = cpu_to_be16(0);
} else {
to->di_nextents = cpu_to_be32(xfs_ifork_nextents(&ip->i_df));
to->di_anextents = cpu_to_be16(xfs_ifork_nextents(&ip->i_af));
}
}
void
xfs_inode_to_disk(
struct xfs_inode *ip,
struct xfs_dinode *to,
xfs_lsn_t lsn)
{
struct inode *inode = VFS_I(ip);
to->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
if (xfs_is_metadir_inode(ip))
to->di_metatype = cpu_to_be16(ip->i_metatype);
else
to->di_metatype = 0;
to->di_format = xfs_ifork_format(&ip->i_df);
to->di_uid = cpu_to_be32(i_uid_read(inode));
to->di_gid = cpu_to_be32(i_gid_read(inode));
to->di_projid_lo = cpu_to_be16(ip->i_projid & 0xffff);
to->di_projid_hi = cpu_to_be16(ip->i_projid >> 16);
to->di_atime = xfs_inode_to_disk_ts(ip, inode_get_atime(inode));
to->di_mtime = xfs_inode_to_disk_ts(ip, inode_get_mtime(inode));
to->di_ctime = xfs_inode_to_disk_ts(ip, inode_get_ctime(inode));
to->di_nlink = cpu_to_be32(inode->i_nlink);
to->di_gen = cpu_to_be32(inode->i_generation);
to->di_mode = cpu_to_be16(inode->i_mode);
to->di_size = cpu_to_be64(ip->i_disk_size);
to->di_nblocks = cpu_to_be64(ip->i_nblocks);
to->di_extsize = cpu_to_be32(ip->i_extsize);
to->di_forkoff = ip->i_forkoff;
to->di_aformat = xfs_ifork_format(&ip->i_af);
to->di_flags = cpu_to_be16(ip->i_diflags);
if (xfs_has_v3inodes(ip->i_mount)) {
to->di_version = 3;
to->di_changecount = cpu_to_be64(inode_peek_iversion(inode));
to->di_crtime = xfs_inode_to_disk_ts(ip, ip->i_crtime);
to->di_flags2 = cpu_to_be64(ip->i_diflags2);
to->di_cowextsize = cpu_to_be32(ip->i_cowextsize);
to->di_ino = cpu_to_be64(ip->i_ino);
to->di_lsn = cpu_to_be64(lsn);
memset(to->di_pad2, 0, sizeof(to->di_pad2));
uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
to->di_v3_pad = 0;
} else {
to->di_version = 2;
to->di_flushiter = cpu_to_be16(ip->i_flushiter);
memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
}
xfs_inode_to_disk_iext_counters(ip, to);
}
static xfs_failaddr_t
xfs_dinode_verify_fork(
struct xfs_dinode *dip,
struct xfs_mount *mp,
int whichfork)
{
xfs_extnum_t di_nextents;
xfs_extnum_t max_extents;
mode_t mode = be16_to_cpu(dip->di_mode);
uint32_t fork_size = XFS_DFORK_SIZE(dip, mp, whichfork);
uint32_t fork_format = XFS_DFORK_FORMAT(dip, whichfork);
di_nextents = xfs_dfork_nextents(dip, whichfork);
/*
* For fork types that can contain local data, check that the fork
* format matches the size of local data contained within the fork.
*/
if (whichfork == XFS_DATA_FORK) {
/*
* A directory small enough to fit in the inode must be stored
* in local format. The directory sf <-> extents conversion
* code updates the directory size accordingly. Directories
* being truncated have zero size and are not subject to this
* check.
*/
if (S_ISDIR(mode)) {
if (dip->di_size &&
be64_to_cpu(dip->di_size) <= fork_size &&
fork_format != XFS_DINODE_FMT_LOCAL)
return __this_address;
}
/*
* A symlink with a target small enough to fit in the inode can
* be stored in extents format if xattrs were added (thus
* converting the data fork from shortform to remote format)
* and then removed.
*/
if (S_ISLNK(mode)) {
if (be64_to_cpu(dip->di_size) <= fork_size &&
fork_format != XFS_DINODE_FMT_EXTENTS &&
fork_format != XFS_DINODE_FMT_LOCAL)
return __this_address;
}
/*
* For all types, check that when the size says the fork should
* be in extent or btree format, the inode isn't claiming to be
* in local format.
*/
if (be64_to_cpu(dip->di_size) > fork_size &&
fork_format == XFS_DINODE_FMT_LOCAL)
return __this_address;
}
switch (fork_format) {
case XFS_DINODE_FMT_LOCAL:
/*
* No local regular files yet.
*/
if (S_ISREG(mode) && whichfork == XFS_DATA_FORK)
return __this_address;
if (di_nextents)
return __this_address;
break;
case XFS_DINODE_FMT_EXTENTS:
if (di_nextents > XFS_DFORK_MAXEXT(dip, mp, whichfork))
return __this_address;
break;
case XFS_DINODE_FMT_BTREE:
max_extents = xfs_iext_max_nextents(
xfs_dinode_has_large_extent_counts(dip),
whichfork);
if (di_nextents > max_extents)
return __this_address;
break;
default:
return __this_address;
}
return NULL;
}
static xfs_failaddr_t
xfs_dinode_verify_forkoff(
struct xfs_dinode *dip,
struct xfs_mount *mp)
{
if (!dip->di_forkoff)
return NULL;
switch (dip->di_format) {
case XFS_DINODE_FMT_DEV:
if (dip->di_forkoff != (roundup(sizeof(xfs_dev_t), 8) >> 3))
return __this_address;
break;
case XFS_DINODE_FMT_LOCAL: /* fall through ... */
case XFS_DINODE_FMT_EXTENTS: /* fall through ... */
case XFS_DINODE_FMT_BTREE:
if (dip->di_forkoff >= (XFS_LITINO(mp) >> 3))
return __this_address;
break;
default:
return __this_address;
}
return NULL;
}
static xfs_failaddr_t
xfs_dinode_verify_nrext64(
struct xfs_mount *mp,
struct xfs_dinode *dip)
{
if (xfs_dinode_has_large_extent_counts(dip)) {
if (!xfs_has_large_extent_counts(mp))
return __this_address;
if (dip->di_nrext64_pad != 0)
return __this_address;
} else if (dip->di_version >= 3) {
if (dip->di_v3_pad != 0)
return __this_address;
}
return NULL;
}
/*
* Validate all the picky requirements we have for a file that claims to be
* filesystem metadata.
*/
xfs_failaddr_t
xfs_dinode_verify_metadir(
struct xfs_mount *mp,
struct xfs_dinode *dip,
uint16_t mode,
uint16_t flags,
uint64_t flags2)
{
if (!xfs_has_metadir(mp))
return __this_address;
/* V5 filesystem only */
if (dip->di_version < 3)
return __this_address;
if (be16_to_cpu(dip->di_metatype) >= XFS_METAFILE_MAX)
return __this_address;
/* V3 inode fields that are always zero */
if ((flags2 & XFS_DIFLAG2_NREXT64) && dip->di_nrext64_pad)
return __this_address;
if (!(flags2 & XFS_DIFLAG2_NREXT64) && dip->di_flushiter)
return __this_address;
/* Metadata files can only be directories or regular files */
if (!S_ISDIR(mode) && !S_ISREG(mode))
return __this_address;
/* They must have zero access permissions */
if (mode & 0777)
return __this_address;
/* DMAPI event and state masks are zero */
if (dip->di_dmevmask || dip->di_dmstate)
return __this_address;
/*
* User and group IDs must be zero. The project ID is used for
* grouping inodes. Metadata inodes are never accounted to quotas.
*/
if (dip->di_uid || dip->di_gid)
return __this_address;
/* Mandatory inode flags must be set */
if (S_ISDIR(mode)) {
if ((flags & XFS_METADIR_DIFLAGS) != XFS_METADIR_DIFLAGS)
return __this_address;
} else {
if ((flags & XFS_METAFILE_DIFLAGS) != XFS_METAFILE_DIFLAGS)
return __this_address;
}
/* dax flags2 must not be set */
if (flags2 & XFS_DIFLAG2_DAX)
return __this_address;
return NULL;
}
xfs_failaddr_t
xfs_dinode_verify(
struct xfs_mount *mp,
xfs_ino_t ino,
struct xfs_dinode *dip)
{
xfs_failaddr_t fa;
uint16_t mode;
uint16_t flags;
uint64_t flags2;
uint64_t di_size;
xfs_extnum_t nextents;
xfs_extnum_t naextents;
xfs_filblks_t nblocks;
if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))
return __this_address;
/* Verify v3 integrity information first */
if (dip->di_version >= 3) {
if (!xfs_has_v3inodes(mp))
return __this_address;
if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize,
XFS_DINODE_CRC_OFF))
return __this_address;
if (be64_to_cpu(dip->di_ino) != ino)
return __this_address;
if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_meta_uuid))
return __this_address;
}
/*
* Historical note: xfsprogs in the 3.2 era set up its incore inodes to
* have di_nlink track the link count, even if the actual filesystem
* only supported V1 inodes (i.e. di_onlink). When writing out the
* ondisk inode, it would set both the ondisk di_nlink and di_onlink to
* the the incore di_nlink value, which is why we cannot check for
* di_nlink==0 on a V1 inode. V2/3 inodes would get written out with
* di_onlink==0, so we can check that.
*/
if (dip->di_version == 2) {
if (dip->di_metatype)
return __this_address;
} else if (dip->di_version >= 3) {
if (!xfs_dinode_is_metadir(dip) && dip->di_metatype)
return __this_address;
}
/* don't allow invalid i_size */
di_size = be64_to_cpu(dip->di_size);
if (di_size & (1ULL << 63))
return __this_address;
mode = be16_to_cpu(dip->di_mode);
if (mode && xfs_mode_to_ftype(mode) == XFS_DIR3_FT_UNKNOWN)
return __this_address;
/*
* No zero-length symlinks/dirs unless they're unlinked and hence being
* inactivated.
*/
if ((S_ISLNK(mode) || S_ISDIR(mode)) && di_size == 0) {
if (dip->di_version > 1) {
if (dip->di_nlink)
return __this_address;
} else {
/* di_metatype used to be di_onlink */
if (dip->di_metatype)
return __this_address;
}
}
fa = xfs_dinode_verify_nrext64(mp, dip);
if (fa)
return fa;
nextents = xfs_dfork_data_extents(dip);
naextents = xfs_dfork_attr_extents(dip);
nblocks = be64_to_cpu(dip->di_nblocks);
/* Fork checks carried over from xfs_iformat_fork */
if (mode && nextents + naextents > nblocks)
return __this_address;
if (nextents + naextents == 0 && nblocks != 0)
return __this_address;
if (S_ISDIR(mode) && nextents > mp->m_dir_geo->max_extents)
return __this_address;
if (mode && XFS_DFORK_BOFF(dip) > mp->m_sb.sb_inodesize)
return __this_address;
flags = be16_to_cpu(dip->di_flags);
if (mode && (flags & XFS_DIFLAG_REALTIME) && !mp->m_rtdev_targp)
return __this_address;
/* check for illegal values of forkoff */
fa = xfs_dinode_verify_forkoff(dip, mp);
if (fa)
return fa;
/* Do we have appropriate data fork formats for the mode? */
switch (mode & S_IFMT) {
case S_IFIFO:
case S_IFCHR:
case S_IFBLK:
case S_IFSOCK:
if (dip->di_format != XFS_DINODE_FMT_DEV)
return __this_address;
break;
case S_IFREG:
case S_IFLNK:
case S_IFDIR:
fa = xfs_dinode_verify_fork(dip, mp, XFS_DATA_FORK);
if (fa)
return fa;
break;
case 0:
/* Uninitialized inode ok. */
break;
default:
return __this_address;
}
if (dip->di_forkoff) {
fa = xfs_dinode_verify_fork(dip, mp, XFS_ATTR_FORK);
if (fa)
return fa;
} else {
/*
* If there is no fork offset, this may be a freshly-made inode
* in a new disk cluster, in which case di_aformat is zeroed.
* Otherwise, such an inode must be in EXTENTS format; this goes
* for freed inodes as well.
*/
switch (dip->di_aformat) {
case 0:
case XFS_DINODE_FMT_EXTENTS:
break;
default:
return __this_address;
}
if (naextents)
return __this_address;
}
/* extent size hint validation */
fa = xfs_inode_validate_extsize(mp, be32_to_cpu(dip->di_extsize),
mode, flags);
if (fa)
return fa;
/* only version 3 or greater inodes are extensively verified here */
if (dip->di_version < 3)
return NULL;
flags2 = be64_to_cpu(dip->di_flags2);
/* don't allow reflink/cowextsize if we don't have reflink */
if ((flags2 & (XFS_DIFLAG2_REFLINK | XFS_DIFLAG2_COWEXTSIZE)) &&
!xfs_has_reflink(mp))
return __this_address;
/* only regular files get reflink */
if ((flags2 & XFS_DIFLAG2_REFLINK) && (mode & S_IFMT) != S_IFREG)
return __this_address;
/* don't let reflink and realtime mix */
if ((flags2 & XFS_DIFLAG2_REFLINK) && (flags & XFS_DIFLAG_REALTIME))
return __this_address;
/* COW extent size hint validation */
fa = xfs_inode_validate_cowextsize(mp, be32_to_cpu(dip->di_cowextsize),
mode, flags, flags2);
if (fa)
return fa;
/* bigtime iflag can only happen on bigtime filesystems */
if (xfs_dinode_has_bigtime(dip) &&
!xfs_has_bigtime(mp))
return __this_address;
if (flags2 & XFS_DIFLAG2_METADATA) {
fa = xfs_dinode_verify_metadir(mp, dip, mode, flags, flags2);
if (fa)
return fa;
}
return NULL;
}
void
xfs_dinode_calc_crc(
struct xfs_mount *mp,
struct xfs_dinode *dip)
{
uint32_t crc;
if (dip->di_version < 3)
return;
ASSERT(xfs_has_crc(mp));
crc = xfs_start_cksum_update((char *)dip, mp->m_sb.sb_inodesize,
XFS_DINODE_CRC_OFF);
dip->di_crc = xfs_end_cksum(crc);
}
/*
* Validate di_extsize hint.
*
* 1. Extent size hint is only valid for directories and regular files.
* 2. FS_XFLAG_EXTSIZE is only valid for regular files.
* 3. FS_XFLAG_EXTSZINHERIT is only valid for directories.
* 4. Hint cannot be larger than MAXTEXTLEN.
* 5. Can be changed on directories at any time.
* 6. Hint value of 0 turns off hints, clears inode flags.
* 7. Extent size must be a multiple of the appropriate block size.
* For realtime files, this is the rt extent size.
* 8. For non-realtime files, the extent size hint must be limited
* to half the AG size to avoid alignment extending the extent beyond the
* limits of the AG.
*/
xfs_failaddr_t
xfs_inode_validate_extsize(
struct xfs_mount *mp,
uint32_t extsize,
uint16_t mode,
uint16_t flags)
{
bool rt_flag;
bool hint_flag;
bool inherit_flag;
uint32_t extsize_bytes;
uint32_t blocksize_bytes;
rt_flag = (flags & XFS_DIFLAG_REALTIME);
hint_flag = (flags & XFS_DIFLAG_EXTSIZE);
inherit_flag = (flags & XFS_DIFLAG_EXTSZINHERIT);
extsize_bytes = XFS_FSB_TO_B(mp, extsize);
/*
* This comment describes a historic gap in this verifier function.
*
* For a directory with both RTINHERIT and EXTSZINHERIT flags set, this
* function has never checked that the extent size hint is an integer
* multiple of the realtime extent size. Since we allow users to set
* this combination on non-rt filesystems /and/ to change the rt
* extent size when adding a rt device to a filesystem, the net effect
* is that users can configure a filesystem anticipating one rt
* geometry and change their minds later. Directories do not use the
* extent size hint, so this is harmless for them.
*
* If a directory with a misaligned extent size hint is allowed to
* propagate that hint into a new regular realtime file, the result
* is that the inode cluster buffer verifier will trigger a corruption
* shutdown the next time it is run, because the verifier has always
* enforced the alignment rule for regular files.
*
* Because we allow administrators to set a new rt extent size when
* adding a rt section, we cannot add a check to this verifier because
* that will result a new source of directory corruption errors when
* reading an existing filesystem. Instead, we rely on callers to
* decide when alignment checks are appropriate, and fix things up as
* needed.
*/
if (rt_flag)
blocksize_bytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
else
blocksize_bytes = mp->m_sb.sb_blocksize;
if ((hint_flag || inherit_flag) && !(S_ISDIR(mode) || S_ISREG(mode)))
return __this_address;
if (hint_flag && !S_ISREG(mode))
return __this_address;
if (inherit_flag && !S_ISDIR(mode))
return __this_address;
if ((hint_flag || inherit_flag) && extsize == 0)
return __this_address;
/* free inodes get flags set to zero but extsize remains */
if (mode && !(hint_flag || inherit_flag) && extsize != 0)
return __this_address;
if (extsize_bytes % blocksize_bytes)
return __this_address;
if (extsize > XFS_MAX_BMBT_EXTLEN)
return __this_address;
if (!rt_flag && extsize > mp->m_sb.sb_agblocks / 2)
return __this_address;
return NULL;
}
/*
* Validate di_cowextsize hint.
*
* 1. CoW extent size hint can only be set if reflink is enabled on the fs.
* The inode does not have to have any shared blocks, but it must be a v3.
* 2. FS_XFLAG_COWEXTSIZE is only valid for directories and regular files;
* for a directory, the hint is propagated to new files.
* 3. Can be changed on files & directories at any time.
* 4. Hint value of 0 turns off hints, clears inode flags.
* 5. Extent size must be a multiple of the appropriate block size.
* 6. The extent size hint must be limited to half the AG size to avoid
* alignment extending the extent beyond the limits of the AG.
*/
xfs_failaddr_t
xfs_inode_validate_cowextsize(
struct xfs_mount *mp,
uint32_t cowextsize,
uint16_t mode,
uint16_t flags,
uint64_t flags2)
{
bool rt_flag;
bool hint_flag;
uint32_t cowextsize_bytes;
rt_flag = (flags & XFS_DIFLAG_REALTIME);
hint_flag = (flags2 & XFS_DIFLAG2_COWEXTSIZE);
cowextsize_bytes = XFS_FSB_TO_B(mp, cowextsize);
if (hint_flag && !xfs_has_reflink(mp))
return __this_address;
if (hint_flag && !(S_ISDIR(mode) || S_ISREG(mode)))
return __this_address;
if (hint_flag && cowextsize == 0)
return __this_address;
/* free inodes get flags set to zero but cowextsize remains */
if (mode && !hint_flag && cowextsize != 0)
return __this_address;
if (hint_flag && rt_flag)
return __this_address;
if (cowextsize_bytes % mp->m_sb.sb_blocksize)
return __this_address;
if (cowextsize > XFS_MAX_BMBT_EXTLEN)
return __this_address;
if (cowextsize > mp->m_sb.sb_agblocks / 2)
return __this_address;
return NULL;
}