// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "btree_key_cache.h" #include "btree_update.h" #include "btree_write_buffer.h" #include "buckets.h" #include "errcode.h" #include "error.h" #include "journal.h" #include "journal_io.h" #include "journal_reclaim.h" #include "replicas.h" #include "sb-members.h" #include "trace.h" #include #include /* Free space calculations: */ static unsigned journal_space_from(struct journal_device *ja, enum journal_space_from from) { switch (from) { case journal_space_discarded: return ja->discard_idx; case journal_space_clean_ondisk: return ja->dirty_idx_ondisk; case journal_space_clean: return ja->dirty_idx; default: BUG(); } } unsigned bch2_journal_dev_buckets_available(struct journal *j, struct journal_device *ja, enum journal_space_from from) { unsigned available = (journal_space_from(ja, from) - ja->cur_idx - 1 + ja->nr) % ja->nr; /* * Don't use the last bucket unless writing the new last_seq * will make another bucket available: */ if (available && ja->dirty_idx_ondisk == ja->dirty_idx) --available; return available; } void bch2_journal_set_watermark(struct journal *j) { struct bch_fs *c = container_of(j, struct bch_fs, journal); bool low_on_space = j->space[journal_space_clean].total * 4 <= j->space[journal_space_total].total; bool low_on_pin = fifo_free(&j->pin) < j->pin.size / 4; bool low_on_wb = bch2_btree_write_buffer_must_wait(c); unsigned watermark = low_on_space || low_on_pin || low_on_wb ? BCH_WATERMARK_reclaim : BCH_WATERMARK_stripe; if (track_event_change(&c->times[BCH_TIME_blocked_journal_low_on_space], low_on_space) || track_event_change(&c->times[BCH_TIME_blocked_journal_low_on_pin], low_on_pin) || track_event_change(&c->times[BCH_TIME_blocked_write_buffer_full], low_on_wb)) trace_and_count(c, journal_full, c); mod_bit(JOURNAL_space_low, &j->flags, low_on_space || low_on_pin); swap(watermark, j->watermark); if (watermark > j->watermark) journal_wake(j); } static struct journal_space journal_dev_space_available(struct journal *j, struct bch_dev *ca, enum journal_space_from from) { struct journal_device *ja = &ca->journal; unsigned sectors, buckets, unwritten; u64 seq; if (from == journal_space_total) return (struct journal_space) { .next_entry = ca->mi.bucket_size, .total = ca->mi.bucket_size * ja->nr, }; buckets = bch2_journal_dev_buckets_available(j, ja, from); sectors = ja->sectors_free; /* * We that we don't allocate the space for a journal entry * until we write it out - thus, account for it here: */ for (seq = journal_last_unwritten_seq(j); seq <= journal_cur_seq(j); seq++) { unwritten = j->buf[seq & JOURNAL_BUF_MASK].sectors; if (!unwritten) continue; /* entry won't fit on this device, skip: */ if (unwritten > ca->mi.bucket_size) continue; if (unwritten >= sectors) { if (!buckets) { sectors = 0; break; } buckets--; sectors = ca->mi.bucket_size; } sectors -= unwritten; } if (sectors < ca->mi.bucket_size && buckets) { buckets--; sectors = ca->mi.bucket_size; } return (struct journal_space) { .next_entry = sectors, .total = sectors + buckets * ca->mi.bucket_size, }; } static struct journal_space __journal_space_available(struct journal *j, unsigned nr_devs_want, enum journal_space_from from) { struct bch_fs *c = container_of(j, struct bch_fs, journal); unsigned pos, nr_devs = 0; struct journal_space space, dev_space[BCH_SB_MEMBERS_MAX]; BUG_ON(nr_devs_want > ARRAY_SIZE(dev_space)); rcu_read_lock(); for_each_member_device_rcu(c, ca, &c->rw_devs[BCH_DATA_journal]) { if (!ca->journal.nr) continue; space = journal_dev_space_available(j, ca, from); if (!space.next_entry) continue; for (pos = 0; pos < nr_devs; pos++) if (space.total > dev_space[pos].total) break; array_insert_item(dev_space, nr_devs, pos, space); } rcu_read_unlock(); if (nr_devs < nr_devs_want) return (struct journal_space) { 0, 0 }; /* * We sorted largest to smallest, and we want the smallest out of the * @nr_devs_want largest devices: */ return dev_space[nr_devs_want - 1]; } void bch2_journal_space_available(struct journal *j) { struct bch_fs *c = container_of(j, struct bch_fs, journal); unsigned clean, clean_ondisk, total; unsigned max_entry_size = min(j->buf[0].buf_size >> 9, j->buf[1].buf_size >> 9); unsigned nr_online = 0, nr_devs_want; bool can_discard = false; int ret = 0; lockdep_assert_held(&j->lock); rcu_read_lock(); for_each_member_device_rcu(c, ca, &c->rw_devs[BCH_DATA_journal]) { struct journal_device *ja = &ca->journal; if (!ja->nr) continue; while (ja->dirty_idx != ja->cur_idx && ja->bucket_seq[ja->dirty_idx] < journal_last_seq(j)) ja->dirty_idx = (ja->dirty_idx + 1) % ja->nr; while (ja->dirty_idx_ondisk != ja->dirty_idx && ja->bucket_seq[ja->dirty_idx_ondisk] < j->last_seq_ondisk) ja->dirty_idx_ondisk = (ja->dirty_idx_ondisk + 1) % ja->nr; if (ja->discard_idx != ja->dirty_idx_ondisk) can_discard = true; max_entry_size = min_t(unsigned, max_entry_size, ca->mi.bucket_size); nr_online++; } rcu_read_unlock(); j->can_discard = can_discard; if (nr_online < metadata_replicas_required(c)) { struct printbuf buf = PRINTBUF; buf.atomic++; prt_printf(&buf, "insufficient writeable journal devices available: have %u, need %u\n" "rw journal devs:", nr_online, metadata_replicas_required(c)); rcu_read_lock(); for_each_member_device_rcu(c, ca, &c->rw_devs[BCH_DATA_journal]) prt_printf(&buf, " %s", ca->name); rcu_read_unlock(); bch_err(c, "%s", buf.buf); printbuf_exit(&buf); ret = JOURNAL_ERR_insufficient_devices; goto out; } nr_devs_want = min_t(unsigned, nr_online, c->opts.metadata_replicas); for (unsigned i = 0; i < journal_space_nr; i++) j->space[i] = __journal_space_available(j, nr_devs_want, i); clean_ondisk = j->space[journal_space_clean_ondisk].total; clean = j->space[journal_space_clean].total; total = j->space[journal_space_total].total; if (!j->space[journal_space_discarded].next_entry) ret = JOURNAL_ERR_journal_full; if ((j->space[journal_space_clean_ondisk].next_entry < j->space[journal_space_clean_ondisk].total) && (clean - clean_ondisk <= total / 8) && (clean_ondisk * 2 > clean)) set_bit(JOURNAL_may_skip_flush, &j->flags); else clear_bit(JOURNAL_may_skip_flush, &j->flags); bch2_journal_set_watermark(j); out: j->cur_entry_sectors = !ret ? j->space[journal_space_discarded].next_entry : 0; j->cur_entry_error = ret; if (!ret) journal_wake(j); } /* Discards - last part of journal reclaim: */ static bool should_discard_bucket(struct journal *j, struct journal_device *ja) { bool ret; spin_lock(&j->lock); ret = ja->discard_idx != ja->dirty_idx_ondisk; spin_unlock(&j->lock); return ret; } /* * Advance ja->discard_idx as long as it points to buckets that are no longer * dirty, issuing discards if necessary: */ void bch2_journal_do_discards(struct journal *j) { struct bch_fs *c = container_of(j, struct bch_fs, journal); mutex_lock(&j->discard_lock); for_each_rw_member(c, ca) { struct journal_device *ja = &ca->journal; while (should_discard_bucket(j, ja)) { if (!c->opts.nochanges && ca->mi.discard && bdev_max_discard_sectors(ca->disk_sb.bdev)) blkdev_issue_discard(ca->disk_sb.bdev, bucket_to_sector(ca, ja->buckets[ja->discard_idx]), ca->mi.bucket_size, GFP_NOFS); spin_lock(&j->lock); ja->discard_idx = (ja->discard_idx + 1) % ja->nr; bch2_journal_space_available(j); spin_unlock(&j->lock); } } mutex_unlock(&j->discard_lock); } /* * Journal entry pinning - machinery for holding a reference on a given journal * entry, holding it open to ensure it gets replayed during recovery: */ void bch2_journal_reclaim_fast(struct journal *j) { bool popped = false; lockdep_assert_held(&j->lock); /* * Unpin journal entries whose reference counts reached zero, meaning * all btree nodes got written out */ while (!fifo_empty(&j->pin) && j->pin.front <= j->seq_ondisk && !atomic_read(&fifo_peek_front(&j->pin).count)) { j->pin.front++; popped = true; } if (popped) bch2_journal_space_available(j); } bool __bch2_journal_pin_put(struct journal *j, u64 seq) { struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq); return atomic_dec_and_test(&pin_list->count); } void bch2_journal_pin_put(struct journal *j, u64 seq) { if (__bch2_journal_pin_put(j, seq)) { spin_lock(&j->lock); bch2_journal_reclaim_fast(j); spin_unlock(&j->lock); } } static inline bool __journal_pin_drop(struct journal *j, struct journal_entry_pin *pin) { struct journal_entry_pin_list *pin_list; if (!journal_pin_active(pin)) return false; if (j->flush_in_progress == pin) j->flush_in_progress_dropped = true; pin_list = journal_seq_pin(j, pin->seq); pin->seq = 0; list_del_init(&pin->list); /* * Unpinning a journal entry may make journal_next_bucket() succeed, if * writing a new last_seq will now make another bucket available: */ return atomic_dec_and_test(&pin_list->count) && pin_list == &fifo_peek_front(&j->pin); } void bch2_journal_pin_drop(struct journal *j, struct journal_entry_pin *pin) { spin_lock(&j->lock); if (__journal_pin_drop(j, pin)) bch2_journal_reclaim_fast(j); spin_unlock(&j->lock); } static enum journal_pin_type journal_pin_type(journal_pin_flush_fn fn) { if (fn == bch2_btree_node_flush0 || fn == bch2_btree_node_flush1) return JOURNAL_PIN_btree; else if (fn == bch2_btree_key_cache_journal_flush) return JOURNAL_PIN_key_cache; else return JOURNAL_PIN_other; } static inline void bch2_journal_pin_set_locked(struct journal *j, u64 seq, struct journal_entry_pin *pin, journal_pin_flush_fn flush_fn, enum journal_pin_type type) { struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq); /* * flush_fn is how we identify journal pins in debugfs, so must always * exist, even if it doesn't do anything: */ BUG_ON(!flush_fn); atomic_inc(&pin_list->count); pin->seq = seq; pin->flush = flush_fn; list_add(&pin->list, &pin_list->list[type]); } void bch2_journal_pin_copy(struct journal *j, struct journal_entry_pin *dst, struct journal_entry_pin *src, journal_pin_flush_fn flush_fn) { spin_lock(&j->lock); u64 seq = READ_ONCE(src->seq); if (seq < journal_last_seq(j)) { /* * bch2_journal_pin_copy() raced with bch2_journal_pin_drop() on * the src pin - with the pin dropped, the entry to pin might no * longer to exist, but that means there's no longer anything to * copy and we can bail out here: */ spin_unlock(&j->lock); return; } bool reclaim = __journal_pin_drop(j, dst); bch2_journal_pin_set_locked(j, seq, dst, flush_fn, journal_pin_type(flush_fn)); if (reclaim) bch2_journal_reclaim_fast(j); /* * If the journal is currently full, we might want to call flush_fn * immediately: */ if (seq == journal_last_seq(j)) journal_wake(j); spin_unlock(&j->lock); } void bch2_journal_pin_set(struct journal *j, u64 seq, struct journal_entry_pin *pin, journal_pin_flush_fn flush_fn) { spin_lock(&j->lock); BUG_ON(seq < journal_last_seq(j)); bool reclaim = __journal_pin_drop(j, pin); bch2_journal_pin_set_locked(j, seq, pin, flush_fn, journal_pin_type(flush_fn)); if (reclaim) bch2_journal_reclaim_fast(j); /* * If the journal is currently full, we might want to call flush_fn * immediately: */ if (seq == journal_last_seq(j)) journal_wake(j); spin_unlock(&j->lock); } /** * bch2_journal_pin_flush: ensure journal pin callback is no longer running * @j: journal object * @pin: pin to flush */ void bch2_journal_pin_flush(struct journal *j, struct journal_entry_pin *pin) { BUG_ON(journal_pin_active(pin)); wait_event(j->pin_flush_wait, j->flush_in_progress != pin); } /* * Journal reclaim: flush references to open journal entries to reclaim space in * the journal * * May be done by the journal code in the background as needed to free up space * for more journal entries, or as part of doing a clean shutdown, or to migrate * data off of a specific device: */ static struct journal_entry_pin * journal_get_next_pin(struct journal *j, u64 seq_to_flush, unsigned allowed_below_seq, unsigned allowed_above_seq, u64 *seq) { struct journal_entry_pin_list *pin_list; struct journal_entry_pin *ret = NULL; unsigned i; fifo_for_each_entry_ptr(pin_list, &j->pin, *seq) { if (*seq > seq_to_flush && !allowed_above_seq) break; for (i = 0; i < JOURNAL_PIN_NR; i++) if ((((1U << i) & allowed_below_seq) && *seq <= seq_to_flush) || ((1U << i) & allowed_above_seq)) { ret = list_first_entry_or_null(&pin_list->list[i], struct journal_entry_pin, list); if (ret) return ret; } } return NULL; } /* returns true if we did work */ static size_t journal_flush_pins(struct journal *j, u64 seq_to_flush, unsigned allowed_below_seq, unsigned allowed_above_seq, unsigned min_any, unsigned min_key_cache) { struct journal_entry_pin *pin; size_t nr_flushed = 0; journal_pin_flush_fn flush_fn; u64 seq; int err; lockdep_assert_held(&j->reclaim_lock); while (1) { unsigned allowed_above = allowed_above_seq; unsigned allowed_below = allowed_below_seq; if (min_any) { allowed_above |= ~0; allowed_below |= ~0; } if (min_key_cache) { allowed_above |= 1U << JOURNAL_PIN_key_cache; allowed_below |= 1U << JOURNAL_PIN_key_cache; } cond_resched(); j->last_flushed = jiffies; spin_lock(&j->lock); pin = journal_get_next_pin(j, seq_to_flush, allowed_below, allowed_above, &seq); if (pin) { BUG_ON(j->flush_in_progress); j->flush_in_progress = pin; j->flush_in_progress_dropped = false; flush_fn = pin->flush; } spin_unlock(&j->lock); if (!pin) break; if (min_key_cache && pin->flush == bch2_btree_key_cache_journal_flush) min_key_cache--; if (min_any) min_any--; err = flush_fn(j, pin, seq); spin_lock(&j->lock); /* Pin might have been dropped or rearmed: */ if (likely(!err && !j->flush_in_progress_dropped)) list_move(&pin->list, &journal_seq_pin(j, seq)->flushed); j->flush_in_progress = NULL; j->flush_in_progress_dropped = false; spin_unlock(&j->lock); wake_up(&j->pin_flush_wait); if (err) break; nr_flushed++; } return nr_flushed; } static u64 journal_seq_to_flush(struct journal *j) { struct bch_fs *c = container_of(j, struct bch_fs, journal); u64 seq_to_flush = 0; spin_lock(&j->lock); for_each_rw_member(c, ca) { struct journal_device *ja = &ca->journal; unsigned nr_buckets, bucket_to_flush; if (!ja->nr) continue; /* Try to keep the journal at most half full: */ nr_buckets = ja->nr / 2; nr_buckets = min(nr_buckets, ja->nr); bucket_to_flush = (ja->cur_idx + nr_buckets) % ja->nr; seq_to_flush = max(seq_to_flush, ja->bucket_seq[bucket_to_flush]); } /* Also flush if the pin fifo is more than half full */ seq_to_flush = max_t(s64, seq_to_flush, (s64) journal_cur_seq(j) - (j->pin.size >> 1)); spin_unlock(&j->lock); return seq_to_flush; } /** * __bch2_journal_reclaim - free up journal buckets * @j: journal object * @direct: direct or background reclaim? * @kicked: requested to run since we last ran? * Returns: 0 on success, or -EIO if the journal has been shutdown * * Background journal reclaim writes out btree nodes. It should be run * early enough so that we never completely run out of journal buckets. * * High watermarks for triggering background reclaim: * - FIFO has fewer than 512 entries left * - fewer than 25% journal buckets free * * Background reclaim runs until low watermarks are reached: * - FIFO has more than 1024 entries left * - more than 50% journal buckets free * * As long as a reclaim can complete in the time it takes to fill up * 512 journal entries or 25% of all journal buckets, then * journal_next_bucket() should not stall. */ static int __bch2_journal_reclaim(struct journal *j, bool direct, bool kicked) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct btree_cache *bc = &c->btree_cache; bool kthread = (current->flags & PF_KTHREAD) != 0; u64 seq_to_flush; size_t min_nr, min_key_cache, nr_flushed; unsigned flags; int ret = 0; /* * We can't invoke memory reclaim while holding the reclaim_lock - * journal reclaim is required to make progress for memory reclaim * (cleaning the caches), so we can't get stuck in memory reclaim while * we're holding the reclaim lock: */ lockdep_assert_held(&j->reclaim_lock); flags = memalloc_noreclaim_save(); do { if (kthread && kthread_should_stop()) break; if (bch2_journal_error(j)) { ret = -EIO; break; } bch2_journal_do_discards(j); seq_to_flush = journal_seq_to_flush(j); min_nr = 0; /* * If it's been longer than j->reclaim_delay_ms since we last flushed, * make sure to flush at least one journal pin: */ if (time_after(jiffies, j->last_flushed + msecs_to_jiffies(c->opts.journal_reclaim_delay))) min_nr = 1; if (j->watermark != BCH_WATERMARK_stripe) min_nr = 1; size_t btree_cache_live = bc->live[0].nr + bc->live[1].nr; if (atomic_long_read(&bc->nr_dirty) * 2 > btree_cache_live) min_nr = 1; min_key_cache = min(bch2_nr_btree_keys_need_flush(c), (size_t) 128); trace_and_count(c, journal_reclaim_start, c, direct, kicked, min_nr, min_key_cache, atomic_long_read(&bc->nr_dirty), btree_cache_live, atomic_long_read(&c->btree_key_cache.nr_dirty), atomic_long_read(&c->btree_key_cache.nr_keys)); nr_flushed = journal_flush_pins(j, seq_to_flush, ~0, 0, min_nr, min_key_cache); if (direct) j->nr_direct_reclaim += nr_flushed; else j->nr_background_reclaim += nr_flushed; trace_and_count(c, journal_reclaim_finish, c, nr_flushed); if (nr_flushed) wake_up(&j->reclaim_wait); } while ((min_nr || min_key_cache) && nr_flushed && !direct); memalloc_noreclaim_restore(flags); return ret; } int bch2_journal_reclaim(struct journal *j) { return __bch2_journal_reclaim(j, true, true); } static int bch2_journal_reclaim_thread(void *arg) { struct journal *j = arg; struct bch_fs *c = container_of(j, struct bch_fs, journal); unsigned long delay, now; bool journal_empty; int ret = 0; set_freezable(); j->last_flushed = jiffies; while (!ret && !kthread_should_stop()) { bool kicked = j->reclaim_kicked; j->reclaim_kicked = false; mutex_lock(&j->reclaim_lock); ret = __bch2_journal_reclaim(j, false, kicked); mutex_unlock(&j->reclaim_lock); now = jiffies; delay = msecs_to_jiffies(c->opts.journal_reclaim_delay); j->next_reclaim = j->last_flushed + delay; if (!time_in_range(j->next_reclaim, now, now + delay)) j->next_reclaim = now + delay; while (1) { set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); if (kthread_should_stop()) break; if (j->reclaim_kicked) break; spin_lock(&j->lock); journal_empty = fifo_empty(&j->pin); spin_unlock(&j->lock); if (journal_empty) schedule(); else if (time_after(j->next_reclaim, jiffies)) schedule_timeout(j->next_reclaim - jiffies); else break; } __set_current_state(TASK_RUNNING); } return 0; } void bch2_journal_reclaim_stop(struct journal *j) { struct task_struct *p = j->reclaim_thread; j->reclaim_thread = NULL; if (p) { kthread_stop(p); put_task_struct(p); } } int bch2_journal_reclaim_start(struct journal *j) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct task_struct *p; int ret; if (j->reclaim_thread) return 0; p = kthread_create(bch2_journal_reclaim_thread, j, "bch-reclaim/%s", c->name); ret = PTR_ERR_OR_ZERO(p); bch_err_msg(c, ret, "creating journal reclaim thread"); if (ret) return ret; get_task_struct(p); j->reclaim_thread = p; wake_up_process(p); return 0; } static int journal_flush_done(struct journal *j, u64 seq_to_flush, bool *did_work) { int ret; ret = bch2_journal_error(j); if (ret) return ret; mutex_lock(&j->reclaim_lock); if (journal_flush_pins(j, seq_to_flush, (1U << JOURNAL_PIN_key_cache)| (1U << JOURNAL_PIN_other), 0, 0, 0) || journal_flush_pins(j, seq_to_flush, (1U << JOURNAL_PIN_btree), 0, 0, 0)) *did_work = true; if (seq_to_flush > journal_cur_seq(j)) bch2_journal_entry_close(j); spin_lock(&j->lock); /* * If journal replay hasn't completed, the unreplayed journal entries * hold refs on their corresponding sequence numbers */ ret = !test_bit(JOURNAL_replay_done, &j->flags) || journal_last_seq(j) > seq_to_flush || !fifo_used(&j->pin); spin_unlock(&j->lock); mutex_unlock(&j->reclaim_lock); return ret; } bool bch2_journal_flush_pins(struct journal *j, u64 seq_to_flush) { /* time_stats this */ bool did_work = false; if (!test_bit(JOURNAL_running, &j->flags)) return false; closure_wait_event(&j->async_wait, journal_flush_done(j, seq_to_flush, &did_work)); return did_work; } int bch2_journal_flush_device_pins(struct journal *j, int dev_idx) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct journal_entry_pin_list *p; u64 iter, seq = 0; int ret = 0; spin_lock(&j->lock); fifo_for_each_entry_ptr(p, &j->pin, iter) if (dev_idx >= 0 ? bch2_dev_list_has_dev(p->devs, dev_idx) : p->devs.nr < c->opts.metadata_replicas) seq = iter; spin_unlock(&j->lock); bch2_journal_flush_pins(j, seq); ret = bch2_journal_error(j); if (ret) return ret; mutex_lock(&c->replicas_gc_lock); bch2_replicas_gc_start(c, 1 << BCH_DATA_journal); /* * Now that we've populated replicas_gc, write to the journal to mark * active journal devices. This handles the case where the journal might * be empty. Otherwise we could clear all journal replicas and * temporarily put the fs into an unrecoverable state. Journal recovery * expects to find devices marked for journal data on unclean mount. */ ret = bch2_journal_meta(&c->journal); if (ret) goto err; seq = 0; spin_lock(&j->lock); while (!ret) { struct bch_replicas_padded replicas; seq = max(seq, journal_last_seq(j)); if (seq >= j->pin.back) break; bch2_devlist_to_replicas(&replicas.e, BCH_DATA_journal, journal_seq_pin(j, seq)->devs); seq++; if (replicas.e.nr_devs) { spin_unlock(&j->lock); ret = bch2_mark_replicas(c, &replicas.e); spin_lock(&j->lock); } } spin_unlock(&j->lock); err: ret = bch2_replicas_gc_end(c, ret); mutex_unlock(&c->replicas_gc_lock); return ret; }