// SPDX-License-Identifier: GPL-2.0 #include "blk-rq-qos.h" /* * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded, * false if 'v' + 1 would be bigger than 'below'. */ static bool atomic_inc_below(atomic_t *v, unsigned int below) { unsigned int cur = atomic_read(v); do { if (cur >= below) return false; } while (!atomic_try_cmpxchg(v, &cur, cur + 1)); return true; } bool rq_wait_inc_below(struct rq_wait *rq_wait, unsigned int limit) { return atomic_inc_below(&rq_wait->inflight, limit); } void __rq_qos_cleanup(struct rq_qos *rqos, struct bio *bio) { do { if (rqos->ops->cleanup) rqos->ops->cleanup(rqos, bio); rqos = rqos->next; } while (rqos); } void __rq_qos_done(struct rq_qos *rqos, struct request *rq) { do { if (rqos->ops->done) rqos->ops->done(rqos, rq); rqos = rqos->next; } while (rqos); } void __rq_qos_issue(struct rq_qos *rqos, struct request *rq) { do { if (rqos->ops->issue) rqos->ops->issue(rqos, rq); rqos = rqos->next; } while (rqos); } void __rq_qos_requeue(struct rq_qos *rqos, struct request *rq) { do { if (rqos->ops->requeue) rqos->ops->requeue(rqos, rq); rqos = rqos->next; } while (rqos); } void __rq_qos_throttle(struct rq_qos *rqos, struct bio *bio) { do { if (rqos->ops->throttle) rqos->ops->throttle(rqos, bio); rqos = rqos->next; } while (rqos); } void __rq_qos_track(struct rq_qos *rqos, struct request *rq, struct bio *bio) { do { if (rqos->ops->track) rqos->ops->track(rqos, rq, bio); rqos = rqos->next; } while (rqos); } void __rq_qos_merge(struct rq_qos *rqos, struct request *rq, struct bio *bio) { do { if (rqos->ops->merge) rqos->ops->merge(rqos, rq, bio); rqos = rqos->next; } while (rqos); } void __rq_qos_done_bio(struct rq_qos *rqos, struct bio *bio) { do { if (rqos->ops->done_bio) rqos->ops->done_bio(rqos, bio); rqos = rqos->next; } while (rqos); } void __rq_qos_queue_depth_changed(struct rq_qos *rqos) { do { if (rqos->ops->queue_depth_changed) rqos->ops->queue_depth_changed(rqos); rqos = rqos->next; } while (rqos); } /* * Return true, if we can't increase the depth further by scaling */ bool rq_depth_calc_max_depth(struct rq_depth *rqd) { unsigned int depth; bool ret = false; /* * For QD=1 devices, this is a special case. It's important for those * to have one request ready when one completes, so force a depth of * 2 for those devices. On the backend, it'll be a depth of 1 anyway, * since the device can't have more than that in flight. If we're * scaling down, then keep a setting of 1/1/1. */ if (rqd->queue_depth == 1) { if (rqd->scale_step > 0) rqd->max_depth = 1; else { rqd->max_depth = 2; ret = true; } } else { /* * scale_step == 0 is our default state. If we have suffered * latency spikes, step will be > 0, and we shrink the * allowed write depths. If step is < 0, we're only doing * writes, and we allow a temporarily higher depth to * increase performance. */ depth = min_t(unsigned int, rqd->default_depth, rqd->queue_depth); if (rqd->scale_step > 0) depth = 1 + ((depth - 1) >> min(31, rqd->scale_step)); else if (rqd->scale_step < 0) { unsigned int maxd = 3 * rqd->queue_depth / 4; depth = 1 + ((depth - 1) << -rqd->scale_step); if (depth > maxd) { depth = maxd; ret = true; } } rqd->max_depth = depth; } return ret; } /* Returns true on success and false if scaling up wasn't possible */ bool rq_depth_scale_up(struct rq_depth *rqd) { /* * Hit max in previous round, stop here */ if (rqd->scaled_max) return false; rqd->scale_step--; rqd->scaled_max = rq_depth_calc_max_depth(rqd); return true; } /* * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we * had a latency violation. Returns true on success and returns false if * scaling down wasn't possible. */ bool rq_depth_scale_down(struct rq_depth *rqd, bool hard_throttle) { /* * Stop scaling down when we've hit the limit. This also prevents * ->scale_step from going to crazy values, if the device can't * keep up. */ if (rqd->max_depth == 1) return false; if (rqd->scale_step < 0 && hard_throttle) rqd->scale_step = 0; else rqd->scale_step++; rqd->scaled_max = false; rq_depth_calc_max_depth(rqd); return true; } struct rq_qos_wait_data { struct wait_queue_entry wq; struct task_struct *task; struct rq_wait *rqw; acquire_inflight_cb_t *cb; void *private_data; bool got_token; }; static int rq_qos_wake_function(struct wait_queue_entry *curr, unsigned int mode, int wake_flags, void *key) { struct rq_qos_wait_data *data = container_of(curr, struct rq_qos_wait_data, wq); /* * If we fail to get a budget, return -1 to interrupt the wake up loop * in __wake_up_common. */ if (!data->cb(data->rqw, data->private_data)) return -1; data->got_token = true; wake_up_process(data->task); list_del_init_careful(&curr->entry); return 1; } /** * rq_qos_wait - throttle on a rqw if we need to * @rqw: rqw to throttle on * @private_data: caller provided specific data * @acquire_inflight_cb: inc the rqw->inflight counter if we can * @cleanup_cb: the callback to cleanup in case we race with a waker * * This provides a uniform place for the rq_qos users to do their throttling. * Since you can end up with a lot of things sleeping at once, this manages the * waking up based on the resources available. The acquire_inflight_cb should * inc the rqw->inflight if we have the ability to do so, or return false if not * and then we will sleep until the room becomes available. * * cleanup_cb is in case that we race with a waker and need to cleanup the * inflight count accordingly. */ void rq_qos_wait(struct rq_wait *rqw, void *private_data, acquire_inflight_cb_t *acquire_inflight_cb, cleanup_cb_t *cleanup_cb) { struct rq_qos_wait_data data = { .wq = { .func = rq_qos_wake_function, .entry = LIST_HEAD_INIT(data.wq.entry), }, .task = current, .rqw = rqw, .cb = acquire_inflight_cb, .private_data = private_data, }; bool has_sleeper; has_sleeper = wq_has_sleeper(&rqw->wait); if (!has_sleeper && acquire_inflight_cb(rqw, private_data)) return; has_sleeper = !prepare_to_wait_exclusive(&rqw->wait, &data.wq, TASK_UNINTERRUPTIBLE); do { /* The memory barrier in set_current_state saves us here. */ if (data.got_token) break; if (!has_sleeper && acquire_inflight_cb(rqw, private_data)) { finish_wait(&rqw->wait, &data.wq); /* * We raced with rq_qos_wake_function() getting a token, * which means we now have two. Put our local token * and wake anyone else potentially waiting for one. */ if (data.got_token) cleanup_cb(rqw, private_data); return; } io_schedule(); has_sleeper = true; set_current_state(TASK_UNINTERRUPTIBLE); } while (1); finish_wait(&rqw->wait, &data.wq); } void rq_qos_exit(struct request_queue *q) { mutex_lock(&q->rq_qos_mutex); while (q->rq_qos) { struct rq_qos *rqos = q->rq_qos; q->rq_qos = rqos->next; rqos->ops->exit(rqos); } mutex_unlock(&q->rq_qos_mutex); } int rq_qos_add(struct rq_qos *rqos, struct gendisk *disk, enum rq_qos_id id, const struct rq_qos_ops *ops) { struct request_queue *q = disk->queue; lockdep_assert_held(&q->rq_qos_mutex); rqos->disk = disk; rqos->id = id; rqos->ops = ops; /* * No IO can be in-flight when adding rqos, so freeze queue, which * is fine since we only support rq_qos for blk-mq queue. */ blk_mq_freeze_queue(q); if (rq_qos_id(q, rqos->id)) goto ebusy; rqos->next = q->rq_qos; q->rq_qos = rqos; blk_mq_unfreeze_queue(q); if (rqos->ops->debugfs_attrs) { mutex_lock(&q->debugfs_mutex); blk_mq_debugfs_register_rqos(rqos); mutex_unlock(&q->debugfs_mutex); } return 0; ebusy: blk_mq_unfreeze_queue(q); return -EBUSY; } void rq_qos_del(struct rq_qos *rqos) { struct request_queue *q = rqos->disk->queue; struct rq_qos **cur; lockdep_assert_held(&q->rq_qos_mutex); blk_mq_freeze_queue(q); for (cur = &q->rq_qos; *cur; cur = &(*cur)->next) { if (*cur == rqos) { *cur = rqos->next; break; } } blk_mq_unfreeze_queue(q); mutex_lock(&q->debugfs_mutex); blk_mq_debugfs_unregister_rqos(rqos); mutex_unlock(&q->debugfs_mutex); }