/* * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the GNU General Public License version 2. */ #include #include #include #include #include #include #include #include #include #include #include "gfs2.h" #include "incore.h" #include "glock.h" #include "glops.h" #include "lops.h" #include "meta_io.h" #include "quota.h" #include "rgrp.h" #include "super.h" #include "trans.h" #include "util.h" #include "log.h" #include "inode.h" #include "trace_gfs2.h" #define BFITNOENT ((u32)~0) #define NO_BLOCK ((u64)~0) #if BITS_PER_LONG == 32 #define LBITMASK (0x55555555UL) #define LBITSKIP55 (0x55555555UL) #define LBITSKIP00 (0x00000000UL) #else #define LBITMASK (0x5555555555555555UL) #define LBITSKIP55 (0x5555555555555555UL) #define LBITSKIP00 (0x0000000000000000UL) #endif /* * These routines are used by the resource group routines (rgrp.c) * to keep track of block allocation. Each block is represented by two * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. * * 0 = Free * 1 = Used (not metadata) * 2 = Unlinked (still in use) inode * 3 = Used (metadata) */ static const char valid_change[16] = { /* current */ /* n */ 0, 1, 1, 1, /* e */ 1, 0, 0, 0, /* w */ 0, 0, 0, 1, 1, 0, 0, 0 }; static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext, const struct gfs2_inode *ip, bool nowrap); /** * gfs2_setbit - Set a bit in the bitmaps * @rbm: The position of the bit to set * @do_clone: Also set the clone bitmap, if it exists * @new_state: the new state of the block * */ static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, unsigned char new_state) { unsigned char *byte1, *byte2, *end, cur_state; unsigned int buflen = rbm->bi->bi_len; const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; byte1 = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY); end = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + buflen; BUG_ON(byte1 >= end); cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; if (unlikely(!valid_change[new_state * 4 + cur_state])) { printk(KERN_WARNING "GFS2: buf_blk = 0x%x old_state=%d, " "new_state=%d\n", rbm->offset, cur_state, new_state); printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%x\n", (unsigned long long)rbm->rgd->rd_addr, rbm->bi->bi_start); printk(KERN_WARNING "GFS2: bi_offset=0x%x bi_len=0x%x\n", rbm->bi->bi_offset, rbm->bi->bi_len); dump_stack(); gfs2_consist_rgrpd(rbm->rgd); return; } *byte1 ^= (cur_state ^ new_state) << bit; if (do_clone && rbm->bi->bi_clone) { byte2 = rbm->bi->bi_clone + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY); cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; *byte2 ^= (cur_state ^ new_state) << bit; } } /** * gfs2_testbit - test a bit in the bitmaps * @rbm: The bit to test * * Returns: The two bit block state of the requested bit */ static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm) { const u8 *buffer = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset; const u8 *byte; unsigned int bit; byte = buffer + (rbm->offset / GFS2_NBBY); bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; return (*byte >> bit) & GFS2_BIT_MASK; } /** * gfs2_bit_search * @ptr: Pointer to bitmap data * @mask: Mask to use (normally 0x55555.... but adjusted for search start) * @state: The state we are searching for * * We xor the bitmap data with a patter which is the bitwise opposite * of what we are looking for, this gives rise to a pattern of ones * wherever there is a match. Since we have two bits per entry, we * take this pattern, shift it down by one place and then and it with * the original. All the even bit positions (0,2,4, etc) then represent * successful matches, so we mask with 0x55555..... to remove the unwanted * odd bit positions. * * This allows searching of a whole u64 at once (32 blocks) with a * single test (on 64 bit arches). */ static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) { u64 tmp; static const u64 search[] = { [0] = 0xffffffffffffffffULL, [1] = 0xaaaaaaaaaaaaaaaaULL, [2] = 0x5555555555555555ULL, [3] = 0x0000000000000000ULL, }; tmp = le64_to_cpu(*ptr) ^ search[state]; tmp &= (tmp >> 1); tmp &= mask; return tmp; } /** * rs_cmp - multi-block reservation range compare * @blk: absolute file system block number of the new reservation * @len: number of blocks in the new reservation * @rs: existing reservation to compare against * * returns: 1 if the block range is beyond the reach of the reservation * -1 if the block range is before the start of the reservation * 0 if the block range overlaps with the reservation */ static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) { u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); if (blk >= startblk + rs->rs_free) return 1; if (blk + len - 1 < startblk) return -1; return 0; } /** * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing * a block in a given allocation state. * @buf: the buffer that holds the bitmaps * @len: the length (in bytes) of the buffer * @goal: start search at this block's bit-pair (within @buffer) * @state: GFS2_BLKST_XXX the state of the block we're looking for. * * Scope of @goal and returned block number is only within this bitmap buffer, * not entire rgrp or filesystem. @buffer will be offset from the actual * beginning of a bitmap block buffer, skipping any header structures, but * headers are always a multiple of 64 bits long so that the buffer is * always aligned to a 64 bit boundary. * * The size of the buffer is in bytes, but is it assumed that it is * always ok to read a complete multiple of 64 bits at the end * of the block in case the end is no aligned to a natural boundary. * * Return: the block number (bitmap buffer scope) that was found */ static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, u32 goal, u8 state) { u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); u64 tmp; u64 mask = 0x5555555555555555ULL; u32 bit; /* Mask off bits we don't care about at the start of the search */ mask <<= spoint; tmp = gfs2_bit_search(ptr, mask, state); ptr++; while(tmp == 0 && ptr < end) { tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); ptr++; } /* Mask off any bits which are more than len bytes from the start */ if (ptr == end && (len & (sizeof(u64) - 1))) tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); /* Didn't find anything, so return */ if (tmp == 0) return BFITNOENT; ptr--; bit = __ffs64(tmp); bit /= 2; /* two bits per entry in the bitmap */ return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; } /** * gfs2_rbm_from_block - Set the rbm based upon rgd and block number * @rbm: The rbm with rgd already set correctly * @block: The block number (filesystem relative) * * This sets the bi and offset members of an rbm based on a * resource group and a filesystem relative block number. The * resource group must be set in the rbm on entry, the bi and * offset members will be set by this function. * * Returns: 0 on success, or an error code */ static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) { u64 rblock = block - rbm->rgd->rd_data0; u32 x; if (WARN_ON_ONCE(rblock > UINT_MAX)) return -EINVAL; if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data) return -E2BIG; rbm->bi = rbm->rgd->rd_bits; rbm->offset = (u32)(rblock); /* Check if the block is within the first block */ if (rbm->offset < (rbm->bi->bi_start + rbm->bi->bi_len) * GFS2_NBBY) return 0; /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ rbm->offset += (sizeof(struct gfs2_rgrp) - sizeof(struct gfs2_meta_header)) * GFS2_NBBY; x = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; rbm->offset -= x * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; rbm->bi += x; return 0; } /** * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned * @rbm: Position to search (value/result) * @n_unaligned: Number of unaligned blocks to check * @len: Decremented for each block found (terminate on zero) * * Returns: true if a non-free block is encountered */ static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) { u64 block; u32 n; u8 res; for (n = 0; n < n_unaligned; n++) { res = gfs2_testbit(rbm); if (res != GFS2_BLKST_FREE) return true; (*len)--; if (*len == 0) return true; block = gfs2_rbm_to_block(rbm); if (gfs2_rbm_from_block(rbm, block + 1)) return true; } return false; } /** * gfs2_free_extlen - Return extent length of free blocks * @rbm: Starting position * @len: Max length to check * * Starting at the block specified by the rbm, see how many free blocks * there are, not reading more than len blocks ahead. This can be done * using memchr_inv when the blocks are byte aligned, but has to be done * on a block by block basis in case of unaligned blocks. Also this * function can cope with bitmap boundaries (although it must stop on * a resource group boundary) * * Returns: Number of free blocks in the extent */ static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) { struct gfs2_rbm rbm = *rrbm; u32 n_unaligned = rbm.offset & 3; u32 size = len; u32 bytes; u32 chunk_size; u8 *ptr, *start, *end; u64 block; if (n_unaligned && gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) goto out; n_unaligned = len & 3; /* Start is now byte aligned */ while (len > 3) { start = rbm.bi->bi_bh->b_data; if (rbm.bi->bi_clone) start = rbm.bi->bi_clone; end = start + rbm.bi->bi_bh->b_size; start += rbm.bi->bi_offset; BUG_ON(rbm.offset & 3); start += (rbm.offset / GFS2_NBBY); bytes = min_t(u32, len / GFS2_NBBY, (end - start)); ptr = memchr_inv(start, 0, bytes); chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); chunk_size *= GFS2_NBBY; BUG_ON(len < chunk_size); len -= chunk_size; block = gfs2_rbm_to_block(&rbm); gfs2_rbm_from_block(&rbm, block + chunk_size); n_unaligned = 3; if (ptr) break; n_unaligned = len & 3; } /* Deal with any bits left over at the end */ if (n_unaligned) gfs2_unaligned_extlen(&rbm, n_unaligned, &len); out: return size - len; } /** * gfs2_bitcount - count the number of bits in a certain state * @rgd: the resource group descriptor * @buffer: the buffer that holds the bitmaps * @buflen: the length (in bytes) of the buffer * @state: the state of the block we're looking for * * Returns: The number of bits */ static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, unsigned int buflen, u8 state) { const u8 *byte = buffer; const u8 *end = buffer + buflen; const u8 state1 = state << 2; const u8 state2 = state << 4; const u8 state3 = state << 6; u32 count = 0; for (; byte < end; byte++) { if (((*byte) & 0x03) == state) count++; if (((*byte) & 0x0C) == state1) count++; if (((*byte) & 0x30) == state2) count++; if (((*byte) & 0xC0) == state3) count++; } return count; } /** * gfs2_rgrp_verify - Verify that a resource group is consistent * @rgd: the rgrp * */ void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) { struct gfs2_sbd *sdp = rgd->rd_sbd; struct gfs2_bitmap *bi = NULL; u32 length = rgd->rd_length; u32 count[4], tmp; int buf, x; memset(count, 0, 4 * sizeof(u32)); /* Count # blocks in each of 4 possible allocation states */ for (buf = 0; buf < length; buf++) { bi = rgd->rd_bits + buf; for (x = 0; x < 4; x++) count[x] += gfs2_bitcount(rgd, bi->bi_bh->b_data + bi->bi_offset, bi->bi_len, x); } if (count[0] != rgd->rd_free) { if (gfs2_consist_rgrpd(rgd)) fs_err(sdp, "free data mismatch: %u != %u\n", count[0], rgd->rd_free); return; } tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; if (count[1] != tmp) { if (gfs2_consist_rgrpd(rgd)) fs_err(sdp, "used data mismatch: %u != %u\n", count[1], tmp); return; } if (count[2] + count[3] != rgd->rd_dinodes) { if (gfs2_consist_rgrpd(rgd)) fs_err(sdp, "used metadata mismatch: %u != %u\n", count[2] + count[3], rgd->rd_dinodes); return; } } static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block) { u64 first = rgd->rd_data0; u64 last = first + rgd->rd_data; return first <= block && block < last; } /** * gfs2_blk2rgrpd - Find resource group for a given data/meta block number * @sdp: The GFS2 superblock * @blk: The data block number * @exact: True if this needs to be an exact match * * Returns: The resource group, or NULL if not found */ struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) { struct rb_node *n, *next; struct gfs2_rgrpd *cur; spin_lock(&sdp->sd_rindex_spin); n = sdp->sd_rindex_tree.rb_node; while (n) { cur = rb_entry(n, struct gfs2_rgrpd, rd_node); next = NULL; if (blk < cur->rd_addr) next = n->rb_left; else if (blk >= cur->rd_data0 + cur->rd_data) next = n->rb_right; if (next == NULL) { spin_unlock(&sdp->sd_rindex_spin); if (exact) { if (blk < cur->rd_addr) return NULL; if (blk >= cur->rd_data0 + cur->rd_data) return NULL; } return cur; } n = next; } spin_unlock(&sdp->sd_rindex_spin); return NULL; } /** * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem * @sdp: The GFS2 superblock * * Returns: The first rgrp in the filesystem */ struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) { const struct rb_node *n; struct gfs2_rgrpd *rgd; spin_lock(&sdp->sd_rindex_spin); n = rb_first(&sdp->sd_rindex_tree); rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); spin_unlock(&sdp->sd_rindex_spin); return rgd; } /** * gfs2_rgrpd_get_next - get the next RG * @rgd: the resource group descriptor * * Returns: The next rgrp */ struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) { struct gfs2_sbd *sdp = rgd->rd_sbd; const struct rb_node *n; spin_lock(&sdp->sd_rindex_spin); n = rb_next(&rgd->rd_node); if (n == NULL) n = rb_first(&sdp->sd_rindex_tree); if (unlikely(&rgd->rd_node == n)) { spin_unlock(&sdp->sd_rindex_spin); return NULL; } rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); spin_unlock(&sdp->sd_rindex_spin); return rgd; } void gfs2_free_clones(struct gfs2_rgrpd *rgd) { int x; for (x = 0; x < rgd->rd_length; x++) { struct gfs2_bitmap *bi = rgd->rd_bits + x; kfree(bi->bi_clone); bi->bi_clone = NULL; } } /** * gfs2_rs_alloc - make sure we have a reservation assigned to the inode * @ip: the inode for this reservation */ int gfs2_rs_alloc(struct gfs2_inode *ip) { int error = 0; down_write(&ip->i_rw_mutex); if (ip->i_res) goto out; ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS); if (!ip->i_res) { error = -ENOMEM; goto out; } RB_CLEAR_NODE(&ip->i_res->rs_node); out: up_write(&ip->i_rw_mutex); return 0; } static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs) { gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n", (unsigned long long)rs->rs_inum, (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), rs->rs_rbm.offset, rs->rs_free); } /** * __rs_deltree - remove a multi-block reservation from the rgd tree * @rs: The reservation to remove * */ static void __rs_deltree(struct gfs2_inode *ip, struct gfs2_blkreserv *rs) { struct gfs2_rgrpd *rgd; if (!gfs2_rs_active(rs)) return; rgd = rs->rs_rbm.rgd; trace_gfs2_rs(rs, TRACE_RS_TREEDEL); rb_erase(&rs->rs_node, &rgd->rd_rstree); RB_CLEAR_NODE(&rs->rs_node); if (rs->rs_free) { /* return reserved blocks to the rgrp and the ip */ BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; rs->rs_free = 0; clear_bit(GBF_FULL, &rs->rs_rbm.bi->bi_flags); smp_mb__after_clear_bit(); } } /** * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree * @rs: The reservation to remove * */ void gfs2_rs_deltree(struct gfs2_inode *ip, struct gfs2_blkreserv *rs) { struct gfs2_rgrpd *rgd; rgd = rs->rs_rbm.rgd; if (rgd) { spin_lock(&rgd->rd_rsspin); __rs_deltree(ip, rs); spin_unlock(&rgd->rd_rsspin); } } /** * gfs2_rs_delete - delete a multi-block reservation * @ip: The inode for this reservation * */ void gfs2_rs_delete(struct gfs2_inode *ip) { down_write(&ip->i_rw_mutex); if (ip->i_res) { gfs2_rs_deltree(ip, ip->i_res); BUG_ON(ip->i_res->rs_free); kmem_cache_free(gfs2_rsrv_cachep, ip->i_res); ip->i_res = NULL; } up_write(&ip->i_rw_mutex); } /** * return_all_reservations - return all reserved blocks back to the rgrp. * @rgd: the rgrp that needs its space back * * We previously reserved a bunch of blocks for allocation. Now we need to * give them back. This leave the reservation structures in tact, but removes * all of their corresponding "no-fly zones". */ static void return_all_reservations(struct gfs2_rgrpd *rgd) { struct rb_node *n; struct gfs2_blkreserv *rs; spin_lock(&rgd->rd_rsspin); while ((n = rb_first(&rgd->rd_rstree))) { rs = rb_entry(n, struct gfs2_blkreserv, rs_node); __rs_deltree(NULL, rs); } spin_unlock(&rgd->rd_rsspin); } void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) { struct rb_node *n; struct gfs2_rgrpd *rgd; struct gfs2_glock *gl; while ((n = rb_first(&sdp->sd_rindex_tree))) { rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); gl = rgd->rd_gl; rb_erase(n, &sdp->sd_rindex_tree); if (gl) { spin_lock(&gl->gl_spin); gl->gl_object = NULL; spin_unlock(&gl->gl_spin); gfs2_glock_add_to_lru(gl); gfs2_glock_put(gl); } gfs2_free_clones(rgd); kfree(rgd->rd_bits); return_all_reservations(rgd); kmem_cache_free(gfs2_rgrpd_cachep, rgd); } } static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) { printk(KERN_INFO " ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); printk(KERN_INFO " ri_length = %u\n", rgd->rd_length); printk(KERN_INFO " ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); printk(KERN_INFO " ri_data = %u\n", rgd->rd_data); printk(KERN_INFO " ri_bitbytes = %u\n", rgd->rd_bitbytes); } /** * gfs2_compute_bitstructs - Compute the bitmap sizes * @rgd: The resource group descriptor * * Calculates bitmap descriptors, one for each block that contains bitmap data * * Returns: errno */ static int compute_bitstructs(struct gfs2_rgrpd *rgd) { struct gfs2_sbd *sdp = rgd->rd_sbd; struct gfs2_bitmap *bi; u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ u32 bytes_left, bytes; int x; if (!length) return -EINVAL; rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); if (!rgd->rd_bits) return -ENOMEM; bytes_left = rgd->rd_bitbytes; for (x = 0; x < length; x++) { bi = rgd->rd_bits + x; bi->bi_flags = 0; /* small rgrp; bitmap stored completely in header block */ if (length == 1) { bytes = bytes_left; bi->bi_offset = sizeof(struct gfs2_rgrp); bi->bi_start = 0; bi->bi_len = bytes; /* header block */ } else if (x == 0) { bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); bi->bi_offset = sizeof(struct gfs2_rgrp); bi->bi_start = 0; bi->bi_len = bytes; /* last block */ } else if (x + 1 == length) { bytes = bytes_left; bi->bi_offset = sizeof(struct gfs2_meta_header); bi->bi_start = rgd->rd_bitbytes - bytes_left; bi->bi_len = bytes; /* other blocks */ } else { bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_meta_header); bi->bi_offset = sizeof(struct gfs2_meta_header); bi->bi_start = rgd->rd_bitbytes - bytes_left; bi->bi_len = bytes; } bytes_left -= bytes; } if (bytes_left) { gfs2_consist_rgrpd(rgd); return -EIO; } bi = rgd->rd_bits + (length - 1); if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) { if (gfs2_consist_rgrpd(rgd)) { gfs2_rindex_print(rgd); fs_err(sdp, "start=%u len=%u offset=%u\n", bi->bi_start, bi->bi_len, bi->bi_offset); } return -EIO; } return 0; } /** * gfs2_ri_total - Total up the file system space, according to the rindex. * @sdp: the filesystem * */ u64 gfs2_ri_total(struct gfs2_sbd *sdp) { u64 total_data = 0; struct inode *inode = sdp->sd_rindex; struct gfs2_inode *ip = GFS2_I(inode); char buf[sizeof(struct gfs2_rindex)]; int error, rgrps; for (rgrps = 0;; rgrps++) { loff_t pos = rgrps * sizeof(struct gfs2_rindex); if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) break; error = gfs2_internal_read(ip, buf, &pos, sizeof(struct gfs2_rindex)); if (error != sizeof(struct gfs2_rindex)) break; total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); } return total_data; } static int rgd_insert(struct gfs2_rgrpd *rgd) { struct gfs2_sbd *sdp = rgd->rd_sbd; struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; /* Figure out where to put new node */ while (*newn) { struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, rd_node); parent = *newn; if (rgd->rd_addr < cur->rd_addr) newn = &((*newn)->rb_left); else if (rgd->rd_addr > cur->rd_addr) newn = &((*newn)->rb_right); else return -EEXIST; } rb_link_node(&rgd->rd_node, parent, newn); rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); sdp->sd_rgrps++; return 0; } /** * read_rindex_entry - Pull in a new resource index entry from the disk * @ip: Pointer to the rindex inode * * Returns: 0 on success, > 0 on EOF, error code otherwise */ static int read_rindex_entry(struct gfs2_inode *ip) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); struct gfs2_rindex buf; int error; struct gfs2_rgrpd *rgd; if (pos >= i_size_read(&ip->i_inode)) return 1; error = gfs2_internal_read(ip, (char *)&buf, &pos, sizeof(struct gfs2_rindex)); if (error != sizeof(struct gfs2_rindex)) return (error == 0) ? 1 : error; rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); error = -ENOMEM; if (!rgd) return error; rgd->rd_sbd = sdp; rgd->rd_addr = be64_to_cpu(buf.ri_addr); rgd->rd_length = be32_to_cpu(buf.ri_length); rgd->rd_data0 = be64_to_cpu(buf.ri_data0); rgd->rd_data = be32_to_cpu(buf.ri_data); rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); spin_lock_init(&rgd->rd_rsspin); error = compute_bitstructs(rgd); if (error) goto fail; error = gfs2_glock_get(sdp, rgd->rd_addr, &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); if (error) goto fail; rgd->rd_gl->gl_object = rgd; rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; rgd->rd_flags &= ~GFS2_RDF_UPTODATE; if (rgd->rd_data > sdp->sd_max_rg_data) sdp->sd_max_rg_data = rgd->rd_data; spin_lock(&sdp->sd_rindex_spin); error = rgd_insert(rgd); spin_unlock(&sdp->sd_rindex_spin); if (!error) return 0; error = 0; /* someone else read in the rgrp; free it and ignore it */ gfs2_glock_put(rgd->rd_gl); fail: kfree(rgd->rd_bits); kmem_cache_free(gfs2_rgrpd_cachep, rgd); return error; } /** * gfs2_ri_update - Pull in a new resource index from the disk * @ip: pointer to the rindex inode * * Returns: 0 on successful update, error code otherwise */ static int gfs2_ri_update(struct gfs2_inode *ip) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); int error; do { error = read_rindex_entry(ip); } while (error == 0); if (error < 0) return error; sdp->sd_rindex_uptodate = 1; return 0; } /** * gfs2_rindex_update - Update the rindex if required * @sdp: The GFS2 superblock * * We grab a lock on the rindex inode to make sure that it doesn't * change whilst we are performing an operation. We keep this lock * for quite long periods of time compared to other locks. This * doesn't matter, since it is shared and it is very, very rarely * accessed in the exclusive mode (i.e. only when expanding the filesystem). * * This makes sure that we're using the latest copy of the resource index * special file, which might have been updated if someone expanded the * filesystem (via gfs2_grow utility), which adds new resource groups. * * Returns: 0 on succeess, error code otherwise */ int gfs2_rindex_update(struct gfs2_sbd *sdp) { struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); struct gfs2_glock *gl = ip->i_gl; struct gfs2_holder ri_gh; int error = 0; int unlock_required = 0; /* Read new copy from disk if we don't have the latest */ if (!sdp->sd_rindex_uptodate) { if (!gfs2_glock_is_locked_by_me(gl)) { error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); if (error) return error; unlock_required = 1; } if (!sdp->sd_rindex_uptodate) error = gfs2_ri_update(ip); if (unlock_required) gfs2_glock_dq_uninit(&ri_gh); } return error; } static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) { const struct gfs2_rgrp *str = buf; u32 rg_flags; rg_flags = be32_to_cpu(str->rg_flags); rg_flags &= ~GFS2_RDF_MASK; rgd->rd_flags &= GFS2_RDF_MASK; rgd->rd_flags |= rg_flags; rgd->rd_free = be32_to_cpu(str->rg_free); rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); } static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) { struct gfs2_rgrp *str = buf; str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); str->rg_free = cpu_to_be32(rgd->rd_free); str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); str->__pad = cpu_to_be32(0); str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); } static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) { struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free || rgl->rl_dinodes != str->rg_dinodes || rgl->rl_igeneration != str->rg_igeneration) return 0; return 1; } static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) { const struct gfs2_rgrp *str = buf; rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); rgl->rl_flags = str->rg_flags; rgl->rl_free = str->rg_free; rgl->rl_dinodes = str->rg_dinodes; rgl->rl_igeneration = str->rg_igeneration; rgl->__pad = 0UL; } static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change) { struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change; rgl->rl_unlinked = cpu_to_be32(unlinked); } static u32 count_unlinked(struct gfs2_rgrpd *rgd) { struct gfs2_bitmap *bi; const u32 length = rgd->rd_length; const u8 *buffer = NULL; u32 i, goal, count = 0; for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { goal = 0; buffer = bi->bi_bh->b_data + bi->bi_offset; WARN_ON(!buffer_uptodate(bi->bi_bh)); while (goal < bi->bi_len * GFS2_NBBY) { goal = gfs2_bitfit(buffer, bi->bi_len, goal, GFS2_BLKST_UNLINKED); if (goal == BFITNOENT) break; count++; goal++; } } return count; } /** * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps * @rgd: the struct gfs2_rgrpd describing the RG to read in * * Read in all of a Resource Group's header and bitmap blocks. * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps. * * Returns: errno */ int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) { struct gfs2_sbd *sdp = rgd->rd_sbd; struct gfs2_glock *gl = rgd->rd_gl; unsigned int length = rgd->rd_length; struct gfs2_bitmap *bi; unsigned int x, y; int error; if (rgd->rd_bits[0].bi_bh != NULL) return 0; for (x = 0; x < length; x++) { bi = rgd->rd_bits + x; error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh); if (error) goto fail; } for (y = length; y--;) { bi = rgd->rd_bits + y; error = gfs2_meta_wait(sdp, bi->bi_bh); if (error) goto fail; if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : GFS2_METATYPE_RG)) { error = -EIO; goto fail; } } if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { for (x = 0; x < length; x++) clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); rgd->rd_free_clone = rgd->rd_free; } if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); } else if (sdp->sd_args.ar_rgrplvb) { if (!gfs2_rgrp_lvb_valid(rgd)){ gfs2_consist_rgrpd(rgd); error = -EIO; goto fail; } if (rgd->rd_rgl->rl_unlinked == 0) rgd->rd_flags &= ~GFS2_RDF_CHECK; } return 0; fail: while (x--) { bi = rgd->rd_bits + x; brelse(bi->bi_bh); bi->bi_bh = NULL; gfs2_assert_warn(sdp, !bi->bi_clone); } return error; } int update_rgrp_lvb(struct gfs2_rgrpd *rgd) { u32 rl_flags; if (rgd->rd_flags & GFS2_RDF_UPTODATE) return 0; if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) return gfs2_rgrp_bh_get(rgd); rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); rl_flags &= ~GFS2_RDF_MASK; rgd->rd_flags &= GFS2_RDF_MASK; rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); if (rgd->rd_rgl->rl_unlinked == 0) rgd->rd_flags &= ~GFS2_RDF_CHECK; rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); rgd->rd_free_clone = rgd->rd_free; rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); return 0; } int gfs2_rgrp_go_lock(struct gfs2_holder *gh) { struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; struct gfs2_sbd *sdp = rgd->rd_sbd; if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) return 0; return gfs2_rgrp_bh_get((struct gfs2_rgrpd *)gh->gh_gl->gl_object); } /** * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get() * @gh: The glock holder for the resource group * */ void gfs2_rgrp_go_unlock(struct gfs2_holder *gh) { struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; int x, length = rgd->rd_length; for (x = 0; x < length; x++) { struct gfs2_bitmap *bi = rgd->rd_bits + x; if (bi->bi_bh) { brelse(bi->bi_bh); bi->bi_bh = NULL; } } } int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, struct buffer_head *bh, const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) { struct super_block *sb = sdp->sd_vfs; struct block_device *bdev = sb->s_bdev; const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize / bdev_logical_block_size(sb->s_bdev); u64 blk; sector_t start = 0; sector_t nr_sects = 0; int rv; unsigned int x; u32 trimmed = 0; u8 diff; for (x = 0; x < bi->bi_len; x++) { const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; clone += bi->bi_offset; clone += x; if (bh) { const u8 *orig = bh->b_data + bi->bi_offset + x; diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); } else { diff = ~(*clone | (*clone >> 1)); } diff &= 0x55; if (diff == 0) continue; blk = offset + ((bi->bi_start + x) * GFS2_NBBY); blk *= sects_per_blk; /* convert to sectors */ while(diff) { if (diff & 1) { if (nr_sects == 0) goto start_new_extent; if ((start + nr_sects) != blk) { if (nr_sects >= minlen) { rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0); if (rv) goto fail; trimmed += nr_sects; } nr_sects = 0; start_new_extent: start = blk; } nr_sects += sects_per_blk; } diff >>= 2; blk += sects_per_blk; } } if (nr_sects >= minlen) { rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0); if (rv) goto fail; trimmed += nr_sects; } if (ptrimmed) *ptrimmed = trimmed; return 0; fail: if (sdp->sd_args.ar_discard) fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv); sdp->sd_args.ar_discard = 0; return -EIO; } /** * gfs2_fitrim - Generate discard requests for unused bits of the filesystem * @filp: Any file on the filesystem * @argp: Pointer to the arguments (also used to pass result) * * Returns: 0 on success, otherwise error code */ int gfs2_fitrim(struct file *filp, void __user *argp) { struct inode *inode = filp->f_dentry->d_inode; struct gfs2_sbd *sdp = GFS2_SB(inode); struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); struct buffer_head *bh; struct gfs2_rgrpd *rgd; struct gfs2_rgrpd *rgd_end; struct gfs2_holder gh; struct fstrim_range r; int ret = 0; u64 amt; u64 trimmed = 0; u64 start, end, minlen; unsigned int x; unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!blk_queue_discard(q)) return -EOPNOTSUPP; if (copy_from_user(&r, argp, sizeof(r))) return -EFAULT; ret = gfs2_rindex_update(sdp); if (ret) return ret; start = r.start >> bs_shift; end = start + (r.len >> bs_shift); minlen = max_t(u64, r.minlen, q->limits.discard_granularity) >> bs_shift; rgd = gfs2_blk2rgrpd(sdp, start, 0); rgd_end = gfs2_blk2rgrpd(sdp, end - 1, 0); if (end <= start || minlen > sdp->sd_max_rg_data || start > rgd_end->rd_data0 + rgd_end->rd_data) return -EINVAL; while (1) { ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); if (ret) goto out; if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { /* Trim each bitmap in the rgrp */ for (x = 0; x < rgd->rd_length; x++) { struct gfs2_bitmap *bi = rgd->rd_bits + x; ret = gfs2_rgrp_send_discards(sdp, rgd->rd_data0, NULL, bi, minlen, &amt); if (ret) { gfs2_glock_dq_uninit(&gh); goto out; } trimmed += amt; } /* Mark rgrp as having been trimmed */ ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); if (ret == 0) { bh = rgd->rd_bits[0].bi_bh; rgd->rd_flags |= GFS2_RGF_TRIMMED; gfs2_trans_add_bh(rgd->rd_gl, bh, 1); gfs2_rgrp_out(rgd, bh->b_data); gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data); gfs2_trans_end(sdp); } } gfs2_glock_dq_uninit(&gh); if (rgd == rgd_end) break; rgd = gfs2_rgrpd_get_next(rgd); } out: r.len = trimmed << 9; if (copy_to_user(argp, &r, sizeof(r))) return -EFAULT; return ret; } /** * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree * @ip: the inode structure * */ static void rs_insert(struct gfs2_inode *ip) { struct rb_node **newn, *parent = NULL; int rc; struct gfs2_blkreserv *rs = ip->i_res; struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); BUG_ON(gfs2_rs_active(rs)); spin_lock(&rgd->rd_rsspin); newn = &rgd->rd_rstree.rb_node; while (*newn) { struct gfs2_blkreserv *cur = rb_entry(*newn, struct gfs2_blkreserv, rs_node); parent = *newn; rc = rs_cmp(fsblock, rs->rs_free, cur); if (rc > 0) newn = &((*newn)->rb_right); else if (rc < 0) newn = &((*newn)->rb_left); else { spin_unlock(&rgd->rd_rsspin); WARN_ON(1); return; } } rb_link_node(&rs->rs_node, parent, newn); rb_insert_color(&rs->rs_node, &rgd->rd_rstree); /* Do our rgrp accounting for the reservation */ rgd->rd_reserved += rs->rs_free; /* blocks reserved */ spin_unlock(&rgd->rd_rsspin); trace_gfs2_rs(rs, TRACE_RS_INSERT); } /** * rg_mblk_search - find a group of multiple free blocks to form a reservation * @rgd: the resource group descriptor * @ip: pointer to the inode for which we're reserving blocks * @requested: number of blocks required for this allocation * */ static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, unsigned requested) { struct gfs2_rbm rbm = { .rgd = rgd, }; u64 goal; struct gfs2_blkreserv *rs = ip->i_res; u32 extlen; u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved; int ret; extlen = max_t(u32, atomic_read(&rs->rs_sizehint), requested); extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks); if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) return; /* Find bitmap block that contains bits for goal block */ if (rgrp_contains_block(rgd, ip->i_goal)) goal = ip->i_goal; else goal = rgd->rd_last_alloc + rgd->rd_data0; if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) return; ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, extlen, ip, true); if (ret == 0) { rs->rs_rbm = rbm; rs->rs_free = extlen; rs->rs_inum = ip->i_no_addr; rs_insert(ip); } } /** * gfs2_next_unreserved_block - Return next block that is not reserved * @rgd: The resource group * @block: The starting block * @length: The required length * @ip: Ignore any reservations for this inode * * If the block does not appear in any reservation, then return the * block number unchanged. If it does appear in the reservation, then * keep looking through the tree of reservations in order to find the * first block number which is not reserved. */ static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, u32 length, const struct gfs2_inode *ip) { struct gfs2_blkreserv *rs; struct rb_node *n; int rc; spin_lock(&rgd->rd_rsspin); n = rgd->rd_rstree.rb_node; while (n) { rs = rb_entry(n, struct gfs2_blkreserv, rs_node); rc = rs_cmp(block, length, rs); if (rc < 0) n = n->rb_left; else if (rc > 0) n = n->rb_right; else break; } if (n) { while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) { block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; n = n->rb_right; if (n == NULL) break; rs = rb_entry(n, struct gfs2_blkreserv, rs_node); } } spin_unlock(&rgd->rd_rsspin); return block; } /** * gfs2_reservation_check_and_update - Check for reservations during block alloc * @rbm: The current position in the resource group * @ip: The inode for which we are searching for blocks * @minext: The minimum extent length * * This checks the current position in the rgrp to see whether there is * a reservation covering this block. If not then this function is a * no-op. If there is, then the position is moved to the end of the * contiguous reservation(s) so that we are pointing at the first * non-reserved block. * * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error */ static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, const struct gfs2_inode *ip, u32 minext) { u64 block = gfs2_rbm_to_block(rbm); u32 extlen = 1; u64 nblock; int ret; /* * If we have a minimum extent length, then skip over any extent * which is less than the min extent length in size. */ if (minext) { extlen = gfs2_free_extlen(rbm, minext); nblock = block + extlen; if (extlen < minext) goto fail; } /* * Check the extent which has been found against the reservations * and skip if parts of it are already reserved */ nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); if (nblock == block) return 0; fail: ret = gfs2_rbm_from_block(rbm, nblock); if (ret < 0) return ret; return 1; } /** * gfs2_rbm_find - Look for blocks of a particular state * @rbm: Value/result starting position and final position * @state: The state which we want to find * @minext: The requested extent length (0 for a single block) * @ip: If set, check for reservations * @nowrap: Stop looking at the end of the rgrp, rather than wrapping * around until we've reached the starting point. * * Side effects: * - If looking for free blocks, we set GBF_FULL on each bitmap which * has no free blocks in it. * * Returns: 0 on success, -ENOSPC if there is no block of the requested state */ static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext, const struct gfs2_inode *ip, bool nowrap) { struct buffer_head *bh; struct gfs2_bitmap *initial_bi; u32 initial_offset; u32 offset; u8 *buffer; int index; int n = 0; int iters = rbm->rgd->rd_length; int ret; /* If we are not starting at the beginning of a bitmap, then we * need to add one to the bitmap count to ensure that we search * the starting bitmap twice. */ if (rbm->offset != 0) iters++; while(1) { if (test_bit(GBF_FULL, &rbm->bi->bi_flags) && (state == GFS2_BLKST_FREE)) goto next_bitmap; bh = rbm->bi->bi_bh; buffer = bh->b_data + rbm->bi->bi_offset; WARN_ON(!buffer_uptodate(bh)); if (state != GFS2_BLKST_UNLINKED && rbm->bi->bi_clone) buffer = rbm->bi->bi_clone + rbm->bi->bi_offset; initial_offset = rbm->offset; offset = gfs2_bitfit(buffer, rbm->bi->bi_len, rbm->offset, state); if (offset == BFITNOENT) goto bitmap_full; rbm->offset = offset; if (ip == NULL) return 0; initial_bi = rbm->bi; ret = gfs2_reservation_check_and_update(rbm, ip, minext); if (ret == 0) return 0; if (ret > 0) { n += (rbm->bi - initial_bi); goto next_iter; } if (ret == -E2BIG) { index = 0; rbm->offset = 0; n += (rbm->bi - initial_bi); goto res_covered_end_of_rgrp; } return ret; bitmap_full: /* Mark bitmap as full and fall through */ if ((state == GFS2_BLKST_FREE) && initial_offset == 0) set_bit(GBF_FULL, &rbm->bi->bi_flags); next_bitmap: /* Find next bitmap in the rgrp */ rbm->offset = 0; index = rbm->bi - rbm->rgd->rd_bits; index++; if (index == rbm->rgd->rd_length) index = 0; res_covered_end_of_rgrp: rbm->bi = &rbm->rgd->rd_bits[index]; if ((index == 0) && nowrap) break; n++; next_iter: if (n >= iters) break; } return -ENOSPC; } /** * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes * @rgd: The rgrp * @last_unlinked: block address of the last dinode we unlinked * @skip: block address we should explicitly not unlink * * Returns: 0 if no error * The inode, if one has been found, in inode. */ static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) { u64 block; struct gfs2_sbd *sdp = rgd->rd_sbd; struct gfs2_glock *gl; struct gfs2_inode *ip; int error; int found = 0; struct gfs2_rbm rbm = { .rgd = rgd, .bi = rgd->rd_bits, .offset = 0 }; while (1) { down_write(&sdp->sd_log_flush_lock); error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, 0, NULL, true); up_write(&sdp->sd_log_flush_lock); if (error == -ENOSPC) break; if (WARN_ON_ONCE(error)) break; block = gfs2_rbm_to_block(&rbm); if (gfs2_rbm_from_block(&rbm, block + 1)) break; if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) continue; if (block == skip) continue; *last_unlinked = block; error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl); if (error) continue; /* If the inode is already in cache, we can ignore it here * because the existing inode disposal code will deal with * it when all refs have gone away. Accessing gl_object like * this is not safe in general. Here it is ok because we do * not dereference the pointer, and we only need an approx * answer to whether it is NULL or not. */ ip = gl->gl_object; if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) gfs2_glock_put(gl); else found++; /* Limit reclaim to sensible number of tasks */ if (found > NR_CPUS) return; } rgd->rd_flags &= ~GFS2_RDF_CHECK; return; } /** * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested * @rgd: The rgrp in question * @loops: An indication of how picky we can be (0=very, 1=less so) * * This function uses the recently added glock statistics in order to * figure out whether a parciular resource group is suffering from * contention from multiple nodes. This is done purely on the basis * of timings, since this is the only data we have to work with and * our aim here is to reject a resource group which is highly contended * but (very important) not to do this too often in order to ensure that * we do not land up introducing fragmentation by changing resource * groups when not actually required. * * The calculation is fairly simple, we want to know whether the SRTTB * (i.e. smoothed round trip time for blocking operations) to acquire * the lock for this rgrp's glock is significantly greater than the * time taken for resource groups on average. We introduce a margin in * the form of the variable @var which is computed as the sum of the two * respective variences, and multiplied by a factor depending on @loops * and whether we have a lot of data to base the decision on. This is * then tested against the square difference of the means in order to * decide whether the result is statistically significant or not. * * Returns: A boolean verdict on the congestion status */ static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) { const struct gfs2_glock *gl = rgd->rd_gl; const struct gfs2_sbd *sdp = gl->gl_sbd; struct gfs2_lkstats *st; s64 r_dcount, l_dcount; s64 r_srttb, l_srttb; s64 srttb_diff; s64 sqr_diff; s64 var; preempt_disable(); st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; r_srttb = st->stats[GFS2_LKS_SRTTB]; r_dcount = st->stats[GFS2_LKS_DCOUNT]; var = st->stats[GFS2_LKS_SRTTVARB] + gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; preempt_enable(); l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0)) return false; srttb_diff = r_srttb - l_srttb; sqr_diff = srttb_diff * srttb_diff; var *= 2; if (l_dcount < 8 || r_dcount < 8) var *= 2; if (loops == 1) var *= 2; return ((srttb_diff < 0) && (sqr_diff > var)); } /** * gfs2_rgrp_used_recently * @rs: The block reservation with the rgrp to test * @msecs: The time limit in milliseconds * * Returns: True if the rgrp glock has been used within the time limit */ static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, u64 msecs) { u64 tdiff; tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), rs->rs_rbm.rgd->rd_gl->gl_dstamp)); return tdiff > (msecs * 1000 * 1000); } static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) { const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); u32 skip; get_random_bytes(&skip, sizeof(skip)); return skip % sdp->sd_rgrps; } static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) { struct gfs2_rgrpd *rgd = *pos; struct gfs2_sbd *sdp = rgd->rd_sbd; rgd = gfs2_rgrpd_get_next(rgd); if (rgd == NULL) rgd = gfs2_rgrpd_get_first(sdp); *pos = rgd; if (rgd != begin) /* If we didn't wrap */ return true; return false; } /** * gfs2_inplace_reserve - Reserve space in the filesystem * @ip: the inode to reserve space for * @requested: the number of blocks to be reserved * * Returns: errno */ int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested, u32 aflags) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); struct gfs2_rgrpd *begin = NULL; struct gfs2_blkreserv *rs = ip->i_res; int error = 0, rg_locked, flags = 0; u64 last_unlinked = NO_BLOCK; int loops = 0; u32 skip = 0; if (sdp->sd_args.ar_rgrplvb) flags |= GL_SKIP; if (gfs2_assert_warn(sdp, requested)) return -EINVAL; if (gfs2_rs_active(rs)) { begin = rs->rs_rbm.rgd; flags = 0; /* Yoda: Do or do not. There is no try */ } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) { rs->rs_rbm.rgd = begin = ip->i_rgd; } else { rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); } if (S_ISDIR(ip->i_inode.i_mode) && (aflags & GFS2_AF_ORLOV)) skip = gfs2_orlov_skip(ip); if (rs->rs_rbm.rgd == NULL) return -EBADSLT; while (loops < 3) { rg_locked = 1; if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { rg_locked = 0; if (skip && skip--) goto next_rgrp; if (!gfs2_rs_active(rs) && (loops < 2) && gfs2_rgrp_used_recently(rs, 1000) && gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) goto next_rgrp; error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, LM_ST_EXCLUSIVE, flags, &rs->rs_rgd_gh); if (unlikely(error)) return error; if (!gfs2_rs_active(rs) && (loops < 2) && gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) goto skip_rgrp; if (sdp->sd_args.ar_rgrplvb) { error = update_rgrp_lvb(rs->rs_rbm.rgd); if (unlikely(error)) { gfs2_glock_dq_uninit(&rs->rs_rgd_gh); return error; } } } /* Skip unuseable resource groups */ if (rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR)) goto skip_rgrp; if (sdp->sd_args.ar_rgrplvb) gfs2_rgrp_bh_get(rs->rs_rbm.rgd); /* Get a reservation if we don't already have one */ if (!gfs2_rs_active(rs)) rg_mblk_search(rs->rs_rbm.rgd, ip, requested); /* Skip rgrps when we can't get a reservation on first pass */ if (!gfs2_rs_active(rs) && (loops < 1)) goto check_rgrp; /* If rgrp has enough free space, use it */ if (rs->rs_rbm.rgd->rd_free_clone >= requested) { ip->i_rgd = rs->rs_rbm.rgd; return 0; } /* Drop reservation, if we couldn't use reserved rgrp */ if (gfs2_rs_active(rs)) gfs2_rs_deltree(ip, rs); check_rgrp: /* Check for unlinked inodes which can be reclaimed */ if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, ip->i_no_addr); skip_rgrp: /* Unlock rgrp if required */ if (!rg_locked) gfs2_glock_dq_uninit(&rs->rs_rgd_gh); next_rgrp: /* Find the next rgrp, and continue looking */ if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) continue; if (skip) continue; /* If we've scanned all the rgrps, but found no free blocks * then this checks for some less likely conditions before * trying again. */ loops++; /* Check that fs hasn't grown if writing to rindex */ if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { error = gfs2_ri_update(ip); if (error) return error; } /* Flushing the log may release space */ if (loops == 2) gfs2_log_flush(sdp, NULL); } return -ENOSPC; } /** * gfs2_inplace_release - release an inplace reservation * @ip: the inode the reservation was taken out on * * Release a reservation made by gfs2_inplace_reserve(). */ void gfs2_inplace_release(struct gfs2_inode *ip) { struct gfs2_blkreserv *rs = ip->i_res; if (rs->rs_rgd_gh.gh_gl) gfs2_glock_dq_uninit(&rs->rs_rgd_gh); } /** * gfs2_get_block_type - Check a block in a RG is of given type * @rgd: the resource group holding the block * @block: the block number * * Returns: The block type (GFS2_BLKST_*) */ static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block) { struct gfs2_rbm rbm = { .rgd = rgd, }; int ret; ret = gfs2_rbm_from_block(&rbm, block); WARN_ON_ONCE(ret != 0); return gfs2_testbit(&rbm); } /** * gfs2_alloc_extent - allocate an extent from a given bitmap * @rbm: the resource group information * @dinode: TRUE if the first block we allocate is for a dinode * @n: The extent length (value/result) * * Add the bitmap buffer to the transaction. * Set the found bits to @new_state to change block's allocation state. */ static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, unsigned int *n) { struct gfs2_rbm pos = { .rgd = rbm->rgd, }; const unsigned int elen = *n; u64 block; int ret; *n = 1; block = gfs2_rbm_to_block(rbm); gfs2_trans_add_bh(rbm->rgd->rd_gl, rbm->bi->bi_bh, 1); gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); block++; while (*n < elen) { ret = gfs2_rbm_from_block(&pos, block); if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE) break; gfs2_trans_add_bh(pos.rgd->rd_gl, pos.bi->bi_bh, 1); gfs2_setbit(&pos, true, GFS2_BLKST_USED); (*n)++; block++; } } /** * rgblk_free - Change alloc state of given block(s) * @sdp: the filesystem * @bstart: the start of a run of blocks to free * @blen: the length of the block run (all must lie within ONE RG!) * @new_state: GFS2_BLKST_XXX the after-allocation block state * * Returns: Resource group containing the block(s) */ static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart, u32 blen, unsigned char new_state) { struct gfs2_rbm rbm; rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1); if (!rbm.rgd) { if (gfs2_consist(sdp)) fs_err(sdp, "block = %llu\n", (unsigned long long)bstart); return NULL; } while (blen--) { gfs2_rbm_from_block(&rbm, bstart); bstart++; if (!rbm.bi->bi_clone) { rbm.bi->bi_clone = kmalloc(rbm.bi->bi_bh->b_size, GFP_NOFS | __GFP_NOFAIL); memcpy(rbm.bi->bi_clone + rbm.bi->bi_offset, rbm.bi->bi_bh->b_data + rbm.bi->bi_offset, rbm.bi->bi_len); } gfs2_trans_add_bh(rbm.rgd->rd_gl, rbm.bi->bi_bh, 1); gfs2_setbit(&rbm, false, new_state); } return rbm.rgd; } /** * gfs2_rgrp_dump - print out an rgrp * @seq: The iterator * @gl: The glock in question * */ int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl) { struct gfs2_rgrpd *rgd = gl->gl_object; struct gfs2_blkreserv *trs; const struct rb_node *n; if (rgd == NULL) return 0; gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u\n", (unsigned long long)rgd->rd_addr, rgd->rd_flags, rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, rgd->rd_reserved); spin_lock(&rgd->rd_rsspin); for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { trs = rb_entry(n, struct gfs2_blkreserv, rs_node); dump_rs(seq, trs); } spin_unlock(&rgd->rd_rsspin); return 0; } static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) { struct gfs2_sbd *sdp = rgd->rd_sbd; fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", (unsigned long long)rgd->rd_addr); fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); gfs2_rgrp_dump(NULL, rgd->rd_gl); rgd->rd_flags |= GFS2_RDF_ERROR; } /** * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation * @ip: The inode we have just allocated blocks for * @rbm: The start of the allocated blocks * @len: The extent length * * Adjusts a reservation after an allocation has taken place. If the * reservation does not match the allocation, or if it is now empty * then it is removed. */ static void gfs2_adjust_reservation(struct gfs2_inode *ip, const struct gfs2_rbm *rbm, unsigned len) { struct gfs2_blkreserv *rs = ip->i_res; struct gfs2_rgrpd *rgd = rbm->rgd; unsigned rlen; u64 block; int ret; spin_lock(&rgd->rd_rsspin); if (gfs2_rs_active(rs)) { if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { block = gfs2_rbm_to_block(rbm); ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); rlen = min(rs->rs_free, len); rs->rs_free -= rlen; rgd->rd_reserved -= rlen; trace_gfs2_rs(rs, TRACE_RS_CLAIM); if (rs->rs_free && !ret) goto out; } __rs_deltree(ip, rs); } out: spin_unlock(&rgd->rd_rsspin); } /** * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode * @ip: the inode to allocate the block for * @bn: Used to return the starting block number * @nblocks: requested number of blocks/extent length (value/result) * @dinode: 1 if we're allocating a dinode block, else 0 * @generation: the generation number of the inode * * Returns: 0 or error */ int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, bool dinode, u64 *generation) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); struct buffer_head *dibh; struct gfs2_rbm rbm = { .rgd = ip->i_rgd, }; unsigned int ndata; u64 goal; u64 block; /* block, within the file system scope */ int error; if (gfs2_rs_active(ip->i_res)) goal = gfs2_rbm_to_block(&ip->i_res->rs_rbm); else if (!dinode && rgrp_contains_block(rbm.rgd, ip->i_goal)) goal = ip->i_goal; else goal = rbm.rgd->rd_last_alloc + rbm.rgd->rd_data0; gfs2_rbm_from_block(&rbm, goal); error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, ip, false); if (error == -ENOSPC) { gfs2_rbm_from_block(&rbm, goal); error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, NULL, false); } /* Since all blocks are reserved in advance, this shouldn't happen */ if (error) { fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d\n", (unsigned long long)ip->i_no_addr, error, *nblocks, test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags)); goto rgrp_error; } gfs2_alloc_extent(&rbm, dinode, nblocks); block = gfs2_rbm_to_block(&rbm); rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; if (gfs2_rs_active(ip->i_res)) gfs2_adjust_reservation(ip, &rbm, *nblocks); ndata = *nblocks; if (dinode) ndata--; if (!dinode) { ip->i_goal = block + ndata - 1; error = gfs2_meta_inode_buffer(ip, &dibh); if (error == 0) { struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data; gfs2_trans_add_bh(ip->i_gl, dibh, 1); di->di_goal_meta = di->di_goal_data = cpu_to_be64(ip->i_goal); brelse(dibh); } } if (rbm.rgd->rd_free < *nblocks) { printk(KERN_WARNING "nblocks=%u\n", *nblocks); goto rgrp_error; } rbm.rgd->rd_free -= *nblocks; if (dinode) { rbm.rgd->rd_dinodes++; *generation = rbm.rgd->rd_igeneration++; if (*generation == 0) *generation = rbm.rgd->rd_igeneration++; } gfs2_trans_add_bh(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh, 1); gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data); gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); if (dinode) gfs2_trans_add_unrevoke(sdp, block, 1); /* * This needs reviewing to see why we cannot do the quota change * at this point in the dinode case. */ if (ndata) gfs2_quota_change(ip, ndata, ip->i_inode.i_uid, ip->i_inode.i_gid); rbm.rgd->rd_free_clone -= *nblocks; trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); *bn = block; return 0; rgrp_error: gfs2_rgrp_error(rbm.rgd); return -EIO; } /** * __gfs2_free_blocks - free a contiguous run of block(s) * @ip: the inode these blocks are being freed from * @bstart: first block of a run of contiguous blocks * @blen: the length of the block run * @meta: 1 if the blocks represent metadata * */ void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); struct gfs2_rgrpd *rgd; rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE); if (!rgd) return; trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); rgd->rd_free += blen; rgd->rd_flags &= ~GFS2_RGF_TRIMMED; gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); /* Directories keep their data in the metadata address space */ if (meta || ip->i_depth) gfs2_meta_wipe(ip, bstart, blen); } /** * gfs2_free_meta - free a contiguous run of data block(s) * @ip: the inode these blocks are being freed from * @bstart: first block of a run of contiguous blocks * @blen: the length of the block run * */ void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); __gfs2_free_blocks(ip, bstart, blen, 1); gfs2_statfs_change(sdp, 0, +blen, 0); gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); } void gfs2_unlink_di(struct inode *inode) { struct gfs2_inode *ip = GFS2_I(inode); struct gfs2_sbd *sdp = GFS2_SB(inode); struct gfs2_rgrpd *rgd; u64 blkno = ip->i_no_addr; rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED); if (!rgd) return; trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); update_rgrp_lvb_unlinked(rgd, 1); } static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno) { struct gfs2_sbd *sdp = rgd->rd_sbd; struct gfs2_rgrpd *tmp_rgd; tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE); if (!tmp_rgd) return; gfs2_assert_withdraw(sdp, rgd == tmp_rgd); if (!rgd->rd_dinodes) gfs2_consist_rgrpd(rgd); rgd->rd_dinodes--; rgd->rd_free++; gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1); gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); update_rgrp_lvb_unlinked(rgd, -1); gfs2_statfs_change(sdp, 0, +1, -1); } void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) { gfs2_free_uninit_di(rgd, ip->i_no_addr); trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); gfs2_meta_wipe(ip, ip->i_no_addr, 1); } /** * gfs2_check_blk_type - Check the type of a block * @sdp: The superblock * @no_addr: The block number to check * @type: The block type we are looking for * * Returns: 0 if the block type matches the expected type * -ESTALE if it doesn't match * or -ve errno if something went wrong while checking */ int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) { struct gfs2_rgrpd *rgd; struct gfs2_holder rgd_gh; int error = -EINVAL; rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); if (!rgd) goto fail; error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); if (error) goto fail; if (gfs2_get_block_type(rgd, no_addr) != type) error = -ESTALE; gfs2_glock_dq_uninit(&rgd_gh); fail: return error; } /** * gfs2_rlist_add - add a RG to a list of RGs * @ip: the inode * @rlist: the list of resource groups * @block: the block * * Figure out what RG a block belongs to and add that RG to the list * * FIXME: Don't use NOFAIL * */ void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, u64 block) { struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); struct gfs2_rgrpd *rgd; struct gfs2_rgrpd **tmp; unsigned int new_space; unsigned int x; if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) return; if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block)) rgd = ip->i_rgd; else rgd = gfs2_blk2rgrpd(sdp, block, 1); if (!rgd) { fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block); return; } ip->i_rgd = rgd; for (x = 0; x < rlist->rl_rgrps; x++) if (rlist->rl_rgd[x] == rgd) return; if (rlist->rl_rgrps == rlist->rl_space) { new_space = rlist->rl_space + 10; tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), GFP_NOFS | __GFP_NOFAIL); if (rlist->rl_rgd) { memcpy(tmp, rlist->rl_rgd, rlist->rl_space * sizeof(struct gfs2_rgrpd *)); kfree(rlist->rl_rgd); } rlist->rl_space = new_space; rlist->rl_rgd = tmp; } rlist->rl_rgd[rlist->rl_rgrps++] = rgd; } /** * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate * and initialize an array of glock holders for them * @rlist: the list of resource groups * @state: the lock state to acquire the RG lock in * * FIXME: Don't use NOFAIL * */ void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state) { unsigned int x; rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder), GFP_NOFS | __GFP_NOFAIL); for (x = 0; x < rlist->rl_rgrps; x++) gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, state, 0, &rlist->rl_ghs[x]); } /** * gfs2_rlist_free - free a resource group list * @list: the list of resource groups * */ void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) { unsigned int x; kfree(rlist->rl_rgd); if (rlist->rl_ghs) { for (x = 0; x < rlist->rl_rgrps; x++) gfs2_holder_uninit(&rlist->rl_ghs[x]); kfree(rlist->rl_ghs); rlist->rl_ghs = NULL; } }