/* * x86 FPU boot time init code: */ #include #include /* * Initialize the TS bit in CR0 according to the style of context-switches * we are using: */ static void fpu__init_cpu_ctx_switch(void) { if (!cpu_has_eager_fpu) stts(); else clts(); } /* * Initialize the registers found in all CPUs, CR0 and CR4: */ static void fpu__init_cpu_generic(void) { unsigned long cr0; unsigned long cr4_mask = 0; if (cpu_has_fxsr) cr4_mask |= X86_CR4_OSFXSR; if (cpu_has_xmm) cr4_mask |= X86_CR4_OSXMMEXCPT; if (cr4_mask) cr4_set_bits(cr4_mask); cr0 = read_cr0(); cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */ if (!cpu_has_fpu) cr0 |= X86_CR0_EM; write_cr0(cr0); /* Flush out any pending x87 state: */ asm volatile ("fninit"); } /* * Enable all supported FPU features. Called when a CPU is brought online: */ void fpu__init_cpu(void) { fpu__init_cpu_generic(); fpu__init_cpu_xstate(); fpu__init_cpu_ctx_switch(); } /* * The earliest FPU detection code. * * Set the X86_FEATURE_FPU CPU-capability bit based on * trying to execute an actual sequence of FPU instructions: */ static void fpu__init_system_early_generic(struct cpuinfo_x86 *c) { unsigned long cr0; u16 fsw, fcw; fsw = fcw = 0xffff; cr0 = read_cr0(); cr0 &= ~(X86_CR0_TS | X86_CR0_EM); write_cr0(cr0); asm volatile("fninit ; fnstsw %0 ; fnstcw %1" : "+m" (fsw), "+m" (fcw)); if (fsw == 0 && (fcw & 0x103f) == 0x003f) set_cpu_cap(c, X86_FEATURE_FPU); else clear_cpu_cap(c, X86_FEATURE_FPU); #ifndef CONFIG_MATH_EMULATION if (!cpu_has_fpu) { pr_emerg("x86/fpu: Giving up, no FPU found and no math emulation present\n"); for (;;) asm volatile("hlt"); } #endif } /* * Boot time FPU feature detection code: */ unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu; static void __init fpu__init_system_mxcsr(void) { unsigned int mask = 0; if (cpu_has_fxsr) { struct fxregs_state fx_tmp __aligned(32) = { }; asm volatile("fxsave %0" : "+m" (fx_tmp)); mask = fx_tmp.mxcsr_mask; /* * If zero then use the default features mask, * which has all features set, except the * denormals-are-zero feature bit: */ if (mask == 0) mask = 0x0000ffbf; } mxcsr_feature_mask &= mask; } /* * Once per bootup FPU initialization sequences that will run on most x86 CPUs: */ static void __init fpu__init_system_generic(void) { /* * Set up the legacy init FPU context. (xstate init might overwrite this * with a more modern format, if the CPU supports it.) */ fpstate_init_fxstate(&init_fpstate.fxsave); fpu__init_system_mxcsr(); } /* * Size of the FPU context state. All tasks in the system use the * same context size, regardless of what portion they use. * This is inherent to the XSAVE architecture which puts all state * components into a single, continuous memory block: */ unsigned int xstate_size; EXPORT_SYMBOL_GPL(xstate_size); /* * Set up the xstate_size based on the legacy FPU context size. * * We set this up first, and later it will be overwritten by * fpu__init_system_xstate() if the CPU knows about xstates. */ static void __init fpu__init_system_xstate_size_legacy(void) { static int on_boot_cpu = 1; WARN_ON_FPU(!on_boot_cpu); on_boot_cpu = 0; /* * Note that xstate_size might be overwriten later during * fpu__init_system_xstate(). */ if (!cpu_has_fpu) { /* * Disable xsave as we do not support it if i387 * emulation is enabled. */ setup_clear_cpu_cap(X86_FEATURE_XSAVE); setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); xstate_size = sizeof(struct swregs_state); } else { if (cpu_has_fxsr) xstate_size = sizeof(struct fxregs_state); else xstate_size = sizeof(struct fregs_state); } } /* * FPU context switching strategies: * * Against popular belief, we don't do lazy FPU saves, due to the * task migration complications it brings on SMP - we only do * lazy FPU restores. * * 'lazy' is the traditional strategy, which is based on setting * CR0::TS to 1 during context-switch (instead of doing a full * restore of the FPU state), which causes the first FPU instruction * after the context switch (whenever it is executed) to fault - at * which point we lazily restore the FPU state into FPU registers. * * Tasks are of course under no obligation to execute FPU instructions, * so it can easily happen that another context-switch occurs without * a single FPU instruction being executed. If we eventually switch * back to the original task (that still owns the FPU) then we have * not only saved the restores along the way, but we also have the * FPU ready to be used for the original task. * * 'eager' switching is used on modern CPUs, there we switch the FPU * state during every context switch, regardless of whether the task * has used FPU instructions in that time slice or not. This is done * because modern FPU context saving instructions are able to optimize * state saving and restoration in hardware: they can detect both * unused and untouched FPU state and optimize accordingly. * * [ Note that even in 'lazy' mode we might optimize context switches * to use 'eager' restores, if we detect that a task is using the FPU * frequently. See the fpu->counter logic in fpu/internal.h for that. ] */ static enum { AUTO, ENABLE, DISABLE } eagerfpu = AUTO; static int __init eager_fpu_setup(char *s) { if (!strcmp(s, "on")) eagerfpu = ENABLE; else if (!strcmp(s, "off")) eagerfpu = DISABLE; else if (!strcmp(s, "auto")) eagerfpu = AUTO; return 1; } __setup("eagerfpu=", eager_fpu_setup); /* * Pick the FPU context switching strategy: */ static void __init fpu__init_system_ctx_switch(void) { static bool on_boot_cpu = 1; WARN_ON_FPU(!on_boot_cpu); on_boot_cpu = 0; WARN_ON_FPU(current->thread.fpu.fpstate_active); current_thread_info()->status = 0; /* Auto enable eagerfpu for xsaveopt */ if (cpu_has_xsaveopt && eagerfpu != DISABLE) eagerfpu = ENABLE; if (xfeatures_mask & XSTATE_EAGER) { if (eagerfpu == DISABLE) { pr_err("x86/fpu: eagerfpu switching disabled, disabling the following xstate features: 0x%llx.\n", xfeatures_mask & XSTATE_EAGER); xfeatures_mask &= ~XSTATE_EAGER; } else { eagerfpu = ENABLE; } } if (eagerfpu == ENABLE) setup_force_cpu_cap(X86_FEATURE_EAGER_FPU); printk(KERN_INFO "x86/fpu: Using '%s' FPU context switches.\n", eagerfpu == ENABLE ? "eager" : "lazy"); } /* * Called on the boot CPU once per system bootup, to set up the initial * FPU state that is later cloned into all processes: */ void __init fpu__init_system(struct cpuinfo_x86 *c) { fpu__init_system_early_generic(c); /* * The FPU has to be operational for some of the * later FPU init activities: */ fpu__init_cpu(); /* * But don't leave CR0::TS set yet, as some of the FPU setup * methods depend on being able to execute FPU instructions * that will fault on a set TS, such as the FXSAVE in * fpu__init_system_mxcsr(). */ clts(); fpu__init_system_generic(); fpu__init_system_xstate_size_legacy(); fpu__init_system_xstate(); fpu__init_system_ctx_switch(); } /* * Boot parameter to turn off FPU support and fall back to math-emu: */ static int __init no_387(char *s) { setup_clear_cpu_cap(X86_FEATURE_FPU); return 1; } __setup("no387", no_387);