/* * linux/arch/sparc/mm/leon_m.c * * Copyright (C) 2004 Konrad Eisele (eiselekd@web.de, konrad@gaisler.com) Gaisler Research * Copyright (C) 2009 Daniel Hellstrom (daniel@gaisler.com) Aeroflex Gaisler AB * Copyright (C) 2009 Konrad Eisele (konrad@gaisler.com) Aeroflex Gaisler AB * * do srmmu probe in software * */ #include #include #include #include #include #include "mm_32.h" int leon_flush_during_switch = 1; int srmmu_swprobe_trace; static inline unsigned long leon_get_ctable_ptr(void) { unsigned int retval; __asm__ __volatile__("lda [%1] %2, %0\n\t" : "=r" (retval) : "r" (SRMMU_CTXTBL_PTR), "i" (ASI_LEON_MMUREGS)); return (retval & SRMMU_CTX_PMASK) << 4; } unsigned long leon_swprobe(unsigned long vaddr, unsigned long *paddr) { unsigned int ctxtbl; unsigned int pgd, pmd, ped; unsigned int ptr; unsigned int lvl, pte, paddrbase; unsigned int ctx; unsigned int paddr_calc; paddrbase = 0; if (srmmu_swprobe_trace) printk(KERN_INFO "swprobe: trace on\n"); ctxtbl = leon_get_ctable_ptr(); if (!(ctxtbl)) { if (srmmu_swprobe_trace) printk(KERN_INFO "swprobe: leon_get_ctable_ptr returned 0=>0\n"); return 0; } if (!_pfn_valid(PFN(ctxtbl))) { if (srmmu_swprobe_trace) printk(KERN_INFO "swprobe: !_pfn_valid(%x)=>0\n", PFN(ctxtbl)); return 0; } ctx = srmmu_get_context(); if (srmmu_swprobe_trace) printk(KERN_INFO "swprobe: --- ctx (%x) ---\n", ctx); pgd = LEON_BYPASS_LOAD_PA(ctxtbl + (ctx * 4)); if (((pgd & SRMMU_ET_MASK) == SRMMU_ET_PTE)) { if (srmmu_swprobe_trace) printk(KERN_INFO "swprobe: pgd is entry level 3\n"); lvl = 3; pte = pgd; paddrbase = pgd & _SRMMU_PTE_PMASK_LEON; goto ready; } if (((pgd & SRMMU_ET_MASK) != SRMMU_ET_PTD)) { if (srmmu_swprobe_trace) printk(KERN_INFO "swprobe: pgd is invalid => 0\n"); return 0; } if (srmmu_swprobe_trace) printk(KERN_INFO "swprobe: --- pgd (%x) ---\n", pgd); ptr = (pgd & SRMMU_PTD_PMASK) << 4; ptr += ((((vaddr) >> LEON_PGD_SH) & LEON_PGD_M) * 4); if (!_pfn_valid(PFN(ptr))) return 0; pmd = LEON_BYPASS_LOAD_PA(ptr); if (((pmd & SRMMU_ET_MASK) == SRMMU_ET_PTE)) { if (srmmu_swprobe_trace) printk(KERN_INFO "swprobe: pmd is entry level 2\n"); lvl = 2; pte = pmd; paddrbase = pmd & _SRMMU_PTE_PMASK_LEON; goto ready; } if (((pmd & SRMMU_ET_MASK) != SRMMU_ET_PTD)) { if (srmmu_swprobe_trace) printk(KERN_INFO "swprobe: pmd is invalid => 0\n"); return 0; } if (srmmu_swprobe_trace) printk(KERN_INFO "swprobe: --- pmd (%x) ---\n", pmd); ptr = (pmd & SRMMU_PTD_PMASK) << 4; ptr += (((vaddr >> LEON_PMD_SH) & LEON_PMD_M) * 4); if (!_pfn_valid(PFN(ptr))) { if (srmmu_swprobe_trace) printk(KERN_INFO "swprobe: !_pfn_valid(%x)=>0\n", PFN(ptr)); return 0; } ped = LEON_BYPASS_LOAD_PA(ptr); if (((ped & SRMMU_ET_MASK) == SRMMU_ET_PTE)) { if (srmmu_swprobe_trace) printk(KERN_INFO "swprobe: ped is entry level 1\n"); lvl = 1; pte = ped; paddrbase = ped & _SRMMU_PTE_PMASK_LEON; goto ready; } if (((ped & SRMMU_ET_MASK) != SRMMU_ET_PTD)) { if (srmmu_swprobe_trace) printk(KERN_INFO "swprobe: ped is invalid => 0\n"); return 0; } if (srmmu_swprobe_trace) printk(KERN_INFO "swprobe: --- ped (%x) ---\n", ped); ptr = (ped & SRMMU_PTD_PMASK) << 4; ptr += (((vaddr >> LEON_PTE_SH) & LEON_PTE_M) * 4); if (!_pfn_valid(PFN(ptr))) return 0; ptr = LEON_BYPASS_LOAD_PA(ptr); if (((ptr & SRMMU_ET_MASK) == SRMMU_ET_PTE)) { if (srmmu_swprobe_trace) printk(KERN_INFO "swprobe: ptr is entry level 0\n"); lvl = 0; pte = ptr; paddrbase = ptr & _SRMMU_PTE_PMASK_LEON; goto ready; } if (srmmu_swprobe_trace) printk(KERN_INFO "swprobe: ptr is invalid => 0\n"); return 0; ready: switch (lvl) { case 0: paddr_calc = (vaddr & ~(-1 << LEON_PTE_SH)) | ((pte & ~0xff) << 4); break; case 1: paddr_calc = (vaddr & ~(-1 << LEON_PMD_SH)) | ((pte & ~0xff) << 4); break; case 2: paddr_calc = (vaddr & ~(-1 << LEON_PGD_SH)) | ((pte & ~0xff) << 4); break; default: case 3: paddr_calc = vaddr; break; } if (srmmu_swprobe_trace) printk(KERN_INFO "swprobe: padde %x\n", paddr_calc); if (paddr) *paddr = paddr_calc; return pte; } void leon_flush_icache_all(void) { __asm__ __volatile__(" flush "); /*iflush*/ } void leon_flush_dcache_all(void) { __asm__ __volatile__("sta %%g0, [%%g0] %0\n\t" : : "i"(ASI_LEON_DFLUSH) : "memory"); } void leon_flush_pcache_all(struct vm_area_struct *vma, unsigned long page) { if (vma->vm_flags & VM_EXEC) leon_flush_icache_all(); leon_flush_dcache_all(); } void leon_flush_cache_all(void) { __asm__ __volatile__(" flush "); /*iflush*/ __asm__ __volatile__("sta %%g0, [%%g0] %0\n\t" : : "i"(ASI_LEON_DFLUSH) : "memory"); } void leon_flush_tlb_all(void) { leon_flush_cache_all(); __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : "r"(0x400), "i"(ASI_LEON_MMUFLUSH) : "memory"); } /* get all cache regs */ void leon3_getCacheRegs(struct leon3_cacheregs *regs) { unsigned long ccr, iccr, dccr; if (!regs) return; /* Get Cache regs from "Cache ASI" address 0x0, 0x8 and 0xC */ __asm__ __volatile__("lda [%%g0] %3, %0\n\t" "mov 0x08, %%g1\n\t" "lda [%%g1] %3, %1\n\t" "mov 0x0c, %%g1\n\t" "lda [%%g1] %3, %2\n\t" : "=r"(ccr), "=r"(iccr), "=r"(dccr) /* output */ : "i"(ASI_LEON_CACHEREGS) /* input */ : "g1" /* clobber list */ ); regs->ccr = ccr; regs->iccr = iccr; regs->dccr = dccr; } /* Due to virtual cache we need to check cache configuration if * it is possible to skip flushing in some cases. * * Leon2 and Leon3 differ in their way of telling cache information * */ int __init leon_flush_needed(void) { int flush_needed = -1; unsigned int ssize, sets; char *setStr[4] = { "direct mapped", "2-way associative", "3-way associative", "4-way associative" }; /* leon 3 */ struct leon3_cacheregs cregs; leon3_getCacheRegs(&cregs); sets = (cregs.dccr & LEON3_XCCR_SETS_MASK) >> 24; /* (ssize=>realsize) 0=>1k, 1=>2k, 2=>4k, 3=>8k ... */ ssize = 1 << ((cregs.dccr & LEON3_XCCR_SSIZE_MASK) >> 20); printk(KERN_INFO "CACHE: %s cache, set size %dk\n", sets > 3 ? "unknown" : setStr[sets], ssize); if ((ssize <= (PAGE_SIZE / 1024)) && (sets == 0)) { /* Set Size <= Page size ==> flush on every context switch not needed. */ flush_needed = 0; printk(KERN_INFO "CACHE: not flushing on every context switch\n"); } return flush_needed; } void leon_switch_mm(void) { flush_tlb_mm((void *)0); if (leon_flush_during_switch) leon_flush_cache_all(); } static void leon_flush_cache_mm(struct mm_struct *mm) { leon_flush_cache_all(); } static void leon_flush_cache_page(struct vm_area_struct *vma, unsigned long page) { leon_flush_pcache_all(vma, page); } static void leon_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { leon_flush_cache_all(); } static void leon_flush_tlb_mm(struct mm_struct *mm) { leon_flush_tlb_all(); } static void leon_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { leon_flush_tlb_all(); } static void leon_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { leon_flush_tlb_all(); } static void leon_flush_page_to_ram(unsigned long page) { leon_flush_cache_all(); } static void leon_flush_sig_insns(struct mm_struct *mm, unsigned long page) { leon_flush_cache_all(); } static void leon_flush_page_for_dma(unsigned long page) { leon_flush_dcache_all(); } void __init poke_leonsparc(void) { } static const struct sparc32_cachetlb_ops leon_ops = { .cache_all = leon_flush_cache_all, .cache_mm = leon_flush_cache_mm, .cache_page = leon_flush_cache_page, .cache_range = leon_flush_cache_range, .tlb_all = leon_flush_tlb_all, .tlb_mm = leon_flush_tlb_mm, .tlb_page = leon_flush_tlb_page, .tlb_range = leon_flush_tlb_range, .page_to_ram = leon_flush_page_to_ram, .sig_insns = leon_flush_sig_insns, .page_for_dma = leon_flush_page_for_dma, }; void __init init_leon(void) { srmmu_name = "LEON"; sparc32_cachetlb_ops = &leon_ops; poke_srmmu = poke_leonsparc; leon_flush_during_switch = leon_flush_needed(); }