linux/arch/parisc/kernel/cache.c
Thorsten Blum 2fd4e52e44 parisc: Use max() to calculate parisc_tlb_flush_threshold
Use max() to reduce 4 lines of code to a single line and improve its
readability.

Fixes the following Coccinelle/coccicheck warning reported by
minmax.cocci:

  WARNING opportunity for max()

Signed-off-by: Thorsten Blum <thorsten.blum@toblux.com>
Signed-off-by: Helge Deller <deller@gmx.de>
2024-07-04 22:37:26 +02:00

980 lines
26 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1999-2006 Helge Deller <deller@gmx.de> (07-13-1999)
* Copyright (C) 1999 SuSE GmbH Nuernberg
* Copyright (C) 2000 Philipp Rumpf (prumpf@tux.org)
*
* Cache and TLB management
*
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include <linux/pagemap.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/syscalls.h>
#include <linux/vmalloc.h>
#include <asm/pdc.h>
#include <asm/cache.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/sections.h>
#include <asm/shmparam.h>
#include <asm/mmu_context.h>
#include <asm/cachectl.h>
#define PTR_PAGE_ALIGN_DOWN(addr) PTR_ALIGN_DOWN(addr, PAGE_SIZE)
/*
* When nonzero, use _PAGE_ACCESSED bit to try to reduce the number
* of page flushes done flush_cache_page_if_present. There are some
* pros and cons in using this option. It may increase the risk of
* random segmentation faults.
*/
#define CONFIG_FLUSH_PAGE_ACCESSED 0
int split_tlb __ro_after_init;
int dcache_stride __ro_after_init;
int icache_stride __ro_after_init;
EXPORT_SYMBOL(dcache_stride);
/* Internal implementation in arch/parisc/kernel/pacache.S */
void flush_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr);
EXPORT_SYMBOL(flush_dcache_page_asm);
void purge_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr);
void flush_icache_page_asm(unsigned long phys_addr, unsigned long vaddr);
void flush_data_cache_local(void *); /* flushes local data-cache only */
void flush_instruction_cache_local(void); /* flushes local code-cache only */
static void flush_kernel_dcache_page_addr(const void *addr);
/* On some machines (i.e., ones with the Merced bus), there can be
* only a single PxTLB broadcast at a time; this must be guaranteed
* by software. We need a spinlock around all TLB flushes to ensure
* this.
*/
DEFINE_SPINLOCK(pa_tlb_flush_lock);
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
int pa_serialize_tlb_flushes __ro_after_init;
#endif
struct pdc_cache_info cache_info __ro_after_init;
#ifndef CONFIG_PA20
struct pdc_btlb_info btlb_info;
#endif
DEFINE_STATIC_KEY_TRUE(parisc_has_cache);
DEFINE_STATIC_KEY_TRUE(parisc_has_dcache);
DEFINE_STATIC_KEY_TRUE(parisc_has_icache);
static void cache_flush_local_cpu(void *dummy)
{
if (static_branch_likely(&parisc_has_icache))
flush_instruction_cache_local();
if (static_branch_likely(&parisc_has_dcache))
flush_data_cache_local(NULL);
}
void flush_cache_all_local(void)
{
cache_flush_local_cpu(NULL);
}
void flush_cache_all(void)
{
if (static_branch_likely(&parisc_has_cache))
on_each_cpu(cache_flush_local_cpu, NULL, 1);
}
static inline void flush_data_cache(void)
{
if (static_branch_likely(&parisc_has_dcache))
on_each_cpu(flush_data_cache_local, NULL, 1);
}
/* Kernel virtual address of pfn. */
#define pfn_va(pfn) __va(PFN_PHYS(pfn))
void __update_cache(pte_t pte)
{
unsigned long pfn = pte_pfn(pte);
struct folio *folio;
unsigned int nr;
/* We don't have pte special. As a result, we can be called with
an invalid pfn and we don't need to flush the kernel dcache page.
This occurs with FireGL card in C8000. */
if (!pfn_valid(pfn))
return;
folio = page_folio(pfn_to_page(pfn));
pfn = folio_pfn(folio);
nr = folio_nr_pages(folio);
if (folio_flush_mapping(folio) &&
test_bit(PG_dcache_dirty, &folio->flags)) {
while (nr--)
flush_kernel_dcache_page_addr(pfn_va(pfn + nr));
clear_bit(PG_dcache_dirty, &folio->flags);
} else if (parisc_requires_coherency())
while (nr--)
flush_kernel_dcache_page_addr(pfn_va(pfn + nr));
}
void
show_cache_info(struct seq_file *m)
{
char buf[32];
seq_printf(m, "I-cache\t\t: %ld KB\n",
cache_info.ic_size/1024 );
if (cache_info.dc_loop != 1)
snprintf(buf, 32, "%lu-way associative", cache_info.dc_loop);
seq_printf(m, "D-cache\t\t: %ld KB (%s%s, %s, alias=%d)\n",
cache_info.dc_size/1024,
(cache_info.dc_conf.cc_wt ? "WT":"WB"),
(cache_info.dc_conf.cc_sh ? ", shared I/D":""),
((cache_info.dc_loop == 1) ? "direct mapped" : buf),
cache_info.dc_conf.cc_alias
);
seq_printf(m, "ITLB entries\t: %ld\n" "DTLB entries\t: %ld%s\n",
cache_info.it_size,
cache_info.dt_size,
cache_info.dt_conf.tc_sh ? " - shared with ITLB":""
);
#ifndef CONFIG_PA20
/* BTLB - Block TLB */
if (btlb_info.max_size==0) {
seq_printf(m, "BTLB\t\t: not supported\n" );
} else {
seq_printf(m,
"BTLB fixed\t: max. %d pages, pagesize=%d (%dMB)\n"
"BTLB fix-entr.\t: %d instruction, %d data (%d combined)\n"
"BTLB var-entr.\t: %d instruction, %d data (%d combined)\n",
btlb_info.max_size, (int)4096,
btlb_info.max_size>>8,
btlb_info.fixed_range_info.num_i,
btlb_info.fixed_range_info.num_d,
btlb_info.fixed_range_info.num_comb,
btlb_info.variable_range_info.num_i,
btlb_info.variable_range_info.num_d,
btlb_info.variable_range_info.num_comb
);
}
#endif
}
void __init
parisc_cache_init(void)
{
if (pdc_cache_info(&cache_info) < 0)
panic("parisc_cache_init: pdc_cache_info failed");
#if 0
printk("ic_size %lx dc_size %lx it_size %lx\n",
cache_info.ic_size,
cache_info.dc_size,
cache_info.it_size);
printk("DC base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n",
cache_info.dc_base,
cache_info.dc_stride,
cache_info.dc_count,
cache_info.dc_loop);
printk("dc_conf = 0x%lx alias %d blk %d line %d shift %d\n",
*(unsigned long *) (&cache_info.dc_conf),
cache_info.dc_conf.cc_alias,
cache_info.dc_conf.cc_block,
cache_info.dc_conf.cc_line,
cache_info.dc_conf.cc_shift);
printk(" wt %d sh %d cst %d hv %d\n",
cache_info.dc_conf.cc_wt,
cache_info.dc_conf.cc_sh,
cache_info.dc_conf.cc_cst,
cache_info.dc_conf.cc_hv);
printk("IC base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n",
cache_info.ic_base,
cache_info.ic_stride,
cache_info.ic_count,
cache_info.ic_loop);
printk("IT base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n",
cache_info.it_sp_base,
cache_info.it_sp_stride,
cache_info.it_sp_count,
cache_info.it_loop,
cache_info.it_off_base,
cache_info.it_off_stride,
cache_info.it_off_count);
printk("DT base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n",
cache_info.dt_sp_base,
cache_info.dt_sp_stride,
cache_info.dt_sp_count,
cache_info.dt_loop,
cache_info.dt_off_base,
cache_info.dt_off_stride,
cache_info.dt_off_count);
printk("ic_conf = 0x%lx alias %d blk %d line %d shift %d\n",
*(unsigned long *) (&cache_info.ic_conf),
cache_info.ic_conf.cc_alias,
cache_info.ic_conf.cc_block,
cache_info.ic_conf.cc_line,
cache_info.ic_conf.cc_shift);
printk(" wt %d sh %d cst %d hv %d\n",
cache_info.ic_conf.cc_wt,
cache_info.ic_conf.cc_sh,
cache_info.ic_conf.cc_cst,
cache_info.ic_conf.cc_hv);
printk("D-TLB conf: sh %d page %d cst %d aid %d sr %d\n",
cache_info.dt_conf.tc_sh,
cache_info.dt_conf.tc_page,
cache_info.dt_conf.tc_cst,
cache_info.dt_conf.tc_aid,
cache_info.dt_conf.tc_sr);
printk("I-TLB conf: sh %d page %d cst %d aid %d sr %d\n",
cache_info.it_conf.tc_sh,
cache_info.it_conf.tc_page,
cache_info.it_conf.tc_cst,
cache_info.it_conf.tc_aid,
cache_info.it_conf.tc_sr);
#endif
split_tlb = 0;
if (cache_info.dt_conf.tc_sh == 0 || cache_info.dt_conf.tc_sh == 2) {
if (cache_info.dt_conf.tc_sh == 2)
printk(KERN_WARNING "Unexpected TLB configuration. "
"Will flush I/D separately (could be optimized).\n");
split_tlb = 1;
}
/* "New and Improved" version from Jim Hull
* (1 << (cc_block-1)) * (cc_line << (4 + cnf.cc_shift))
* The following CAFL_STRIDE is an optimized version, see
* http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023625.html
* http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023671.html
*/
#define CAFL_STRIDE(cnf) (cnf.cc_line << (3 + cnf.cc_block + cnf.cc_shift))
dcache_stride = CAFL_STRIDE(cache_info.dc_conf);
icache_stride = CAFL_STRIDE(cache_info.ic_conf);
#undef CAFL_STRIDE
/* stride needs to be non-zero, otherwise cache flushes will not work */
WARN_ON(cache_info.dc_size && dcache_stride == 0);
WARN_ON(cache_info.ic_size && icache_stride == 0);
if ((boot_cpu_data.pdc.capabilities & PDC_MODEL_NVA_MASK) ==
PDC_MODEL_NVA_UNSUPPORTED) {
printk(KERN_WARNING "parisc_cache_init: Only equivalent aliasing supported!\n");
#if 0
panic("SMP kernel required to avoid non-equivalent aliasing");
#endif
}
}
void disable_sr_hashing(void)
{
int srhash_type, retval;
unsigned long space_bits;
switch (boot_cpu_data.cpu_type) {
case pcx: /* We shouldn't get this far. setup.c should prevent it. */
BUG();
return;
case pcxs:
case pcxt:
case pcxt_:
srhash_type = SRHASH_PCXST;
break;
case pcxl:
srhash_type = SRHASH_PCXL;
break;
case pcxl2: /* pcxl2 doesn't support space register hashing */
return;
default: /* Currently all PA2.0 machines use the same ins. sequence */
srhash_type = SRHASH_PA20;
break;
}
disable_sr_hashing_asm(srhash_type);
retval = pdc_spaceid_bits(&space_bits);
/* If this procedure isn't implemented, don't panic. */
if (retval < 0 && retval != PDC_BAD_OPTION)
panic("pdc_spaceid_bits call failed.\n");
if (space_bits != 0)
panic("SpaceID hashing is still on!\n");
}
static inline void
__flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr,
unsigned long physaddr)
{
if (!static_branch_likely(&parisc_has_cache))
return;
/*
* The TLB is the engine of coherence on parisc. The CPU is
* entitled to speculate any page with a TLB mapping, so here
* we kill the mapping then flush the page along a special flush
* only alias mapping. This guarantees that the page is no-longer
* in the cache for any process and nor may it be speculatively
* read in (until the user or kernel specifically accesses it,
* of course).
*/
flush_tlb_page(vma, vmaddr);
preempt_disable();
flush_dcache_page_asm(physaddr, vmaddr);
if (vma->vm_flags & VM_EXEC)
flush_icache_page_asm(physaddr, vmaddr);
preempt_enable();
}
static void flush_kernel_dcache_page_addr(const void *addr)
{
unsigned long vaddr = (unsigned long)addr;
unsigned long flags;
/* Purge TLB entry to remove translation on all CPUs */
purge_tlb_start(flags);
pdtlb(SR_KERNEL, addr);
purge_tlb_end(flags);
/* Use tmpalias flush to prevent data cache move-in */
preempt_disable();
flush_dcache_page_asm(__pa(vaddr), vaddr);
preempt_enable();
}
static void flush_kernel_icache_page_addr(const void *addr)
{
unsigned long vaddr = (unsigned long)addr;
unsigned long flags;
/* Purge TLB entry to remove translation on all CPUs */
purge_tlb_start(flags);
pdtlb(SR_KERNEL, addr);
purge_tlb_end(flags);
/* Use tmpalias flush to prevent instruction cache move-in */
preempt_disable();
flush_icache_page_asm(__pa(vaddr), vaddr);
preempt_enable();
}
void kunmap_flush_on_unmap(const void *addr)
{
flush_kernel_dcache_page_addr(addr);
}
EXPORT_SYMBOL(kunmap_flush_on_unmap);
void flush_icache_pages(struct vm_area_struct *vma, struct page *page,
unsigned int nr)
{
void *kaddr = page_address(page);
for (;;) {
flush_kernel_dcache_page_addr(kaddr);
flush_kernel_icache_page_addr(kaddr);
if (--nr == 0)
break;
kaddr += PAGE_SIZE;
}
}
/*
* Walk page directory for MM to find PTEP pointer for address ADDR.
*/
static inline pte_t *get_ptep(struct mm_struct *mm, unsigned long addr)
{
pte_t *ptep = NULL;
pgd_t *pgd = mm->pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
if (!pgd_none(*pgd)) {
p4d = p4d_offset(pgd, addr);
if (!p4d_none(*p4d)) {
pud = pud_offset(p4d, addr);
if (!pud_none(*pud)) {
pmd = pmd_offset(pud, addr);
if (!pmd_none(*pmd))
ptep = pte_offset_map(pmd, addr);
}
}
}
return ptep;
}
static inline bool pte_needs_flush(pte_t pte)
{
return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_NO_CACHE))
== (_PAGE_PRESENT | _PAGE_ACCESSED);
}
/*
* Return user physical address. Returns 0 if page is not present.
*/
static inline unsigned long get_upa(struct mm_struct *mm, unsigned long addr)
{
unsigned long flags, space, pgd, prot, pa;
#ifdef CONFIG_TLB_PTLOCK
unsigned long pgd_lock;
#endif
/* Save context */
local_irq_save(flags);
prot = mfctl(8);
space = mfsp(SR_USER);
pgd = mfctl(25);
#ifdef CONFIG_TLB_PTLOCK
pgd_lock = mfctl(28);
#endif
/* Set context for lpa_user */
switch_mm_irqs_off(NULL, mm, NULL);
pa = lpa_user(addr);
/* Restore previous context */
#ifdef CONFIG_TLB_PTLOCK
mtctl(pgd_lock, 28);
#endif
mtctl(pgd, 25);
mtsp(space, SR_USER);
mtctl(prot, 8);
local_irq_restore(flags);
return pa;
}
void flush_dcache_folio(struct folio *folio)
{
struct address_space *mapping = folio_flush_mapping(folio);
struct vm_area_struct *vma;
unsigned long addr, old_addr = 0;
void *kaddr;
unsigned long count = 0;
unsigned long i, nr, flags;
pgoff_t pgoff;
if (mapping && !mapping_mapped(mapping)) {
set_bit(PG_dcache_dirty, &folio->flags);
return;
}
nr = folio_nr_pages(folio);
kaddr = folio_address(folio);
for (i = 0; i < nr; i++)
flush_kernel_dcache_page_addr(kaddr + i * PAGE_SIZE);
if (!mapping)
return;
pgoff = folio->index;
/*
* We have carefully arranged in arch_get_unmapped_area() that
* *any* mappings of a file are always congruently mapped (whether
* declared as MAP_PRIVATE or MAP_SHARED), so we only need
* to flush one address here for them all to become coherent
* on machines that support equivalent aliasing
*/
flush_dcache_mmap_lock_irqsave(mapping, flags);
vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff + nr - 1) {
unsigned long offset = pgoff - vma->vm_pgoff;
unsigned long pfn = folio_pfn(folio);
addr = vma->vm_start;
nr = folio_nr_pages(folio);
if (offset > -nr) {
pfn -= offset;
nr += offset;
} else {
addr += offset * PAGE_SIZE;
}
if (addr + nr * PAGE_SIZE > vma->vm_end)
nr = (vma->vm_end - addr) / PAGE_SIZE;
if (old_addr == 0 || (old_addr & (SHM_COLOUR - 1))
!= (addr & (SHM_COLOUR - 1))) {
for (i = 0; i < nr; i++)
__flush_cache_page(vma,
addr + i * PAGE_SIZE,
(pfn + i) * PAGE_SIZE);
/*
* Software is allowed to have any number
* of private mappings to a page.
*/
if (!(vma->vm_flags & VM_SHARED))
continue;
if (old_addr)
pr_err("INEQUIVALENT ALIASES 0x%lx and 0x%lx in file %pD\n",
old_addr, addr, vma->vm_file);
if (nr == folio_nr_pages(folio))
old_addr = addr;
}
WARN_ON(++count == 4096);
}
flush_dcache_mmap_unlock_irqrestore(mapping, flags);
}
EXPORT_SYMBOL(flush_dcache_folio);
/* Defined in arch/parisc/kernel/pacache.S */
EXPORT_SYMBOL(flush_kernel_dcache_range_asm);
EXPORT_SYMBOL(flush_kernel_icache_range_asm);
#define FLUSH_THRESHOLD 0x80000 /* 0.5MB */
static unsigned long parisc_cache_flush_threshold __ro_after_init = FLUSH_THRESHOLD;
#define FLUSH_TLB_THRESHOLD (16*1024) /* 16 KiB minimum TLB threshold */
static unsigned long parisc_tlb_flush_threshold __ro_after_init = ~0UL;
void __init parisc_setup_cache_timing(void)
{
unsigned long rangetime, alltime;
unsigned long size;
unsigned long threshold, threshold2;
alltime = mfctl(16);
flush_data_cache();
alltime = mfctl(16) - alltime;
size = (unsigned long)(_end - _text);
rangetime = mfctl(16);
flush_kernel_dcache_range((unsigned long)_text, size);
rangetime = mfctl(16) - rangetime;
printk(KERN_DEBUG "Whole cache flush %lu cycles, flushing %lu bytes %lu cycles\n",
alltime, size, rangetime);
threshold = L1_CACHE_ALIGN((unsigned long)((uint64_t)size * alltime / rangetime));
pr_info("Calculated flush threshold is %lu KiB\n",
threshold/1024);
/*
* The threshold computed above isn't very reliable. The following
* heuristic works reasonably well on c8000/rp3440.
*/
threshold2 = cache_info.dc_size * num_online_cpus();
parisc_cache_flush_threshold = threshold2;
printk(KERN_INFO "Cache flush threshold set to %lu KiB\n",
parisc_cache_flush_threshold/1024);
/* calculate TLB flush threshold */
/* On SMP machines, skip the TLB measure of kernel text which
* has been mapped as huge pages. */
if (num_online_cpus() > 1 && !parisc_requires_coherency()) {
threshold = max(cache_info.it_size, cache_info.dt_size);
threshold *= PAGE_SIZE;
threshold /= num_online_cpus();
goto set_tlb_threshold;
}
size = (unsigned long)_end - (unsigned long)_text;
rangetime = mfctl(16);
flush_tlb_kernel_range((unsigned long)_text, (unsigned long)_end);
rangetime = mfctl(16) - rangetime;
alltime = mfctl(16);
flush_tlb_all();
alltime = mfctl(16) - alltime;
printk(KERN_INFO "Whole TLB flush %lu cycles, Range flush %lu bytes %lu cycles\n",
alltime, size, rangetime);
threshold = PAGE_ALIGN((num_online_cpus() * size * alltime) / rangetime);
printk(KERN_INFO "Calculated TLB flush threshold %lu KiB\n",
threshold/1024);
set_tlb_threshold:
parisc_tlb_flush_threshold = max(threshold, FLUSH_TLB_THRESHOLD);
printk(KERN_INFO "TLB flush threshold set to %lu KiB\n",
parisc_tlb_flush_threshold/1024);
}
extern void purge_kernel_dcache_page_asm(unsigned long);
extern void clear_user_page_asm(void *, unsigned long);
extern void copy_user_page_asm(void *, void *, unsigned long);
static void flush_cache_page_if_present(struct vm_area_struct *vma,
unsigned long vmaddr)
{
#if CONFIG_FLUSH_PAGE_ACCESSED
bool needs_flush = false;
pte_t *ptep, pte;
ptep = get_ptep(vma->vm_mm, vmaddr);
if (ptep) {
pte = ptep_get(ptep);
needs_flush = pte_needs_flush(pte);
pte_unmap(ptep);
}
if (needs_flush)
__flush_cache_page(vma, vmaddr, PFN_PHYS(pte_pfn(pte)));
#else
struct mm_struct *mm = vma->vm_mm;
unsigned long physaddr = get_upa(mm, vmaddr);
if (physaddr)
__flush_cache_page(vma, vmaddr, PAGE_ALIGN_DOWN(physaddr));
#endif
}
void copy_user_highpage(struct page *to, struct page *from,
unsigned long vaddr, struct vm_area_struct *vma)
{
void *kto, *kfrom;
kfrom = kmap_local_page(from);
kto = kmap_local_page(to);
__flush_cache_page(vma, vaddr, PFN_PHYS(page_to_pfn(from)));
copy_page_asm(kto, kfrom);
kunmap_local(kto);
kunmap_local(kfrom);
}
void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
unsigned long user_vaddr, void *dst, void *src, int len)
{
__flush_cache_page(vma, user_vaddr, PFN_PHYS(page_to_pfn(page)));
memcpy(dst, src, len);
flush_kernel_dcache_page_addr(PTR_PAGE_ALIGN_DOWN(dst));
}
void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
unsigned long user_vaddr, void *dst, void *src, int len)
{
__flush_cache_page(vma, user_vaddr, PFN_PHYS(page_to_pfn(page)));
memcpy(dst, src, len);
flush_kernel_dcache_page_addr(PTR_PAGE_ALIGN_DOWN(src));
}
/* __flush_tlb_range()
*
* returns 1 if all TLBs were flushed.
*/
int __flush_tlb_range(unsigned long sid, unsigned long start,
unsigned long end)
{
unsigned long flags;
if ((!IS_ENABLED(CONFIG_SMP) || !arch_irqs_disabled()) &&
end - start >= parisc_tlb_flush_threshold) {
flush_tlb_all();
return 1;
}
/* Purge TLB entries for small ranges using the pdtlb and
pitlb instructions. These instructions execute locally
but cause a purge request to be broadcast to other TLBs. */
while (start < end) {
purge_tlb_start(flags);
mtsp(sid, SR_TEMP1);
pdtlb(SR_TEMP1, start);
pitlb(SR_TEMP1, start);
purge_tlb_end(flags);
start += PAGE_SIZE;
}
return 0;
}
static void flush_cache_pages(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
unsigned long addr;
for (addr = start; addr < end; addr += PAGE_SIZE)
flush_cache_page_if_present(vma, addr);
}
static inline unsigned long mm_total_size(struct mm_struct *mm)
{
struct vm_area_struct *vma;
unsigned long usize = 0;
VMA_ITERATOR(vmi, mm, 0);
for_each_vma(vmi, vma) {
if (usize >= parisc_cache_flush_threshold)
break;
usize += vma->vm_end - vma->vm_start;
}
return usize;
}
void flush_cache_mm(struct mm_struct *mm)
{
struct vm_area_struct *vma;
VMA_ITERATOR(vmi, mm, 0);
/*
* Flushing the whole cache on each cpu takes forever on
* rp3440, etc. So, avoid it if the mm isn't too big.
*
* Note that we must flush the entire cache on machines
* with aliasing caches to prevent random segmentation
* faults.
*/
if (!parisc_requires_coherency()
|| mm_total_size(mm) >= parisc_cache_flush_threshold) {
if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled()))
return;
flush_tlb_all();
flush_cache_all();
return;
}
/* Flush mm */
for_each_vma(vmi, vma)
flush_cache_pages(vma, vma->vm_start, vma->vm_end);
}
void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
if (!parisc_requires_coherency()
|| end - start >= parisc_cache_flush_threshold) {
if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled()))
return;
flush_tlb_range(vma, start, end);
if (vma->vm_flags & VM_EXEC)
flush_cache_all();
else
flush_data_cache();
return;
}
flush_cache_pages(vma, start & PAGE_MASK, end);
}
void flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr, unsigned long pfn)
{
__flush_cache_page(vma, vmaddr, PFN_PHYS(pfn));
}
void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
{
if (!PageAnon(page))
return;
__flush_cache_page(vma, vmaddr, PFN_PHYS(page_to_pfn(page)));
}
int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long addr,
pte_t *ptep)
{
pte_t pte = ptep_get(ptep);
if (!pte_young(pte))
return 0;
set_pte(ptep, pte_mkold(pte));
#if CONFIG_FLUSH_PAGE_ACCESSED
__flush_cache_page(vma, addr, PFN_PHYS(pte_pfn(pte)));
#endif
return 1;
}
/*
* After a PTE is cleared, we have no way to flush the cache for
* the physical page. On PA8800 and PA8900 processors, these lines
* can cause random cache corruption. Thus, we must flush the cache
* as well as the TLB when clearing a PTE that's valid.
*/
pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long addr,
pte_t *ptep)
{
struct mm_struct *mm = (vma)->vm_mm;
pte_t pte = ptep_get_and_clear(mm, addr, ptep);
unsigned long pfn = pte_pfn(pte);
if (pfn_valid(pfn))
__flush_cache_page(vma, addr, PFN_PHYS(pfn));
else if (pte_accessible(mm, pte))
flush_tlb_page(vma, addr);
return pte;
}
/*
* The physical address for pages in the ioremap case can be obtained
* from the vm_struct struct. I wasn't able to successfully handle the
* vmalloc and vmap cases. We have an array of struct page pointers in
* the uninitialized vmalloc case but the flush failed using page_to_pfn.
*/
void flush_cache_vmap(unsigned long start, unsigned long end)
{
unsigned long addr, physaddr;
struct vm_struct *vm;
/* Prevent cache move-in */
flush_tlb_kernel_range(start, end);
if (end - start >= parisc_cache_flush_threshold) {
flush_cache_all();
return;
}
if (WARN_ON_ONCE(!is_vmalloc_addr((void *)start))) {
flush_cache_all();
return;
}
vm = find_vm_area((void *)start);
if (WARN_ON_ONCE(!vm)) {
flush_cache_all();
return;
}
/* The physical addresses of IOREMAP regions are contiguous */
if (vm->flags & VM_IOREMAP) {
physaddr = vm->phys_addr;
for (addr = start; addr < end; addr += PAGE_SIZE) {
preempt_disable();
flush_dcache_page_asm(physaddr, start);
flush_icache_page_asm(physaddr, start);
preempt_enable();
physaddr += PAGE_SIZE;
}
return;
}
flush_cache_all();
}
EXPORT_SYMBOL(flush_cache_vmap);
/*
* The vm_struct has been retired and the page table is set up. The
* last page in the range is a guard page. Its physical address can't
* be determined using lpa, so there is no way to flush the range
* using flush_dcache_page_asm.
*/
void flush_cache_vunmap(unsigned long start, unsigned long end)
{
/* Prevent cache move-in */
flush_tlb_kernel_range(start, end);
flush_data_cache();
}
EXPORT_SYMBOL(flush_cache_vunmap);
/*
* On systems with PA8800/PA8900 processors, there is no way to flush
* a vmap range other than using the architected loop to flush the
* entire cache. The page directory is not set up, so we can't use
* fdc, etc. FDCE/FICE don't work to flush a portion of the cache.
* L2 is physically indexed but FDCE/FICE instructions in virtual
* mode output their virtual address on the core bus, not their
* real address. As a result, the L2 cache index formed from the
* virtual address will most likely not be the same as the L2 index
* formed from the real address.
*/
void flush_kernel_vmap_range(void *vaddr, int size)
{
unsigned long start = (unsigned long)vaddr;
unsigned long end = start + size;
flush_tlb_kernel_range(start, end);
if (!static_branch_likely(&parisc_has_dcache))
return;
/* If interrupts are disabled, we can only do local flush */
if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled())) {
flush_data_cache_local(NULL);
return;
}
flush_data_cache();
}
EXPORT_SYMBOL(flush_kernel_vmap_range);
void invalidate_kernel_vmap_range(void *vaddr, int size)
{
unsigned long start = (unsigned long)vaddr;
unsigned long end = start + size;
/* Ensure DMA is complete */
asm_syncdma();
flush_tlb_kernel_range(start, end);
if (!static_branch_likely(&parisc_has_dcache))
return;
/* If interrupts are disabled, we can only do local flush */
if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled())) {
flush_data_cache_local(NULL);
return;
}
flush_data_cache();
}
EXPORT_SYMBOL(invalidate_kernel_vmap_range);
SYSCALL_DEFINE3(cacheflush, unsigned long, addr, unsigned long, bytes,
unsigned int, cache)
{
unsigned long start, end;
ASM_EXCEPTIONTABLE_VAR(error);
if (bytes == 0)
return 0;
if (!access_ok((void __user *) addr, bytes))
return -EFAULT;
end = addr + bytes;
if (cache & DCACHE) {
start = addr;
__asm__ __volatile__ (
#ifdef CONFIG_64BIT
"1: cmpb,*<<,n %0,%2,1b\n"
#else
"1: cmpb,<<,n %0,%2,1b\n"
#endif
" fic,m %3(%4,%0)\n"
"2: sync\n"
ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 2b, "%1")
: "+r" (start), "+r" (error)
: "r" (end), "r" (dcache_stride), "i" (SR_USER));
}
if (cache & ICACHE && error == 0) {
start = addr;
__asm__ __volatile__ (
#ifdef CONFIG_64BIT
"1: cmpb,*<<,n %0,%2,1b\n"
#else
"1: cmpb,<<,n %0,%2,1b\n"
#endif
" fdc,m %3(%4,%0)\n"
"2: sync\n"
ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 2b, "%1")
: "+r" (start), "+r" (error)
: "r" (end), "r" (icache_stride), "i" (SR_USER));
}
return error;
}