// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc * Copyright 2007 Johannes Berg * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright (C) 2015-2017 Intel Deutschland GmbH * Copyright (C) 2018-2020 Intel Corporation * * utilities for mac80211 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ieee80211_i.h" #include "driver-ops.h" #include "rate.h" #include "mesh.h" #include "wme.h" #include "led.h" #include "wep.h" /* privid for wiphys to determine whether they belong to us or not */ const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) { struct ieee80211_local *local; local = wiphy_priv(wiphy); return &local->hw; } EXPORT_SYMBOL(wiphy_to_ieee80211_hw); void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) { struct sk_buff *skb; struct ieee80211_hdr *hdr; skb_queue_walk(&tx->skbs, skb) { hdr = (struct ieee80211_hdr *) skb->data; hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); } } int ieee80211_frame_duration(enum nl80211_band band, size_t len, int rate, int erp, int short_preamble, int shift) { int dur; /* calculate duration (in microseconds, rounded up to next higher * integer if it includes a fractional microsecond) to send frame of * len bytes (does not include FCS) at the given rate. Duration will * also include SIFS. * * rate is in 100 kbps, so divident is multiplied by 10 in the * DIV_ROUND_UP() operations. * * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and * is assumed to be 0 otherwise. */ if (band == NL80211_BAND_5GHZ || erp) { /* * OFDM: * * N_DBPS = DATARATE x 4 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) * (16 = SIGNAL time, 6 = tail bits) * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext * * T_SYM = 4 usec * 802.11a - 18.5.2: aSIFSTime = 16 usec * 802.11g - 19.8.4: aSIFSTime = 10 usec + * signal ext = 6 usec */ dur = 16; /* SIFS + signal ext */ dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ /* IEEE 802.11-2012 18.3.2.4: all values above are: * * times 4 for 5 MHz * * times 2 for 10 MHz */ dur *= 1 << shift; /* rates should already consider the channel bandwidth, * don't apply divisor again. */ dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 4 * rate); /* T_SYM x N_SYM */ } else { /* * 802.11b or 802.11g with 802.11b compatibility: * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. * * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 * aSIFSTime = 10 usec * aPreambleLength = 144 usec or 72 usec with short preamble * aPLCPHeaderLength = 48 usec or 24 usec with short preamble */ dur = 10; /* aSIFSTime = 10 usec */ dur += short_preamble ? (72 + 24) : (144 + 48); dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); } return dur; } /* Exported duration function for driver use */ __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum nl80211_band band, size_t frame_len, struct ieee80211_rate *rate) { struct ieee80211_sub_if_data *sdata; u16 dur; int erp, shift = 0; bool short_preamble = false; erp = 0; if (vif) { sdata = vif_to_sdata(vif); short_preamble = sdata->vif.bss_conf.use_short_preamble; if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) erp = rate->flags & IEEE80211_RATE_ERP_G; shift = ieee80211_vif_get_shift(vif); } dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, short_preamble, shift); return cpu_to_le16(dur); } EXPORT_SYMBOL(ieee80211_generic_frame_duration); __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, struct ieee80211_vif *vif, size_t frame_len, const struct ieee80211_tx_info *frame_txctl) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_rate *rate; struct ieee80211_sub_if_data *sdata; bool short_preamble; int erp, shift = 0, bitrate; u16 dur; struct ieee80211_supported_band *sband; sband = local->hw.wiphy->bands[frame_txctl->band]; short_preamble = false; rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; erp = 0; if (vif) { sdata = vif_to_sdata(vif); short_preamble = sdata->vif.bss_conf.use_short_preamble; if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) erp = rate->flags & IEEE80211_RATE_ERP_G; shift = ieee80211_vif_get_shift(vif); } bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); /* CTS duration */ dur = ieee80211_frame_duration(sband->band, 10, bitrate, erp, short_preamble, shift); /* Data frame duration */ dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, erp, short_preamble, shift); /* ACK duration */ dur += ieee80211_frame_duration(sband->band, 10, bitrate, erp, short_preamble, shift); return cpu_to_le16(dur); } EXPORT_SYMBOL(ieee80211_rts_duration); __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, struct ieee80211_vif *vif, size_t frame_len, const struct ieee80211_tx_info *frame_txctl) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_rate *rate; struct ieee80211_sub_if_data *sdata; bool short_preamble; int erp, shift = 0, bitrate; u16 dur; struct ieee80211_supported_band *sband; sband = local->hw.wiphy->bands[frame_txctl->band]; short_preamble = false; rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; erp = 0; if (vif) { sdata = vif_to_sdata(vif); short_preamble = sdata->vif.bss_conf.use_short_preamble; if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) erp = rate->flags & IEEE80211_RATE_ERP_G; shift = ieee80211_vif_get_shift(vif); } bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); /* Data frame duration */ dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, erp, short_preamble, shift); if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { /* ACK duration */ dur += ieee80211_frame_duration(sband->band, 10, bitrate, erp, short_preamble, shift); } return cpu_to_le16(dur); } EXPORT_SYMBOL(ieee80211_ctstoself_duration); static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) { struct ieee80211_local *local = sdata->local; struct ieee80211_vif *vif = &sdata->vif; struct fq *fq = &local->fq; struct ps_data *ps = NULL; struct txq_info *txqi; struct sta_info *sta; int i; local_bh_disable(); spin_lock(&fq->lock); if (sdata->vif.type == NL80211_IFTYPE_AP) ps = &sdata->bss->ps; sdata->vif.txqs_stopped[ac] = false; list_for_each_entry_rcu(sta, &local->sta_list, list) { if (sdata != sta->sdata) continue; for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { struct ieee80211_txq *txq = sta->sta.txq[i]; if (!txq) continue; txqi = to_txq_info(txq); if (ac != txq->ac) continue; if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, &txqi->flags)) continue; spin_unlock(&fq->lock); drv_wake_tx_queue(local, txqi); spin_lock(&fq->lock); } } if (!vif->txq) goto out; txqi = to_txq_info(vif->txq); if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, &txqi->flags) || (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) goto out; spin_unlock(&fq->lock); drv_wake_tx_queue(local, txqi); local_bh_enable(); return; out: spin_unlock(&fq->lock); local_bh_enable(); } static void __releases(&local->queue_stop_reason_lock) __acquires(&local->queue_stop_reason_lock) _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) { struct ieee80211_sub_if_data *sdata; int n_acs = IEEE80211_NUM_ACS; int i; rcu_read_lock(); if (local->hw.queues < IEEE80211_NUM_ACS) n_acs = 1; for (i = 0; i < local->hw.queues; i++) { if (local->queue_stop_reasons[i]) continue; spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); list_for_each_entry_rcu(sdata, &local->interfaces, list) { int ac; for (ac = 0; ac < n_acs; ac++) { int ac_queue = sdata->vif.hw_queue[ac]; if (ac_queue == i || sdata->vif.cab_queue == i) __ieee80211_wake_txqs(sdata, ac); } } spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); } rcu_read_unlock(); } void ieee80211_wake_txqs(unsigned long data) { struct ieee80211_local *local = (struct ieee80211_local *)data; unsigned long flags; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); _ieee80211_wake_txqs(local, &flags); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue) { struct ieee80211_sub_if_data *sdata; int n_acs = IEEE80211_NUM_ACS; if (local->ops->wake_tx_queue) return; if (local->hw.queues < IEEE80211_NUM_ACS) n_acs = 1; list_for_each_entry_rcu(sdata, &local->interfaces, list) { int ac; if (!sdata->dev) continue; if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE && local->queue_stop_reasons[sdata->vif.cab_queue] != 0) continue; for (ac = 0; ac < n_acs; ac++) { int ac_queue = sdata->vif.hw_queue[ac]; if (ac_queue == queue || (sdata->vif.cab_queue == queue && local->queue_stop_reasons[ac_queue] == 0 && skb_queue_empty(&local->pending[ac_queue]))) netif_wake_subqueue(sdata->dev, ac); } } } static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, enum queue_stop_reason reason, bool refcounted, unsigned long *flags) { struct ieee80211_local *local = hw_to_local(hw); trace_wake_queue(local, queue, reason); if (WARN_ON(queue >= hw->queues)) return; if (!test_bit(reason, &local->queue_stop_reasons[queue])) return; if (!refcounted) { local->q_stop_reasons[queue][reason] = 0; } else { local->q_stop_reasons[queue][reason]--; if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) local->q_stop_reasons[queue][reason] = 0; } if (local->q_stop_reasons[queue][reason] == 0) __clear_bit(reason, &local->queue_stop_reasons[queue]); if (local->queue_stop_reasons[queue] != 0) /* someone still has this queue stopped */ return; if (skb_queue_empty(&local->pending[queue])) { rcu_read_lock(); ieee80211_propagate_queue_wake(local, queue); rcu_read_unlock(); } else tasklet_schedule(&local->tx_pending_tasklet); /* * Calling _ieee80211_wake_txqs here can be a problem because it may * release queue_stop_reason_lock which has been taken by * __ieee80211_wake_queue's caller. It is certainly not very nice to * release someone's lock, but it is fine because all the callers of * __ieee80211_wake_queue call it right before releasing the lock. */ if (local->ops->wake_tx_queue) { if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) tasklet_schedule(&local->wake_txqs_tasklet); else _ieee80211_wake_txqs(local, flags); } } void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, enum queue_stop_reason reason, bool refcounted) { struct ieee80211_local *local = hw_to_local(hw); unsigned long flags; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) { ieee80211_wake_queue_by_reason(hw, queue, IEEE80211_QUEUE_STOP_REASON_DRIVER, false); } EXPORT_SYMBOL(ieee80211_wake_queue); static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, enum queue_stop_reason reason, bool refcounted) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_sub_if_data *sdata; int n_acs = IEEE80211_NUM_ACS; trace_stop_queue(local, queue, reason); if (WARN_ON(queue >= hw->queues)) return; if (!refcounted) local->q_stop_reasons[queue][reason] = 1; else local->q_stop_reasons[queue][reason]++; if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue])) return; if (local->hw.queues < IEEE80211_NUM_ACS) n_acs = 1; rcu_read_lock(); list_for_each_entry_rcu(sdata, &local->interfaces, list) { int ac; if (!sdata->dev) continue; for (ac = 0; ac < n_acs; ac++) { if (sdata->vif.hw_queue[ac] == queue || sdata->vif.cab_queue == queue) { if (!local->ops->wake_tx_queue) { netif_stop_subqueue(sdata->dev, ac); continue; } spin_lock(&local->fq.lock); sdata->vif.txqs_stopped[ac] = true; spin_unlock(&local->fq.lock); } } } rcu_read_unlock(); } void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, enum queue_stop_reason reason, bool refcounted) { struct ieee80211_local *local = hw_to_local(hw); unsigned long flags; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); __ieee80211_stop_queue(hw, queue, reason, refcounted); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) { ieee80211_stop_queue_by_reason(hw, queue, IEEE80211_QUEUE_STOP_REASON_DRIVER, false); } EXPORT_SYMBOL(ieee80211_stop_queue); void ieee80211_add_pending_skb(struct ieee80211_local *local, struct sk_buff *skb) { struct ieee80211_hw *hw = &local->hw; unsigned long flags; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); int queue = info->hw_queue; if (WARN_ON(!info->control.vif)) { ieee80211_free_txskb(&local->hw, skb); return; } spin_lock_irqsave(&local->queue_stop_reason_lock, flags); __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, false); __skb_queue_tail(&local->pending[queue], skb); __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, false, &flags); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } void ieee80211_add_pending_skbs(struct ieee80211_local *local, struct sk_buff_head *skbs) { struct ieee80211_hw *hw = &local->hw; struct sk_buff *skb; unsigned long flags; int queue, i; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); while ((skb = skb_dequeue(skbs))) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); if (WARN_ON(!info->control.vif)) { ieee80211_free_txskb(&local->hw, skb); continue; } queue = info->hw_queue; __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, false); __skb_queue_tail(&local->pending[queue], skb); } for (i = 0; i < hw->queues; i++) __ieee80211_wake_queue(hw, i, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, false, &flags); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, unsigned long queues, enum queue_stop_reason reason, bool refcounted) { struct ieee80211_local *local = hw_to_local(hw); unsigned long flags; int i; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); for_each_set_bit(i, &queues, hw->queues) __ieee80211_stop_queue(hw, i, reason, refcounted); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } void ieee80211_stop_queues(struct ieee80211_hw *hw) { ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_DRIVER, false); } EXPORT_SYMBOL(ieee80211_stop_queues); int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) { struct ieee80211_local *local = hw_to_local(hw); unsigned long flags; int ret; if (WARN_ON(queue >= hw->queues)) return true; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, &local->queue_stop_reasons[queue]); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); return ret; } EXPORT_SYMBOL(ieee80211_queue_stopped); void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, unsigned long queues, enum queue_stop_reason reason, bool refcounted) { struct ieee80211_local *local = hw_to_local(hw); unsigned long flags; int i; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); for_each_set_bit(i, &queues, hw->queues) __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } void ieee80211_wake_queues(struct ieee80211_hw *hw) { ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_DRIVER, false); } EXPORT_SYMBOL(ieee80211_wake_queues); static unsigned int ieee80211_get_vif_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { unsigned int queues; if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { int ac; queues = 0; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) queues |= BIT(sdata->vif.hw_queue[ac]); if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) queues |= BIT(sdata->vif.cab_queue); } else { /* all queues */ queues = BIT(local->hw.queues) - 1; } return queues; } void __ieee80211_flush_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, unsigned int queues, bool drop) { if (!local->ops->flush) return; /* * If no queue was set, or if the HW doesn't support * IEEE80211_HW_QUEUE_CONTROL - flush all queues */ if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) queues = ieee80211_get_vif_queues(local, sdata); ieee80211_stop_queues_by_reason(&local->hw, queues, IEEE80211_QUEUE_STOP_REASON_FLUSH, false); drv_flush(local, sdata, queues, drop); ieee80211_wake_queues_by_reason(&local->hw, queues, IEEE80211_QUEUE_STOP_REASON_FLUSH, false); } void ieee80211_flush_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, bool drop) { __ieee80211_flush_queues(local, sdata, 0, drop); } void ieee80211_stop_vif_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum queue_stop_reason reason) { ieee80211_stop_queues_by_reason(&local->hw, ieee80211_get_vif_queues(local, sdata), reason, true); } void ieee80211_wake_vif_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum queue_stop_reason reason) { ieee80211_wake_queues_by_reason(&local->hw, ieee80211_get_vif_queues(local, sdata), reason, true); } static void __iterate_interfaces(struct ieee80211_local *local, u32 iter_flags, void (*iterator)(void *data, u8 *mac, struct ieee80211_vif *vif), void *data) { struct ieee80211_sub_if_data *sdata; bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; list_for_each_entry_rcu(sdata, &local->interfaces, list) { switch (sdata->vif.type) { case NL80211_IFTYPE_MONITOR: if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) continue; break; case NL80211_IFTYPE_AP_VLAN: continue; default: break; } if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) continue; if (ieee80211_sdata_running(sdata) || !active_only) iterator(data, sdata->vif.addr, &sdata->vif); } sdata = rcu_dereference_check(local->monitor_sdata, lockdep_is_held(&local->iflist_mtx) || lockdep_rtnl_is_held()); if (sdata && (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || sdata->flags & IEEE80211_SDATA_IN_DRIVER)) iterator(data, sdata->vif.addr, &sdata->vif); } void ieee80211_iterate_interfaces( struct ieee80211_hw *hw, u32 iter_flags, void (*iterator)(void *data, u8 *mac, struct ieee80211_vif *vif), void *data) { struct ieee80211_local *local = hw_to_local(hw); mutex_lock(&local->iflist_mtx); __iterate_interfaces(local, iter_flags, iterator, data); mutex_unlock(&local->iflist_mtx); } EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); void ieee80211_iterate_active_interfaces_atomic( struct ieee80211_hw *hw, u32 iter_flags, void (*iterator)(void *data, u8 *mac, struct ieee80211_vif *vif), void *data) { struct ieee80211_local *local = hw_to_local(hw); rcu_read_lock(); __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, iterator, data); rcu_read_unlock(); } EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); void ieee80211_iterate_active_interfaces_rtnl( struct ieee80211_hw *hw, u32 iter_flags, void (*iterator)(void *data, u8 *mac, struct ieee80211_vif *vif), void *data) { struct ieee80211_local *local = hw_to_local(hw); ASSERT_RTNL(); __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, iterator, data); } EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_rtnl); static void __iterate_stations(struct ieee80211_local *local, void (*iterator)(void *data, struct ieee80211_sta *sta), void *data) { struct sta_info *sta; list_for_each_entry_rcu(sta, &local->sta_list, list) { if (!sta->uploaded) continue; iterator(data, &sta->sta); } } void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, void (*iterator)(void *data, struct ieee80211_sta *sta), void *data) { struct ieee80211_local *local = hw_to_local(hw); rcu_read_lock(); __iterate_stations(local, iterator, data); rcu_read_unlock(); } EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) { struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); if (!ieee80211_sdata_running(sdata) || !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) return NULL; return &sdata->vif; } EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata; if (!vif) return NULL; sdata = vif_to_sdata(vif); if (!ieee80211_sdata_running(sdata) || !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) return NULL; return &sdata->wdev; } EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); /* * Nothing should have been stuffed into the workqueue during * the suspend->resume cycle. Since we can't check each caller * of this function if we are already quiescing / suspended, * check here and don't WARN since this can actually happen when * the rx path (for example) is racing against __ieee80211_suspend * and suspending / quiescing was set after the rx path checked * them. */ static bool ieee80211_can_queue_work(struct ieee80211_local *local) { if (local->quiescing || (local->suspended && !local->resuming)) { pr_warn("queueing ieee80211 work while going to suspend\n"); return false; } return true; } void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) { struct ieee80211_local *local = hw_to_local(hw); if (!ieee80211_can_queue_work(local)) return; queue_work(local->workqueue, work); } EXPORT_SYMBOL(ieee80211_queue_work); void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, struct delayed_work *dwork, unsigned long delay) { struct ieee80211_local *local = hw_to_local(hw); if (!ieee80211_can_queue_work(local)) return; queue_delayed_work(local->workqueue, dwork, delay); } EXPORT_SYMBOL(ieee80211_queue_delayed_work); static void ieee80211_parse_extension_element(u32 *crc, const struct element *elem, struct ieee802_11_elems *elems) { const void *data = elem->data + 1; u8 len = elem->datalen - 1; switch (elem->data[0]) { case WLAN_EID_EXT_HE_MU_EDCA: if (len == sizeof(*elems->mu_edca_param_set)) { elems->mu_edca_param_set = data; if (crc) *crc = crc32_be(*crc, (void *)elem, elem->datalen + 2); } break; case WLAN_EID_EXT_HE_CAPABILITY: elems->he_cap = data; elems->he_cap_len = len; break; case WLAN_EID_EXT_HE_OPERATION: if (len >= sizeof(*elems->he_operation) && len == ieee80211_he_oper_size(data) - 1) { if (crc) *crc = crc32_be(*crc, (void *)elem, elem->datalen + 2); elems->he_operation = data; } break; case WLAN_EID_EXT_UORA: if (len == 1) elems->uora_element = data; break; case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME: if (len == 3) elems->max_channel_switch_time = data; break; case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION: if (len == sizeof(*elems->mbssid_config_ie)) elems->mbssid_config_ie = data; break; case WLAN_EID_EXT_HE_SPR: if (len >= sizeof(*elems->he_spr) && len >= ieee80211_he_spr_size(data)) elems->he_spr = data; break; case WLAN_EID_EXT_HE_6GHZ_CAPA: if (len == sizeof(*elems->he_6ghz_capa)) elems->he_6ghz_capa = data; break; } } static u32 _ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, struct ieee802_11_elems *elems, u64 filter, u32 crc, const struct element *check_inherit) { const struct element *elem; bool calc_crc = filter != 0; DECLARE_BITMAP(seen_elems, 256); const u8 *ie; bitmap_zero(seen_elems, 256); for_each_element(elem, start, len) { bool elem_parse_failed; u8 id = elem->id; u8 elen = elem->datalen; const u8 *pos = elem->data; if (check_inherit && !cfg80211_is_element_inherited(elem, check_inherit)) continue; switch (id) { case WLAN_EID_SSID: case WLAN_EID_SUPP_RATES: case WLAN_EID_FH_PARAMS: case WLAN_EID_DS_PARAMS: case WLAN_EID_CF_PARAMS: case WLAN_EID_TIM: case WLAN_EID_IBSS_PARAMS: case WLAN_EID_CHALLENGE: case WLAN_EID_RSN: case WLAN_EID_ERP_INFO: case WLAN_EID_EXT_SUPP_RATES: case WLAN_EID_HT_CAPABILITY: case WLAN_EID_HT_OPERATION: case WLAN_EID_VHT_CAPABILITY: case WLAN_EID_VHT_OPERATION: case WLAN_EID_MESH_ID: case WLAN_EID_MESH_CONFIG: case WLAN_EID_PEER_MGMT: case WLAN_EID_PREQ: case WLAN_EID_PREP: case WLAN_EID_PERR: case WLAN_EID_RANN: case WLAN_EID_CHANNEL_SWITCH: case WLAN_EID_EXT_CHANSWITCH_ANN: case WLAN_EID_COUNTRY: case WLAN_EID_PWR_CONSTRAINT: case WLAN_EID_TIMEOUT_INTERVAL: case WLAN_EID_SECONDARY_CHANNEL_OFFSET: case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: case WLAN_EID_CHAN_SWITCH_PARAM: case WLAN_EID_EXT_CAPABILITY: case WLAN_EID_CHAN_SWITCH_TIMING: case WLAN_EID_LINK_ID: case WLAN_EID_BSS_MAX_IDLE_PERIOD: case WLAN_EID_RSNX: /* * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible * that if the content gets bigger it might be needed more than once */ if (test_bit(id, seen_elems)) { elems->parse_error = true; continue; } break; } if (calc_crc && id < 64 && (filter & (1ULL << id))) crc = crc32_be(crc, pos - 2, elen + 2); elem_parse_failed = false; switch (id) { case WLAN_EID_LINK_ID: if (elen + 2 != sizeof(struct ieee80211_tdls_lnkie)) { elem_parse_failed = true; break; } elems->lnk_id = (void *)(pos - 2); break; case WLAN_EID_CHAN_SWITCH_TIMING: if (elen != sizeof(struct ieee80211_ch_switch_timing)) { elem_parse_failed = true; break; } elems->ch_sw_timing = (void *)pos; break; case WLAN_EID_EXT_CAPABILITY: elems->ext_capab = pos; elems->ext_capab_len = elen; break; case WLAN_EID_SSID: elems->ssid = pos; elems->ssid_len = elen; break; case WLAN_EID_SUPP_RATES: elems->supp_rates = pos; elems->supp_rates_len = elen; break; case WLAN_EID_DS_PARAMS: if (elen >= 1) elems->ds_params = pos; else elem_parse_failed = true; break; case WLAN_EID_TIM: if (elen >= sizeof(struct ieee80211_tim_ie)) { elems->tim = (void *)pos; elems->tim_len = elen; } else elem_parse_failed = true; break; case WLAN_EID_CHALLENGE: elems->challenge = pos; elems->challenge_len = elen; break; case WLAN_EID_VENDOR_SPECIFIC: if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && pos[2] == 0xf2) { /* Microsoft OUI (00:50:F2) */ if (calc_crc) crc = crc32_be(crc, pos - 2, elen + 2); if (elen >= 5 && pos[3] == 2) { /* OUI Type 2 - WMM IE */ if (pos[4] == 0) { elems->wmm_info = pos; elems->wmm_info_len = elen; } else if (pos[4] == 1) { elems->wmm_param = pos; elems->wmm_param_len = elen; } } } break; case WLAN_EID_RSN: elems->rsn = pos; elems->rsn_len = elen; break; case WLAN_EID_ERP_INFO: if (elen >= 1) elems->erp_info = pos; else elem_parse_failed = true; break; case WLAN_EID_EXT_SUPP_RATES: elems->ext_supp_rates = pos; elems->ext_supp_rates_len = elen; break; case WLAN_EID_HT_CAPABILITY: if (elen >= sizeof(struct ieee80211_ht_cap)) elems->ht_cap_elem = (void *)pos; else elem_parse_failed = true; break; case WLAN_EID_HT_OPERATION: if (elen >= sizeof(struct ieee80211_ht_operation)) elems->ht_operation = (void *)pos; else elem_parse_failed = true; break; case WLAN_EID_VHT_CAPABILITY: if (elen >= sizeof(struct ieee80211_vht_cap)) elems->vht_cap_elem = (void *)pos; else elem_parse_failed = true; break; case WLAN_EID_VHT_OPERATION: if (elen >= sizeof(struct ieee80211_vht_operation)) { elems->vht_operation = (void *)pos; if (calc_crc) crc = crc32_be(crc, pos - 2, elen + 2); break; } elem_parse_failed = true; break; case WLAN_EID_OPMODE_NOTIF: if (elen > 0) { elems->opmode_notif = pos; if (calc_crc) crc = crc32_be(crc, pos - 2, elen + 2); break; } elem_parse_failed = true; break; case WLAN_EID_MESH_ID: elems->mesh_id = pos; elems->mesh_id_len = elen; break; case WLAN_EID_MESH_CONFIG: if (elen >= sizeof(struct ieee80211_meshconf_ie)) elems->mesh_config = (void *)pos; else elem_parse_failed = true; break; case WLAN_EID_PEER_MGMT: elems->peering = pos; elems->peering_len = elen; break; case WLAN_EID_MESH_AWAKE_WINDOW: if (elen >= 2) elems->awake_window = (void *)pos; break; case WLAN_EID_PREQ: elems->preq = pos; elems->preq_len = elen; break; case WLAN_EID_PREP: elems->prep = pos; elems->prep_len = elen; break; case WLAN_EID_PERR: elems->perr = pos; elems->perr_len = elen; break; case WLAN_EID_RANN: if (elen >= sizeof(struct ieee80211_rann_ie)) elems->rann = (void *)pos; else elem_parse_failed = true; break; case WLAN_EID_CHANNEL_SWITCH: if (elen != sizeof(struct ieee80211_channel_sw_ie)) { elem_parse_failed = true; break; } elems->ch_switch_ie = (void *)pos; break; case WLAN_EID_EXT_CHANSWITCH_ANN: if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { elem_parse_failed = true; break; } elems->ext_chansw_ie = (void *)pos; break; case WLAN_EID_SECONDARY_CHANNEL_OFFSET: if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { elem_parse_failed = true; break; } elems->sec_chan_offs = (void *)pos; break; case WLAN_EID_CHAN_SWITCH_PARAM: if (elen != sizeof(*elems->mesh_chansw_params_ie)) { elem_parse_failed = true; break; } elems->mesh_chansw_params_ie = (void *)pos; break; case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: if (!action || elen != sizeof(*elems->wide_bw_chansw_ie)) { elem_parse_failed = true; break; } elems->wide_bw_chansw_ie = (void *)pos; break; case WLAN_EID_CHANNEL_SWITCH_WRAPPER: if (action) { elem_parse_failed = true; break; } /* * This is a bit tricky, but as we only care about * the wide bandwidth channel switch element, so * just parse it out manually. */ ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, pos, elen); if (ie) { if (ie[1] == sizeof(*elems->wide_bw_chansw_ie)) elems->wide_bw_chansw_ie = (void *)(ie + 2); else elem_parse_failed = true; } break; case WLAN_EID_COUNTRY: elems->country_elem = pos; elems->country_elem_len = elen; break; case WLAN_EID_PWR_CONSTRAINT: if (elen != 1) { elem_parse_failed = true; break; } elems->pwr_constr_elem = pos; break; case WLAN_EID_CISCO_VENDOR_SPECIFIC: /* Lots of different options exist, but we only care * about the Dynamic Transmit Power Control element. * First check for the Cisco OUI, then for the DTPC * tag (0x00). */ if (elen < 4) { elem_parse_failed = true; break; } if (pos[0] != 0x00 || pos[1] != 0x40 || pos[2] != 0x96 || pos[3] != 0x00) break; if (elen != 6) { elem_parse_failed = true; break; } if (calc_crc) crc = crc32_be(crc, pos - 2, elen + 2); elems->cisco_dtpc_elem = pos; break; case WLAN_EID_ADDBA_EXT: if (elen != sizeof(struct ieee80211_addba_ext_ie)) { elem_parse_failed = true; break; } elems->addba_ext_ie = (void *)pos; break; case WLAN_EID_TIMEOUT_INTERVAL: if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) elems->timeout_int = (void *)pos; else elem_parse_failed = true; break; case WLAN_EID_BSS_MAX_IDLE_PERIOD: if (elen >= sizeof(*elems->max_idle_period_ie)) elems->max_idle_period_ie = (void *)pos; break; case WLAN_EID_RSNX: elems->rsnx = pos; elems->rsnx_len = elen; break; case WLAN_EID_EXTENSION: ieee80211_parse_extension_element(calc_crc ? &crc : NULL, elem, elems); break; default: break; } if (elem_parse_failed) elems->parse_error = true; else __set_bit(id, seen_elems); } if (!for_each_element_completed(elem, start, len)) elems->parse_error = true; return crc; } static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len, struct ieee802_11_elems *elems, u8 *transmitter_bssid, u8 *bss_bssid, u8 *nontransmitted_profile) { const struct element *elem, *sub; size_t profile_len = 0; bool found = false; if (!bss_bssid || !transmitter_bssid) return profile_len; for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) { if (elem->datalen < 2) continue; for_each_element(sub, elem->data + 1, elem->datalen - 1) { u8 new_bssid[ETH_ALEN]; const u8 *index; if (sub->id != 0 || sub->datalen < 4) { /* not a valid BSS profile */ continue; } if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || sub->data[1] != 2) { /* The first element of the * Nontransmitted BSSID Profile is not * the Nontransmitted BSSID Capability * element. */ continue; } memset(nontransmitted_profile, 0, len); profile_len = cfg80211_merge_profile(start, len, elem, sub, nontransmitted_profile, len); /* found a Nontransmitted BSSID Profile */ index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, nontransmitted_profile, profile_len); if (!index || index[1] < 1 || index[2] == 0) { /* Invalid MBSSID Index element */ continue; } cfg80211_gen_new_bssid(transmitter_bssid, elem->data[0], index[2], new_bssid); if (ether_addr_equal(new_bssid, bss_bssid)) { found = true; elems->bssid_index_len = index[1]; elems->bssid_index = (void *)&index[2]; break; } } } return found ? profile_len : 0; } u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, struct ieee802_11_elems *elems, u64 filter, u32 crc, u8 *transmitter_bssid, u8 *bss_bssid) { const struct element *non_inherit = NULL; u8 *nontransmitted_profile; int nontransmitted_profile_len = 0; memset(elems, 0, sizeof(*elems)); elems->ie_start = start; elems->total_len = len; nontransmitted_profile = kmalloc(len, GFP_ATOMIC); if (nontransmitted_profile) { nontransmitted_profile_len = ieee802_11_find_bssid_profile(start, len, elems, transmitter_bssid, bss_bssid, nontransmitted_profile); non_inherit = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, nontransmitted_profile, nontransmitted_profile_len); } crc = _ieee802_11_parse_elems_crc(start, len, action, elems, filter, crc, non_inherit); /* Override with nontransmitted profile, if found */ if (nontransmitted_profile_len) _ieee802_11_parse_elems_crc(nontransmitted_profile, nontransmitted_profile_len, action, elems, 0, 0, NULL); if (elems->tim && !elems->parse_error) { const struct ieee80211_tim_ie *tim_ie = elems->tim; elems->dtim_period = tim_ie->dtim_period; elems->dtim_count = tim_ie->dtim_count; } /* Override DTIM period and count if needed */ if (elems->bssid_index && elems->bssid_index_len >= offsetofend(struct ieee80211_bssid_index, dtim_period)) elems->dtim_period = elems->bssid_index->dtim_period; if (elems->bssid_index && elems->bssid_index_len >= offsetofend(struct ieee80211_bssid_index, dtim_count)) elems->dtim_count = elems->bssid_index->dtim_count; kfree(nontransmitted_profile); return crc; } void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, struct ieee80211_tx_queue_params *qparam, int ac) { struct ieee80211_chanctx_conf *chanctx_conf; const struct ieee80211_reg_rule *rrule; const struct ieee80211_wmm_ac *wmm_ac; u16 center_freq = 0; if (sdata->vif.type != NL80211_IFTYPE_AP && sdata->vif.type != NL80211_IFTYPE_STATION) return; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (chanctx_conf) center_freq = chanctx_conf->def.chan->center_freq; if (!center_freq) { rcu_read_unlock(); return; } rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { rcu_read_unlock(); return; } if (sdata->vif.type == NL80211_IFTYPE_AP) wmm_ac = &rrule->wmm_rule.ap[ac]; else wmm_ac = &rrule->wmm_rule.client[ac]; qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); rcu_read_unlock(); } void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata, bool bss_notify, bool enable_qos) { struct ieee80211_local *local = sdata->local; struct ieee80211_tx_queue_params qparam; struct ieee80211_chanctx_conf *chanctx_conf; int ac; bool use_11b; bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ int aCWmin, aCWmax; if (!local->ops->conf_tx) return; if (local->hw.queues < IEEE80211_NUM_ACS) return; memset(&qparam, 0, sizeof(qparam)); rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); use_11b = (chanctx_conf && chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE); rcu_read_unlock(); is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); /* Set defaults according to 802.11-2007 Table 7-37 */ aCWmax = 1023; if (use_11b) aCWmin = 31; else aCWmin = 15; /* Confiure old 802.11b/g medium access rules. */ qparam.cw_max = aCWmax; qparam.cw_min = aCWmin; qparam.txop = 0; qparam.aifs = 2; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { /* Update if QoS is enabled. */ if (enable_qos) { switch (ac) { case IEEE80211_AC_BK: qparam.cw_max = aCWmax; qparam.cw_min = aCWmin; qparam.txop = 0; if (is_ocb) qparam.aifs = 9; else qparam.aifs = 7; break; /* never happens but let's not leave undefined */ default: case IEEE80211_AC_BE: qparam.cw_max = aCWmax; qparam.cw_min = aCWmin; qparam.txop = 0; if (is_ocb) qparam.aifs = 6; else qparam.aifs = 3; break; case IEEE80211_AC_VI: qparam.cw_max = aCWmin; qparam.cw_min = (aCWmin + 1) / 2 - 1; if (is_ocb) qparam.txop = 0; else if (use_11b) qparam.txop = 6016/32; else qparam.txop = 3008/32; if (is_ocb) qparam.aifs = 3; else qparam.aifs = 2; break; case IEEE80211_AC_VO: qparam.cw_max = (aCWmin + 1) / 2 - 1; qparam.cw_min = (aCWmin + 1) / 4 - 1; if (is_ocb) qparam.txop = 0; else if (use_11b) qparam.txop = 3264/32; else qparam.txop = 1504/32; qparam.aifs = 2; break; } } ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); qparam.uapsd = false; sdata->tx_conf[ac] = qparam; drv_conf_tx(local, sdata, ac, &qparam); } if (sdata->vif.type != NL80211_IFTYPE_MONITOR && sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && sdata->vif.type != NL80211_IFTYPE_NAN) { sdata->vif.bss_conf.qos = enable_qos; if (bss_notify) ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_QOS); } } void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, u16 transaction, u16 auth_alg, u16 status, const u8 *extra, size_t extra_len, const u8 *da, const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, u32 tx_flags) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; int err; /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); mgmt = skb_put_zero(skb, 24 + 6); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH); memcpy(mgmt->da, da, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, bssid, ETH_ALEN); mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); mgmt->u.auth.status_code = cpu_to_le16(status); if (extra) skb_put_data(skb, extra, extra_len); if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); WARN_ON(err); } IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | tx_flags; ieee80211_tx_skb(sdata, skb); } void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, const u8 *da, const u8 *bssid, u16 stype, u16 reason, bool send_frame, u8 *frame_buf) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *mgmt = (void *)frame_buf; /* build frame */ mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); mgmt->duration = 0; /* initialize only */ mgmt->seq_ctrl = 0; /* initialize only */ memcpy(mgmt->da, da, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, bssid, ETH_ALEN); /* u.deauth.reason_code == u.disassoc.reason_code */ mgmt->u.deauth.reason_code = cpu_to_le16(reason); if (send_frame) { skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_DEAUTH_FRAME_LEN); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom); /* copy in frame */ skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); if (sdata->vif.type != NL80211_IFTYPE_STATION || !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; ieee80211_tx_skb(sdata, skb); } } static u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end) { if ((end - pos) < 5) return pos; *pos++ = WLAN_EID_EXTENSION; *pos++ = 1 + sizeof(cap); *pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA; memcpy(pos, &cap, sizeof(cap)); return pos + 2; } static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata, u8 *buffer, size_t buffer_len, const u8 *ie, size_t ie_len, enum nl80211_band band, u32 rate_mask, struct cfg80211_chan_def *chandef, size_t *offset, u32 flags) { struct ieee80211_local *local = sdata->local; struct ieee80211_supported_band *sband; const struct ieee80211_sta_he_cap *he_cap; u8 *pos = buffer, *end = buffer + buffer_len; size_t noffset; int supp_rates_len, i; u8 rates[32]; int num_rates; int ext_rates_len; int shift; u32 rate_flags; bool have_80mhz = false; *offset = 0; sband = local->hw.wiphy->bands[band]; if (WARN_ON_ONCE(!sband)) return 0; rate_flags = ieee80211_chandef_rate_flags(chandef); shift = ieee80211_chandef_get_shift(chandef); num_rates = 0; for (i = 0; i < sband->n_bitrates; i++) { if ((BIT(i) & rate_mask) == 0) continue; /* skip rate */ if ((rate_flags & sband->bitrates[i].flags) != rate_flags) continue; rates[num_rates++] = (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, (1 << shift) * 5); } supp_rates_len = min_t(int, num_rates, 8); if (end - pos < 2 + supp_rates_len) goto out_err; *pos++ = WLAN_EID_SUPP_RATES; *pos++ = supp_rates_len; memcpy(pos, rates, supp_rates_len); pos += supp_rates_len; /* insert "request information" if in custom IEs */ if (ie && ie_len) { static const u8 before_extrates[] = { WLAN_EID_SSID, WLAN_EID_SUPP_RATES, WLAN_EID_REQUEST, }; noffset = ieee80211_ie_split(ie, ie_len, before_extrates, ARRAY_SIZE(before_extrates), *offset); if (end - pos < noffset - *offset) goto out_err; memcpy(pos, ie + *offset, noffset - *offset); pos += noffset - *offset; *offset = noffset; } ext_rates_len = num_rates - supp_rates_len; if (ext_rates_len > 0) { if (end - pos < 2 + ext_rates_len) goto out_err; *pos++ = WLAN_EID_EXT_SUPP_RATES; *pos++ = ext_rates_len; memcpy(pos, rates + supp_rates_len, ext_rates_len); pos += ext_rates_len; } if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { if (end - pos < 3) goto out_err; *pos++ = WLAN_EID_DS_PARAMS; *pos++ = 1; *pos++ = ieee80211_frequency_to_channel( chandef->chan->center_freq); } if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) goto done; /* insert custom IEs that go before HT */ if (ie && ie_len) { static const u8 before_ht[] = { /* * no need to list the ones split off already * (or generated here) */ WLAN_EID_DS_PARAMS, WLAN_EID_SUPPORTED_REGULATORY_CLASSES, }; noffset = ieee80211_ie_split(ie, ie_len, before_ht, ARRAY_SIZE(before_ht), *offset); if (end - pos < noffset - *offset) goto out_err; memcpy(pos, ie + *offset, noffset - *offset); pos += noffset - *offset; *offset = noffset; } if (sband->ht_cap.ht_supported) { if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) goto out_err; pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, sband->ht_cap.cap); } /* insert custom IEs that go before VHT */ if (ie && ie_len) { static const u8 before_vht[] = { /* * no need to list the ones split off already * (or generated here) */ WLAN_EID_BSS_COEX_2040, WLAN_EID_EXT_CAPABILITY, WLAN_EID_SSID_LIST, WLAN_EID_CHANNEL_USAGE, WLAN_EID_INTERWORKING, WLAN_EID_MESH_ID, /* 60 GHz (Multi-band, DMG, MMS) can't happen */ }; noffset = ieee80211_ie_split(ie, ie_len, before_vht, ARRAY_SIZE(before_vht), *offset); if (end - pos < noffset - *offset) goto out_err; memcpy(pos, ie + *offset, noffset - *offset); pos += noffset - *offset; *offset = noffset; } /* Check if any channel in this sband supports at least 80 MHz */ for (i = 0; i < sband->n_channels; i++) { if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | IEEE80211_CHAN_NO_80MHZ)) continue; have_80mhz = true; break; } if (sband->vht_cap.vht_supported && have_80mhz) { if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) goto out_err; pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, sband->vht_cap.cap); } /* insert custom IEs that go before HE */ if (ie && ie_len) { static const u8 before_he[] = { /* * no need to list the ones split off before VHT * or generated here */ WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, WLAN_EID_AP_CSN, /* TODO: add 11ah/11aj/11ak elements */ }; noffset = ieee80211_ie_split(ie, ie_len, before_he, ARRAY_SIZE(before_he), *offset); if (end - pos < noffset - *offset) goto out_err; memcpy(pos, ie + *offset, noffset - *offset); pos += noffset - *offset; *offset = noffset; } he_cap = ieee80211_get_he_sta_cap(sband); if (he_cap) { pos = ieee80211_ie_build_he_cap(pos, he_cap, end); if (!pos) goto out_err; if (sband->band == NL80211_BAND_6GHZ) { enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); __le16 cap = ieee80211_get_he_6ghz_capa(sband, iftype); pos = ieee80211_write_he_6ghz_cap(pos, cap, end); } } /* * If adding more here, adjust code in main.c * that calculates local->scan_ies_len. */ return pos - buffer; out_err: WARN_ONCE(1, "not enough space for preq IEs\n"); done: return pos - buffer; } int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, size_t buffer_len, struct ieee80211_scan_ies *ie_desc, const u8 *ie, size_t ie_len, u8 bands_used, u32 *rate_masks, struct cfg80211_chan_def *chandef, u32 flags) { size_t pos = 0, old_pos = 0, custom_ie_offset = 0; int i; memset(ie_desc, 0, sizeof(*ie_desc)); for (i = 0; i < NUM_NL80211_BANDS; i++) { if (bands_used & BIT(i)) { pos += ieee80211_build_preq_ies_band(sdata, buffer + pos, buffer_len - pos, ie, ie_len, i, rate_masks[i], chandef, &custom_ie_offset, flags); ie_desc->ies[i] = buffer + old_pos; ie_desc->len[i] = pos - old_pos; old_pos = pos; } } /* add any remaining custom IEs */ if (ie && ie_len) { if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, "not enough space for preq custom IEs\n")) return pos; memcpy(buffer + pos, ie + custom_ie_offset, ie_len - custom_ie_offset); ie_desc->common_ies = buffer + pos; ie_desc->common_ie_len = ie_len - custom_ie_offset; pos += ie_len - custom_ie_offset; } return pos; }; struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, const u8 *src, const u8 *dst, u32 ratemask, struct ieee80211_channel *chan, const u8 *ssid, size_t ssid_len, const u8 *ie, size_t ie_len, u32 flags) { struct ieee80211_local *local = sdata->local; struct cfg80211_chan_def chandef; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; int ies_len; u32 rate_masks[NUM_NL80211_BANDS] = {}; struct ieee80211_scan_ies dummy_ie_desc; /* * Do not send DS Channel parameter for directed probe requests * in order to maximize the chance that we get a response. Some * badly-behaved APs don't respond when this parameter is included. */ chandef.width = sdata->vif.bss_conf.chandef.width; if (flags & IEEE80211_PROBE_FLAG_DIRECTED) chandef.chan = NULL; else chandef.chan = chan; skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 100 + ie_len); if (!skb) return NULL; rate_masks[chan->band] = ratemask; ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb), skb_tailroom(skb), &dummy_ie_desc, ie, ie_len, BIT(chan->band), rate_masks, &chandef, flags); skb_put(skb, ies_len); if (dst) { mgmt = (struct ieee80211_mgmt *) skb->data; memcpy(mgmt->da, dst, ETH_ALEN); memcpy(mgmt->bssid, dst, ETH_ALEN); } IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; return skb; } u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, struct ieee802_11_elems *elems, enum nl80211_band band, u32 *basic_rates) { struct ieee80211_supported_band *sband; size_t num_rates; u32 supp_rates, rate_flags; int i, j, shift; sband = sdata->local->hw.wiphy->bands[band]; if (WARN_ON(!sband)) return 1; rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); shift = ieee80211_vif_get_shift(&sdata->vif); num_rates = sband->n_bitrates; supp_rates = 0; for (i = 0; i < elems->supp_rates_len + elems->ext_supp_rates_len; i++) { u8 rate = 0; int own_rate; bool is_basic; if (i < elems->supp_rates_len) rate = elems->supp_rates[i]; else if (elems->ext_supp_rates) rate = elems->ext_supp_rates [i - elems->supp_rates_len]; own_rate = 5 * (rate & 0x7f); is_basic = !!(rate & 0x80); if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) continue; for (j = 0; j < num_rates; j++) { int brate; if ((rate_flags & sband->bitrates[j].flags) != rate_flags) continue; brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 1 << shift); if (brate == own_rate) { supp_rates |= BIT(j); if (basic_rates && is_basic) *basic_rates |= BIT(j); } } } return supp_rates; } void ieee80211_stop_device(struct ieee80211_local *local) { ieee80211_led_radio(local, false); ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); cancel_work_sync(&local->reconfig_filter); flush_workqueue(local->workqueue); drv_stop(local); } static void ieee80211_flush_completed_scan(struct ieee80211_local *local, bool aborted) { /* It's possible that we don't handle the scan completion in * time during suspend, so if it's still marked as completed * here, queue the work and flush it to clean things up. * Instead of calling the worker function directly here, we * really queue it to avoid potential races with other flows * scheduling the same work. */ if (test_bit(SCAN_COMPLETED, &local->scanning)) { /* If coming from reconfiguration failure, abort the scan so * we don't attempt to continue a partial HW scan - which is * possible otherwise if (e.g.) the 2.4 GHz portion was the * completed scan, and a 5 GHz portion is still pending. */ if (aborted) set_bit(SCAN_ABORTED, &local->scanning); ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); flush_delayed_work(&local->scan_work); } } static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata; struct ieee80211_chanctx *ctx; /* * We get here if during resume the device can't be restarted properly. * We might also get here if this happens during HW reset, which is a * slightly different situation and we need to drop all connections in * the latter case. * * Ask cfg80211 to turn off all interfaces, this will result in more * warnings but at least we'll then get into a clean stopped state. */ local->resuming = false; local->suspended = false; local->in_reconfig = false; ieee80211_flush_completed_scan(local, true); /* scheduled scan clearly can't be running any more, but tell * cfg80211 and clear local state */ ieee80211_sched_scan_end(local); list_for_each_entry(sdata, &local->interfaces, list) sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; /* Mark channel contexts as not being in the driver any more to avoid * removing them from the driver during the shutdown process... */ mutex_lock(&local->chanctx_mtx); list_for_each_entry(ctx, &local->chanctx_list, list) ctx->driver_present = false; mutex_unlock(&local->chanctx_mtx); cfg80211_shutdown_all_interfaces(local->hw.wiphy); } static void ieee80211_assign_chanctx(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { struct ieee80211_chanctx_conf *conf; struct ieee80211_chanctx *ctx; if (!local->use_chanctx) return; mutex_lock(&local->chanctx_mtx); conf = rcu_dereference_protected(sdata->vif.chanctx_conf, lockdep_is_held(&local->chanctx_mtx)); if (conf) { ctx = container_of(conf, struct ieee80211_chanctx, conf); drv_assign_vif_chanctx(local, sdata, ctx); } mutex_unlock(&local->chanctx_mtx); } static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct sta_info *sta; /* add STAs back */ mutex_lock(&local->sta_mtx); list_for_each_entry(sta, &local->sta_list, list) { enum ieee80211_sta_state state; if (!sta->uploaded || sta->sdata != sdata) continue; for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) WARN_ON(drv_sta_state(local, sta->sdata, sta, state, state + 1)); } mutex_unlock(&local->sta_mtx); } static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) { struct cfg80211_nan_func *func, **funcs; int res, id, i = 0; res = drv_start_nan(sdata->local, sdata, &sdata->u.nan.conf); if (WARN_ON(res)) return res; funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, sizeof(*funcs), GFP_KERNEL); if (!funcs) return -ENOMEM; /* Add all the functions: * This is a little bit ugly. We need to call a potentially sleeping * callback for each NAN function, so we can't hold the spinlock. */ spin_lock_bh(&sdata->u.nan.func_lock); idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) funcs[i++] = func; spin_unlock_bh(&sdata->u.nan.func_lock); for (i = 0; funcs[i]; i++) { res = drv_add_nan_func(sdata->local, sdata, funcs[i]); if (WARN_ON(res)) ieee80211_nan_func_terminated(&sdata->vif, funcs[i]->instance_id, NL80211_NAN_FUNC_TERM_REASON_ERROR, GFP_KERNEL); } kfree(funcs); return 0; } int ieee80211_reconfig(struct ieee80211_local *local) { struct ieee80211_hw *hw = &local->hw; struct ieee80211_sub_if_data *sdata; struct ieee80211_chanctx *ctx; struct sta_info *sta; int res, i; bool reconfig_due_to_wowlan = false; struct ieee80211_sub_if_data *sched_scan_sdata; struct cfg80211_sched_scan_request *sched_scan_req; bool sched_scan_stopped = false; bool suspended = local->suspended; /* nothing to do if HW shouldn't run */ if (!local->open_count) goto wake_up; #ifdef CONFIG_PM if (suspended) local->resuming = true; if (local->wowlan) { /* * In the wowlan case, both mac80211 and the device * are functional when the resume op is called, so * clear local->suspended so the device could operate * normally (e.g. pass rx frames). */ local->suspended = false; res = drv_resume(local); local->wowlan = false; if (res < 0) { local->resuming = false; return res; } if (res == 0) goto wake_up; WARN_ON(res > 1); /* * res is 1, which means the driver requested * to go through a regular reset on wakeup. * restore local->suspended in this case. */ reconfig_due_to_wowlan = true; local->suspended = true; } #endif /* * In case of hw_restart during suspend (without wowlan), * cancel restart work, as we are reconfiguring the device * anyway. * Note that restart_work is scheduled on a frozen workqueue, * so we can't deadlock in this case. */ if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) cancel_work_sync(&local->restart_work); local->started = false; /* * Upon resume hardware can sometimes be goofy due to * various platform / driver / bus issues, so restarting * the device may at times not work immediately. Propagate * the error. */ res = drv_start(local); if (res) { if (suspended) WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); else WARN(1, "Hardware became unavailable during restart.\n"); ieee80211_handle_reconfig_failure(local); return res; } /* setup fragmentation threshold */ drv_set_frag_threshold(local, hw->wiphy->frag_threshold); /* setup RTS threshold */ drv_set_rts_threshold(local, hw->wiphy->rts_threshold); /* reset coverage class */ drv_set_coverage_class(local, hw->wiphy->coverage_class); ieee80211_led_radio(local, true); ieee80211_mod_tpt_led_trig(local, IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); /* add interfaces */ sdata = rtnl_dereference(local->monitor_sdata); if (sdata) { /* in HW restart it exists already */ WARN_ON(local->resuming); res = drv_add_interface(local, sdata); if (WARN_ON(res)) { RCU_INIT_POINTER(local->monitor_sdata, NULL); synchronize_net(); kfree(sdata); } } list_for_each_entry(sdata, &local->interfaces, list) { if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && sdata->vif.type != NL80211_IFTYPE_MONITOR && ieee80211_sdata_running(sdata)) { res = drv_add_interface(local, sdata); if (WARN_ON(res)) break; } } /* If adding any of the interfaces failed above, roll back and * report failure. */ if (res) { list_for_each_entry_continue_reverse(sdata, &local->interfaces, list) if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && sdata->vif.type != NL80211_IFTYPE_MONITOR && ieee80211_sdata_running(sdata)) drv_remove_interface(local, sdata); ieee80211_handle_reconfig_failure(local); return res; } /* add channel contexts */ if (local->use_chanctx) { mutex_lock(&local->chanctx_mtx); list_for_each_entry(ctx, &local->chanctx_list, list) if (ctx->replace_state != IEEE80211_CHANCTX_REPLACES_OTHER) WARN_ON(drv_add_chanctx(local, ctx)); mutex_unlock(&local->chanctx_mtx); sdata = rtnl_dereference(local->monitor_sdata); if (sdata && ieee80211_sdata_running(sdata)) ieee80211_assign_chanctx(local, sdata); } /* reconfigure hardware */ ieee80211_hw_config(local, ~0); ieee80211_configure_filter(local); /* Finally also reconfigure all the BSS information */ list_for_each_entry(sdata, &local->interfaces, list) { u32 changed; if (!ieee80211_sdata_running(sdata)) continue; ieee80211_assign_chanctx(local, sdata); switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_MONITOR: break; case NL80211_IFTYPE_ADHOC: if (sdata->vif.bss_conf.ibss_joined) WARN_ON(drv_join_ibss(local, sdata)); /* fall through */ default: ieee80211_reconfig_stations(sdata); /* fall through */ case NL80211_IFTYPE_AP: /* AP stations are handled later */ for (i = 0; i < IEEE80211_NUM_ACS; i++) drv_conf_tx(local, sdata, i, &sdata->tx_conf[i]); break; } /* common change flags for all interface types */ changed = BSS_CHANGED_ERP_CTS_PROT | BSS_CHANGED_ERP_PREAMBLE | BSS_CHANGED_ERP_SLOT | BSS_CHANGED_HT | BSS_CHANGED_BASIC_RATES | BSS_CHANGED_BEACON_INT | BSS_CHANGED_BSSID | BSS_CHANGED_CQM | BSS_CHANGED_QOS | BSS_CHANGED_IDLE | BSS_CHANGED_TXPOWER | BSS_CHANGED_MCAST_RATE; if (sdata->vif.mu_mimo_owner) changed |= BSS_CHANGED_MU_GROUPS; switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: changed |= BSS_CHANGED_ASSOC | BSS_CHANGED_ARP_FILTER | BSS_CHANGED_PS; /* Re-send beacon info report to the driver */ if (sdata->u.mgd.have_beacon) changed |= BSS_CHANGED_BEACON_INFO; if (sdata->vif.bss_conf.max_idle_period || sdata->vif.bss_conf.protected_keep_alive) changed |= BSS_CHANGED_KEEP_ALIVE; sdata_lock(sdata); ieee80211_bss_info_change_notify(sdata, changed); sdata_unlock(sdata); break; case NL80211_IFTYPE_OCB: changed |= BSS_CHANGED_OCB; ieee80211_bss_info_change_notify(sdata, changed); break; case NL80211_IFTYPE_ADHOC: changed |= BSS_CHANGED_IBSS; /* fall through */ case NL80211_IFTYPE_AP: changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS; if (sdata->vif.bss_conf.ftm_responder == 1 && wiphy_ext_feature_isset(sdata->local->hw.wiphy, NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) changed |= BSS_CHANGED_FTM_RESPONDER; if (sdata->vif.type == NL80211_IFTYPE_AP) { changed |= BSS_CHANGED_AP_PROBE_RESP; if (rcu_access_pointer(sdata->u.ap.beacon)) drv_start_ap(local, sdata); } /* fall through */ case NL80211_IFTYPE_MESH_POINT: if (sdata->vif.bss_conf.enable_beacon) { changed |= BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED; ieee80211_bss_info_change_notify(sdata, changed); } break; case NL80211_IFTYPE_NAN: res = ieee80211_reconfig_nan(sdata); if (res < 0) { ieee80211_handle_reconfig_failure(local); return res; } break; case NL80211_IFTYPE_WDS: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_P2P_DEVICE: /* nothing to do */ break; case NL80211_IFTYPE_UNSPECIFIED: case NUM_NL80211_IFTYPES: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_P2P_GO: WARN_ON(1); break; } } ieee80211_recalc_ps(local); /* * The sta might be in psm against the ap (e.g. because * this was the state before a hw restart), so we * explicitly send a null packet in order to make sure * it'll sync against the ap (and get out of psm). */ if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { list_for_each_entry(sdata, &local->interfaces, list) { if (sdata->vif.type != NL80211_IFTYPE_STATION) continue; if (!sdata->u.mgd.associated) continue; ieee80211_send_nullfunc(local, sdata, false); } } /* APs are now beaconing, add back stations */ mutex_lock(&local->sta_mtx); list_for_each_entry(sta, &local->sta_list, list) { enum ieee80211_sta_state state; if (!sta->uploaded) continue; if (sta->sdata->vif.type != NL80211_IFTYPE_AP && sta->sdata->vif.type != NL80211_IFTYPE_AP_VLAN) continue; for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) WARN_ON(drv_sta_state(local, sta->sdata, sta, state, state + 1)); } mutex_unlock(&local->sta_mtx); /* add back keys */ list_for_each_entry(sdata, &local->interfaces, list) ieee80211_reenable_keys(sdata); /* Reconfigure sched scan if it was interrupted by FW restart */ mutex_lock(&local->mtx); sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, lockdep_is_held(&local->mtx)); sched_scan_req = rcu_dereference_protected(local->sched_scan_req, lockdep_is_held(&local->mtx)); if (sched_scan_sdata && sched_scan_req) /* * Sched scan stopped, but we don't want to report it. Instead, * we're trying to reschedule. However, if more than one scan * plan was set, we cannot reschedule since we don't know which * scan plan was currently running (and some scan plans may have * already finished). */ if (sched_scan_req->n_scan_plans > 1 || __ieee80211_request_sched_scan_start(sched_scan_sdata, sched_scan_req)) { RCU_INIT_POINTER(local->sched_scan_sdata, NULL); RCU_INIT_POINTER(local->sched_scan_req, NULL); sched_scan_stopped = true; } mutex_unlock(&local->mtx); if (sched_scan_stopped) cfg80211_sched_scan_stopped_rtnl(local->hw.wiphy, 0); wake_up: if (local->monitors == local->open_count && local->monitors > 0) ieee80211_add_virtual_monitor(local); /* * Clear the WLAN_STA_BLOCK_BA flag so new aggregation * sessions can be established after a resume. * * Also tear down aggregation sessions since reconfiguring * them in a hardware restart scenario is not easily done * right now, and the hardware will have lost information * about the sessions, but we and the AP still think they * are active. This is really a workaround though. */ if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { mutex_lock(&local->sta_mtx); list_for_each_entry(sta, &local->sta_list, list) { if (!local->resuming) ieee80211_sta_tear_down_BA_sessions( sta, AGG_STOP_LOCAL_REQUEST); clear_sta_flag(sta, WLAN_STA_BLOCK_BA); } mutex_unlock(&local->sta_mtx); } if (local->in_reconfig) { local->in_reconfig = false; barrier(); /* Restart deferred ROCs */ mutex_lock(&local->mtx); ieee80211_start_next_roc(local); mutex_unlock(&local->mtx); /* Requeue all works */ list_for_each_entry(sdata, &local->interfaces, list) ieee80211_queue_work(&local->hw, &sdata->work); } ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_SUSPEND, false); /* * If this is for hw restart things are still running. * We may want to change that later, however. */ if (local->open_count && (!suspended || reconfig_due_to_wowlan)) drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); if (!suspended) return 0; #ifdef CONFIG_PM /* first set suspended false, then resuming */ local->suspended = false; mb(); local->resuming = false; ieee80211_flush_completed_scan(local, false); if (local->open_count && !reconfig_due_to_wowlan) drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); list_for_each_entry(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; if (sdata->vif.type == NL80211_IFTYPE_STATION) ieee80211_sta_restart(sdata); } mod_timer(&local->sta_cleanup, jiffies + 1); #else WARN_ON(1); #endif return 0; } void ieee80211_resume_disconnect(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata; struct ieee80211_local *local; struct ieee80211_key *key; if (WARN_ON(!vif)) return; sdata = vif_to_sdata(vif); local = sdata->local; if (WARN_ON(!local->resuming)) return; if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) return; sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME; mutex_lock(&local->key_mtx); list_for_each_entry(key, &sdata->key_list, list) key->flags |= KEY_FLAG_TAINTED; mutex_unlock(&local->key_mtx); } EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_chanctx *chanctx; mutex_lock(&local->chanctx_mtx); chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, lockdep_is_held(&local->chanctx_mtx)); /* * This function can be called from a work, thus it may be possible * that the chanctx_conf is removed (due to a disconnection, for * example). * So nothing should be done in such case. */ if (!chanctx_conf) goto unlock; chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); ieee80211_recalc_smps_chanctx(local, chanctx); unlock: mutex_unlock(&local->chanctx_mtx); } void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_chanctx *chanctx; mutex_lock(&local->chanctx_mtx); chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, lockdep_is_held(&local->chanctx_mtx)); if (WARN_ON_ONCE(!chanctx_conf)) goto unlock; chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); ieee80211_recalc_chanctx_min_def(local, chanctx); unlock: mutex_unlock(&local->chanctx_mtx); } size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) { size_t pos = offset; while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) pos += 2 + ies[pos + 1]; return pos; } static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata, int rssi_min_thold, int rssi_max_thold) { trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) return; /* * Scale up threshold values before storing it, as the RSSI averaging * algorithm uses a scaled up value as well. Change this scaling * factor if the RSSI averaging algorithm changes. */ sdata->u.mgd.rssi_min_thold = rssi_min_thold*16; sdata->u.mgd.rssi_max_thold = rssi_max_thold*16; } void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, int rssi_min_thold, int rssi_max_thold) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); WARN_ON(rssi_min_thold == rssi_max_thold || rssi_min_thold > rssi_max_thold); _ieee80211_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); } EXPORT_SYMBOL(ieee80211_enable_rssi_reports); void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); _ieee80211_enable_rssi_reports(sdata, 0, 0); } EXPORT_SYMBOL(ieee80211_disable_rssi_reports); u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, u16 cap) { __le16 tmp; *pos++ = WLAN_EID_HT_CAPABILITY; *pos++ = sizeof(struct ieee80211_ht_cap); memset(pos, 0, sizeof(struct ieee80211_ht_cap)); /* capability flags */ tmp = cpu_to_le16(cap); memcpy(pos, &tmp, sizeof(u16)); pos += sizeof(u16); /* AMPDU parameters */ *pos++ = ht_cap->ampdu_factor | (ht_cap->ampdu_density << IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); /* MCS set */ memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); pos += sizeof(ht_cap->mcs); /* extended capabilities */ pos += sizeof(__le16); /* BF capabilities */ pos += sizeof(__le32); /* antenna selection */ pos += sizeof(u8); return pos; } u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, u32 cap) { __le32 tmp; *pos++ = WLAN_EID_VHT_CAPABILITY; *pos++ = sizeof(struct ieee80211_vht_cap); memset(pos, 0, sizeof(struct ieee80211_vht_cap)); /* capability flags */ tmp = cpu_to_le32(cap); memcpy(pos, &tmp, sizeof(u32)); pos += sizeof(u32); /* VHT MCS set */ memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); pos += sizeof(vht_cap->vht_mcs); return pos; } u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) { const struct ieee80211_sta_he_cap *he_cap; struct ieee80211_supported_band *sband; u8 n; sband = ieee80211_get_sband(sdata); if (!sband) return 0; he_cap = ieee80211_get_he_iftype_cap(sband, iftype); if (!he_cap) return 0; n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); return 2 + 1 + sizeof(he_cap->he_cap_elem) + n + ieee80211_he_ppe_size(he_cap->ppe_thres[0], he_cap->he_cap_elem.phy_cap_info); } u8 *ieee80211_ie_build_he_cap(u8 *pos, const struct ieee80211_sta_he_cap *he_cap, u8 *end) { u8 n; u8 ie_len; u8 *orig_pos = pos; /* Make sure we have place for the IE */ /* * TODO: the 1 added is because this temporarily is under the EXTENSION * IE. Get rid of it when it moves. */ if (!he_cap) return orig_pos; n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); ie_len = 2 + 1 + sizeof(he_cap->he_cap_elem) + n + ieee80211_he_ppe_size(he_cap->ppe_thres[0], he_cap->he_cap_elem.phy_cap_info); if ((end - pos) < ie_len) return orig_pos; *pos++ = WLAN_EID_EXTENSION; pos++; /* We'll set the size later below */ *pos++ = WLAN_EID_EXT_HE_CAPABILITY; /* Fixed data */ memcpy(pos, &he_cap->he_cap_elem, sizeof(he_cap->he_cap_elem)); pos += sizeof(he_cap->he_cap_elem); memcpy(pos, &he_cap->he_mcs_nss_supp, n); pos += n; /* Check if PPE Threshold should be present */ if ((he_cap->he_cap_elem.phy_cap_info[6] & IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) goto end; /* * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) */ n = hweight8(he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> IEEE80211_PPE_THRES_NSS_POS)); /* * Each pair is 6 bits, and we need to add the 7 "header" bits to the * total size. */ n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; n = DIV_ROUND_UP(n, 8); /* Copy PPE Thresholds */ memcpy(pos, &he_cap->ppe_thres, n); pos += n; end: orig_pos[1] = (pos - orig_pos) - 2; return pos; } void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_supported_band *sband; const struct ieee80211_sband_iftype_data *iftd; enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); u8 *pos; u16 cap; sband = ieee80211_get_sband(sdata); if (!sband) return; iftd = ieee80211_get_sband_iftype_data(sband, iftype); if (WARN_ON(!iftd)) return; cap = le16_to_cpu(iftd->he_6ghz_capa.capa); cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS; switch (sdata->smps_mode) { case IEEE80211_SMPS_AUTOMATIC: case IEEE80211_SMPS_NUM_MODES: WARN_ON(1); /* fall through */ case IEEE80211_SMPS_OFF: cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, IEEE80211_HE_6GHZ_CAP_SM_PS); break; case IEEE80211_SMPS_STATIC: cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, IEEE80211_HE_6GHZ_CAP_SM_PS); break; case IEEE80211_SMPS_DYNAMIC: cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, IEEE80211_HE_6GHZ_CAP_SM_PS); break; } pos = skb_put(skb, 2 + 1 + sizeof(cap)); ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap), pos + 2 + 1 + sizeof(cap)); } u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, const struct cfg80211_chan_def *chandef, u16 prot_mode, bool rifs_mode) { struct ieee80211_ht_operation *ht_oper; /* Build HT Information */ *pos++ = WLAN_EID_HT_OPERATION; *pos++ = sizeof(struct ieee80211_ht_operation); ht_oper = (struct ieee80211_ht_operation *)pos; ht_oper->primary_chan = ieee80211_frequency_to_channel( chandef->chan->center_freq); switch (chandef->width) { case NL80211_CHAN_WIDTH_160: case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_80: case NL80211_CHAN_WIDTH_40: if (chandef->center_freq1 > chandef->chan->center_freq) ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; else ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; break; default: ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; break; } if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && chandef->width != NL80211_CHAN_WIDTH_20_NOHT && chandef->width != NL80211_CHAN_WIDTH_20) ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; if (rifs_mode) ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; ht_oper->operation_mode = cpu_to_le16(prot_mode); ht_oper->stbc_param = 0x0000; /* It seems that Basic MCS set and Supported MCS set are identical for the first 10 bytes */ memset(&ht_oper->basic_set, 0, 16); memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); return pos + sizeof(struct ieee80211_ht_operation); } void ieee80211_ie_build_wide_bw_cs(u8 *pos, const struct cfg80211_chan_def *chandef) { *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ *pos++ = 3; /* IE length */ /* New channel width */ switch (chandef->width) { case NL80211_CHAN_WIDTH_80: *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; break; case NL80211_CHAN_WIDTH_160: *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; break; case NL80211_CHAN_WIDTH_80P80: *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; break; default: *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; } /* new center frequency segment 0 */ *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); /* new center frequency segment 1 */ if (chandef->center_freq2) *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); else *pos++ = 0; } u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, const struct cfg80211_chan_def *chandef) { struct ieee80211_vht_operation *vht_oper; *pos++ = WLAN_EID_VHT_OPERATION; *pos++ = sizeof(struct ieee80211_vht_operation); vht_oper = (struct ieee80211_vht_operation *)pos; vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( chandef->center_freq1); if (chandef->center_freq2) vht_oper->center_freq_seg1_idx = ieee80211_frequency_to_channel(chandef->center_freq2); else vht_oper->center_freq_seg1_idx = 0x00; switch (chandef->width) { case NL80211_CHAN_WIDTH_160: /* * Convert 160 MHz channel width to new style as interop * workaround. */ vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; if (chandef->chan->center_freq < chandef->center_freq1) vht_oper->center_freq_seg0_idx -= 8; else vht_oper->center_freq_seg0_idx += 8; break; case NL80211_CHAN_WIDTH_80P80: /* * Convert 80+80 MHz channel width to new style as interop * workaround. */ vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; break; case NL80211_CHAN_WIDTH_80: vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; break; default: vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; break; } /* don't require special VHT peer rates */ vht_oper->basic_mcs_set = cpu_to_le16(0xffff); return pos + sizeof(struct ieee80211_vht_operation); } u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef) { struct ieee80211_he_operation *he_oper; struct ieee80211_he_6ghz_oper *he_6ghz_op; u32 he_oper_params; u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); if (chandef->chan->band == NL80211_BAND_6GHZ) ie_len += sizeof(struct ieee80211_he_6ghz_oper); *pos++ = WLAN_EID_EXTENSION; *pos++ = ie_len; *pos++ = WLAN_EID_EXT_HE_OPERATION; he_oper_params = 0; he_oper_params |= u32_encode_bits(1023, /* disabled */ IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); he_oper_params |= u32_encode_bits(1, IEEE80211_HE_OPERATION_ER_SU_DISABLE); he_oper_params |= u32_encode_bits(1, IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); if (chandef->chan->band == NL80211_BAND_6GHZ) he_oper_params |= u32_encode_bits(1, IEEE80211_HE_OPERATION_6GHZ_OP_INFO); he_oper = (struct ieee80211_he_operation *)pos; he_oper->he_oper_params = cpu_to_le32(he_oper_params); /* don't require special HE peer rates */ he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); pos += sizeof(struct ieee80211_he_operation); if (chandef->chan->band != NL80211_BAND_6GHZ) goto out; /* TODO add VHT operational */ he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; he_6ghz_op->minrate = 6; /* 6 Mbps */ he_6ghz_op->primary = ieee80211_frequency_to_channel(chandef->chan->center_freq); he_6ghz_op->ccfs0 = ieee80211_frequency_to_channel(chandef->center_freq1); if (chandef->center_freq2) he_6ghz_op->ccfs1 = ieee80211_frequency_to_channel(chandef->center_freq2); else he_6ghz_op->ccfs1 = 0; switch (chandef->width) { case NL80211_CHAN_WIDTH_160: /* Convert 160 MHz channel width to new style as interop * workaround. */ he_6ghz_op->control = IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; if (chandef->chan->center_freq < chandef->center_freq1) he_6ghz_op->ccfs0 -= 8; else he_6ghz_op->ccfs0 += 8; fallthrough; case NL80211_CHAN_WIDTH_80P80: he_6ghz_op->control = IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; break; case NL80211_CHAN_WIDTH_80: he_6ghz_op->control = IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; break; case NL80211_CHAN_WIDTH_40: he_6ghz_op->control = IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; break; default: he_6ghz_op->control = IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; break; } pos += sizeof(struct ieee80211_he_6ghz_oper); out: return pos; } bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, struct cfg80211_chan_def *chandef) { enum nl80211_channel_type channel_type; if (!ht_oper) return false; switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { case IEEE80211_HT_PARAM_CHA_SEC_NONE: channel_type = NL80211_CHAN_HT20; break; case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: channel_type = NL80211_CHAN_HT40PLUS; break; case IEEE80211_HT_PARAM_CHA_SEC_BELOW: channel_type = NL80211_CHAN_HT40MINUS; break; default: channel_type = NL80211_CHAN_NO_HT; return false; } cfg80211_chandef_create(chandef, chandef->chan, channel_type); return true; } bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, const struct ieee80211_vht_operation *oper, const struct ieee80211_ht_operation *htop, struct cfg80211_chan_def *chandef) { struct cfg80211_chan_def new = *chandef; int cf0, cf1; int ccfs0, ccfs1, ccfs2; int ccf0, ccf1; u32 vht_cap; bool support_80_80 = false; bool support_160 = false; u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); u8 supp_chwidth = u32_get_bits(vht_cap_info, IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); if (!oper || !htop) return false; vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); support_80_80 = ((vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); ccfs0 = oper->center_freq_seg0_idx; ccfs1 = oper->center_freq_seg1_idx; ccfs2 = (le16_to_cpu(htop->operation_mode) & IEEE80211_HT_OP_MODE_CCFS2_MASK) >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; ccf0 = ccfs0; /* if not supported, parse as though we didn't understand it */ if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) ext_nss_bw_supp = 0; /* * Cf. IEEE 802.11 Table 9-250 * * We really just consider that because it's inefficient to connect * at a higher bandwidth than we'll actually be able to use. */ switch ((supp_chwidth << 4) | ext_nss_bw_supp) { default: case 0x00: ccf1 = 0; support_160 = false; support_80_80 = false; break; case 0x01: support_80_80 = false; /* fall through */ case 0x02: case 0x03: ccf1 = ccfs2; break; case 0x10: ccf1 = ccfs1; break; case 0x11: case 0x12: if (!ccfs1) ccf1 = ccfs2; else ccf1 = ccfs1; break; case 0x13: case 0x20: case 0x23: ccf1 = ccfs1; break; } cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); switch (oper->chan_width) { case IEEE80211_VHT_CHANWIDTH_USE_HT: /* just use HT information directly */ break; case IEEE80211_VHT_CHANWIDTH_80MHZ: new.width = NL80211_CHAN_WIDTH_80; new.center_freq1 = cf0; /* If needed, adjust based on the newer interop workaround. */ if (ccf1) { unsigned int diff; diff = abs(ccf1 - ccf0); if ((diff == 8) && support_160) { new.width = NL80211_CHAN_WIDTH_160; new.center_freq1 = cf1; } else if ((diff > 8) && support_80_80) { new.width = NL80211_CHAN_WIDTH_80P80; new.center_freq2 = cf1; } } break; case IEEE80211_VHT_CHANWIDTH_160MHZ: /* deprecated encoding */ new.width = NL80211_CHAN_WIDTH_160; new.center_freq1 = cf0; break; case IEEE80211_VHT_CHANWIDTH_80P80MHZ: /* deprecated encoding */ new.width = NL80211_CHAN_WIDTH_80P80; new.center_freq1 = cf0; new.center_freq2 = cf1; break; default: return false; } if (!cfg80211_chandef_valid(&new)) return false; *chandef = new; return true; } bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata, const struct ieee80211_he_operation *he_oper, struct cfg80211_chan_def *chandef) { struct ieee80211_local *local = sdata->local; struct ieee80211_supported_band *sband; enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); const struct ieee80211_sta_he_cap *he_cap; struct cfg80211_chan_def he_chandef = *chandef; const struct ieee80211_he_6ghz_oper *he_6ghz_oper; bool support_80_80, support_160; u8 he_phy_cap; u32 freq; if (chandef->chan->band != NL80211_BAND_6GHZ) return true; sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; he_cap = ieee80211_get_he_iftype_cap(sband, iftype); if (!he_cap) { sdata_info(sdata, "Missing iftype sband data/HE cap"); return false; } he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0]; support_160 = he_phy_cap & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; support_80_80 = he_phy_cap & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; if (!he_oper) { sdata_info(sdata, "HE is not advertised on (on %d MHz), expect issues\n", chandef->chan->center_freq); return false; } he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); if (!he_6ghz_oper) { sdata_info(sdata, "HE 6GHz operation missing (on %d MHz), expect issues\n", chandef->chan->center_freq); return false; } freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, NL80211_BAND_6GHZ); he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq); switch (u8_get_bits(he_6ghz_oper->control, IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: he_chandef.width = NL80211_CHAN_WIDTH_20; break; case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: he_chandef.width = NL80211_CHAN_WIDTH_40; break; case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: he_chandef.width = NL80211_CHAN_WIDTH_80; break; case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: he_chandef.width = NL80211_CHAN_WIDTH_80; if (!he_6ghz_oper->ccfs1) break; if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) { if (support_160) he_chandef.width = NL80211_CHAN_WIDTH_160; } else { if (support_80_80) he_chandef.width = NL80211_CHAN_WIDTH_80P80; } break; } if (he_chandef.width == NL80211_CHAN_WIDTH_160) { he_chandef.center_freq1 = ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, NL80211_BAND_6GHZ); } else { he_chandef.center_freq1 = ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, NL80211_BAND_6GHZ); he_chandef.center_freq2 = ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, NL80211_BAND_6GHZ); } if (!cfg80211_chandef_valid(&he_chandef)) { sdata_info(sdata, "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n", he_chandef.chan ? he_chandef.chan->center_freq : 0, he_chandef.width, he_chandef.center_freq1, he_chandef.center_freq2); return false; } *chandef = he_chandef; return true; } int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef, const struct ieee80211_supported_band *sband, const u8 *srates, int srates_len, u32 *rates) { u32 rate_flags = ieee80211_chandef_rate_flags(chandef); int shift = ieee80211_chandef_get_shift(chandef); struct ieee80211_rate *br; int brate, rate, i, j, count = 0; *rates = 0; for (i = 0; i < srates_len; i++) { rate = srates[i] & 0x7f; for (j = 0; j < sband->n_bitrates; j++) { br = &sband->bitrates[j]; if ((rate_flags & br->flags) != rate_flags) continue; brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); if (brate == rate) { *rates |= BIT(j); count++; break; } } } return count; } int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, bool need_basic, enum nl80211_band band) { struct ieee80211_local *local = sdata->local; struct ieee80211_supported_band *sband; int rate, shift; u8 i, rates, *pos; u32 basic_rates = sdata->vif.bss_conf.basic_rates; u32 rate_flags; shift = ieee80211_vif_get_shift(&sdata->vif); rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); sband = local->hw.wiphy->bands[band]; rates = 0; for (i = 0; i < sband->n_bitrates; i++) { if ((rate_flags & sband->bitrates[i].flags) != rate_flags) continue; rates++; } if (rates > 8) rates = 8; if (skb_tailroom(skb) < rates + 2) return -ENOMEM; pos = skb_put(skb, rates + 2); *pos++ = WLAN_EID_SUPP_RATES; *pos++ = rates; for (i = 0; i < rates; i++) { u8 basic = 0; if ((rate_flags & sband->bitrates[i].flags) != rate_flags) continue; if (need_basic && basic_rates & BIT(i)) basic = 0x80; rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 5 * (1 << shift)); *pos++ = basic | (u8) rate; } return 0; } int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, bool need_basic, enum nl80211_band band) { struct ieee80211_local *local = sdata->local; struct ieee80211_supported_band *sband; int rate, shift; u8 i, exrates, *pos; u32 basic_rates = sdata->vif.bss_conf.basic_rates; u32 rate_flags; rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); shift = ieee80211_vif_get_shift(&sdata->vif); sband = local->hw.wiphy->bands[band]; exrates = 0; for (i = 0; i < sband->n_bitrates; i++) { if ((rate_flags & sband->bitrates[i].flags) != rate_flags) continue; exrates++; } if (exrates > 8) exrates -= 8; else exrates = 0; if (skb_tailroom(skb) < exrates + 2) return -ENOMEM; if (exrates) { pos = skb_put(skb, exrates + 2); *pos++ = WLAN_EID_EXT_SUPP_RATES; *pos++ = exrates; for (i = 8; i < sband->n_bitrates; i++) { u8 basic = 0; if ((rate_flags & sband->bitrates[i].flags) != rate_flags) continue; if (need_basic && basic_rates & BIT(i)) basic = 0x80; rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 5 * (1 << shift)); *pos++ = basic | (u8) rate; } } return 0; } int ieee80211_ave_rssi(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) { /* non-managed type inferfaces */ return 0; } return -ewma_beacon_signal_read(&ifmgd->ave_beacon_signal); } EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) { if (!mcs) return 1; /* TODO: consider rx_highest */ if (mcs->rx_mask[3]) return 4; if (mcs->rx_mask[2]) return 3; if (mcs->rx_mask[1]) return 2; return 1; } /** * ieee80211_calculate_rx_timestamp - calculate timestamp in frame * @local: mac80211 hw info struct * @status: RX status * @mpdu_len: total MPDU length (including FCS) * @mpdu_offset: offset into MPDU to calculate timestamp at * * This function calculates the RX timestamp at the given MPDU offset, taking * into account what the RX timestamp was. An offset of 0 will just normalize * the timestamp to TSF at beginning of MPDU reception. */ u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, struct ieee80211_rx_status *status, unsigned int mpdu_len, unsigned int mpdu_offset) { u64 ts = status->mactime; struct rate_info ri; u16 rate; if (WARN_ON(!ieee80211_have_rx_timestamp(status))) return 0; memset(&ri, 0, sizeof(ri)); ri.bw = status->bw; /* Fill cfg80211 rate info */ switch (status->encoding) { case RX_ENC_HT: ri.mcs = status->rate_idx; ri.flags |= RATE_INFO_FLAGS_MCS; if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) ri.flags |= RATE_INFO_FLAGS_SHORT_GI; break; case RX_ENC_VHT: ri.flags |= RATE_INFO_FLAGS_VHT_MCS; ri.mcs = status->rate_idx; ri.nss = status->nss; if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) ri.flags |= RATE_INFO_FLAGS_SHORT_GI; break; default: WARN_ON(1); /* fall through */ case RX_ENC_LEGACY: { struct ieee80211_supported_band *sband; int shift = 0; int bitrate; switch (status->bw) { case RATE_INFO_BW_10: shift = 1; break; case RATE_INFO_BW_5: shift = 2; break; } sband = local->hw.wiphy->bands[status->band]; bitrate = sband->bitrates[status->rate_idx].bitrate; ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); if (status->flag & RX_FLAG_MACTIME_PLCP_START) { /* TODO: handle HT/VHT preambles */ if (status->band == NL80211_BAND_5GHZ) { ts += 20 << shift; mpdu_offset += 2; } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { ts += 96; } else { ts += 192; } } break; } } rate = cfg80211_calculate_bitrate(&ri); if (WARN_ONCE(!rate, "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", (unsigned long long)status->flag, status->rate_idx, status->nss)) return 0; /* rewind from end of MPDU */ if (status->flag & RX_FLAG_MACTIME_END) ts -= mpdu_len * 8 * 10 / rate; ts += mpdu_offset * 8 * 10 / rate; return ts; } void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata; struct cfg80211_chan_def chandef; /* for interface list, to avoid linking iflist_mtx and chanctx_mtx */ ASSERT_RTNL(); mutex_lock(&local->mtx); list_for_each_entry(sdata, &local->interfaces, list) { /* it might be waiting for the local->mtx, but then * by the time it gets it, sdata->wdev.cac_started * will no longer be true */ cancel_delayed_work(&sdata->dfs_cac_timer_work); if (sdata->wdev.cac_started) { chandef = sdata->vif.bss_conf.chandef; ieee80211_vif_release_channel(sdata); cfg80211_cac_event(sdata->dev, &chandef, NL80211_RADAR_CAC_ABORTED, GFP_KERNEL); } } mutex_unlock(&local->mtx); } void ieee80211_dfs_radar_detected_work(struct work_struct *work) { struct ieee80211_local *local = container_of(work, struct ieee80211_local, radar_detected_work); struct cfg80211_chan_def chandef = local->hw.conf.chandef; struct ieee80211_chanctx *ctx; int num_chanctx = 0; mutex_lock(&local->chanctx_mtx); list_for_each_entry(ctx, &local->chanctx_list, list) { if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) continue; num_chanctx++; chandef = ctx->conf.def; } mutex_unlock(&local->chanctx_mtx); rtnl_lock(); ieee80211_dfs_cac_cancel(local); rtnl_unlock(); if (num_chanctx > 1) /* XXX: multi-channel is not supported yet */ WARN_ON(1); else cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); } void ieee80211_radar_detected(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); trace_api_radar_detected(local); schedule_work(&local->radar_detected_work); } EXPORT_SYMBOL(ieee80211_radar_detected); u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) { u32 ret; int tmp; switch (c->width) { case NL80211_CHAN_WIDTH_20: c->width = NL80211_CHAN_WIDTH_20_NOHT; ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; break; case NL80211_CHAN_WIDTH_40: c->width = NL80211_CHAN_WIDTH_20; c->center_freq1 = c->chan->center_freq; ret = IEEE80211_STA_DISABLE_40MHZ | IEEE80211_STA_DISABLE_VHT; break; case NL80211_CHAN_WIDTH_80: tmp = (30 + c->chan->center_freq - c->center_freq1)/20; /* n_P40 */ tmp /= 2; /* freq_P40 */ c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; c->width = NL80211_CHAN_WIDTH_40; ret = IEEE80211_STA_DISABLE_VHT; break; case NL80211_CHAN_WIDTH_80P80: c->center_freq2 = 0; c->width = NL80211_CHAN_WIDTH_80; ret = IEEE80211_STA_DISABLE_80P80MHZ | IEEE80211_STA_DISABLE_160MHZ; break; case NL80211_CHAN_WIDTH_160: /* n_P20 */ tmp = (70 + c->chan->center_freq - c->center_freq1)/20; /* n_P80 */ tmp /= 4; c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; c->width = NL80211_CHAN_WIDTH_80; ret = IEEE80211_STA_DISABLE_80P80MHZ | IEEE80211_STA_DISABLE_160MHZ; break; default: case NL80211_CHAN_WIDTH_20_NOHT: WARN_ON_ONCE(1); c->width = NL80211_CHAN_WIDTH_20_NOHT; ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; break; case NL80211_CHAN_WIDTH_1: case NL80211_CHAN_WIDTH_2: case NL80211_CHAN_WIDTH_4: case NL80211_CHAN_WIDTH_8: case NL80211_CHAN_WIDTH_16: case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: WARN_ON_ONCE(1); /* keep c->width */ ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; break; } WARN_ON_ONCE(!cfg80211_chandef_valid(c)); return ret; } /* * Returns true if smps_mode_new is strictly more restrictive than * smps_mode_old. */ bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, enum ieee80211_smps_mode smps_mode_new) { if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) return false; switch (smps_mode_old) { case IEEE80211_SMPS_STATIC: return false; case IEEE80211_SMPS_DYNAMIC: return smps_mode_new == IEEE80211_SMPS_STATIC; case IEEE80211_SMPS_OFF: return smps_mode_new != IEEE80211_SMPS_OFF; default: WARN_ON(1); } return false; } int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, struct cfg80211_csa_settings *csa_settings) { struct sk_buff *skb; struct ieee80211_mgmt *mgmt; struct ieee80211_local *local = sdata->local; int freq; int hdr_len = offsetofend(struct ieee80211_mgmt, u.action.u.chan_switch); u8 *pos; if (sdata->vif.type != NL80211_IFTYPE_ADHOC && sdata->vif.type != NL80211_IFTYPE_MESH_POINT) return -EOPNOTSUPP; skb = dev_alloc_skb(local->tx_headroom + hdr_len + 5 + /* channel switch announcement element */ 3 + /* secondary channel offset element */ 5 + /* wide bandwidth channel switch announcement */ 8); /* mesh channel switch parameters element */ if (!skb) return -ENOMEM; skb_reserve(skb, local->tx_headroom); mgmt = skb_put_zero(skb, hdr_len); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); eth_broadcast_addr(mgmt->da); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); if (ieee80211_vif_is_mesh(&sdata->vif)) { memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); } else { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); } mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; pos = skb_put(skb, 5); *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ *pos++ = 3; /* IE length */ *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ freq = csa_settings->chandef.chan->center_freq; *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ *pos++ = csa_settings->count; /* count */ if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { enum nl80211_channel_type ch_type; skb_put(skb, 3); *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ *pos++ = 1; /* IE length */ ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); if (ch_type == NL80211_CHAN_HT40PLUS) *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; else *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; } if (ieee80211_vif_is_mesh(&sdata->vif)) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; skb_put(skb, 8); *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ *pos++ = 6; /* IE length */ *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; *pos++ |= csa_settings->block_tx ? WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ pos += 2; put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ pos += 2; } if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { skb_put(skb, 5); ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); } ieee80211_tx_skb(sdata, skb); return 0; } bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs) { return !(cs == NULL || cs->cipher == 0 || cs->hdr_len < cs->pn_len + cs->pn_off || cs->hdr_len <= cs->key_idx_off || cs->key_idx_shift > 7 || cs->key_idx_mask == 0); } bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n) { int i; /* Ensure we have enough iftype bitmap space for all iftype values */ WARN_ON((NUM_NL80211_IFTYPES / 8 + 1) > sizeof(cs[0].iftype)); for (i = 0; i < n; i++) if (!ieee80211_cs_valid(&cs[i])) return false; return true; } const struct ieee80211_cipher_scheme * ieee80211_cs_get(struct ieee80211_local *local, u32 cipher, enum nl80211_iftype iftype) { const struct ieee80211_cipher_scheme *l = local->hw.cipher_schemes; int n = local->hw.n_cipher_schemes; int i; const struct ieee80211_cipher_scheme *cs = NULL; for (i = 0; i < n; i++) { if (l[i].cipher == cipher) { cs = &l[i]; break; } } if (!cs || !(cs->iftype & BIT(iftype))) return NULL; return cs; } int ieee80211_cs_headroom(struct ieee80211_local *local, struct cfg80211_crypto_settings *crypto, enum nl80211_iftype iftype) { const struct ieee80211_cipher_scheme *cs; int headroom = IEEE80211_ENCRYPT_HEADROOM; int i; for (i = 0; i < crypto->n_ciphers_pairwise; i++) { cs = ieee80211_cs_get(local, crypto->ciphers_pairwise[i], iftype); if (cs && headroom < cs->hdr_len) headroom = cs->hdr_len; } cs = ieee80211_cs_get(local, crypto->cipher_group, iftype); if (cs && headroom < cs->hdr_len) headroom = cs->hdr_len; return headroom; } static bool ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) { s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); int skip; if (end > 0) return false; /* One shot NOA */ if (data->count[i] == 1) return false; if (data->desc[i].interval == 0) return false; /* End time is in the past, check for repetitions */ skip = DIV_ROUND_UP(-end, data->desc[i].interval); if (data->count[i] < 255) { if (data->count[i] <= skip) { data->count[i] = 0; return false; } data->count[i] -= skip; } data->desc[i].start += skip * data->desc[i].interval; return true; } static bool ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, s32 *offset) { bool ret = false; int i; for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { s32 cur; if (!data->count[i]) continue; if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) ret = true; cur = data->desc[i].start - tsf; if (cur > *offset) continue; cur = data->desc[i].start + data->desc[i].duration - tsf; if (cur > *offset) *offset = cur; } return ret; } static u32 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) { s32 offset = 0; int tries = 0; /* * arbitrary limit, used to avoid infinite loops when combined NoA * descriptors cover the full time period. */ int max_tries = 5; ieee80211_extend_absent_time(data, tsf, &offset); do { if (!ieee80211_extend_absent_time(data, tsf, &offset)) break; tries++; } while (tries < max_tries); return offset; } void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) { u32 next_offset = BIT(31) - 1; int i; data->absent = 0; data->has_next_tsf = false; for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { s32 start; if (!data->count[i]) continue; ieee80211_extend_noa_desc(data, tsf, i); start = data->desc[i].start - tsf; if (start <= 0) data->absent |= BIT(i); if (next_offset > start) next_offset = start; data->has_next_tsf = true; } if (data->absent) next_offset = ieee80211_get_noa_absent_time(data, tsf); data->next_tsf = tsf + next_offset; } EXPORT_SYMBOL(ieee80211_update_p2p_noa); int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, struct ieee80211_noa_data *data, u32 tsf) { int ret = 0; int i; memset(data, 0, sizeof(*data)); for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; if (!desc->count || !desc->duration) continue; data->count[i] = desc->count; data->desc[i].start = le32_to_cpu(desc->start_time); data->desc[i].duration = le32_to_cpu(desc->duration); data->desc[i].interval = le32_to_cpu(desc->interval); if (data->count[i] > 1 && data->desc[i].interval < data->desc[i].duration) continue; ieee80211_extend_noa_desc(data, tsf, i); ret++; } if (ret) ieee80211_update_p2p_noa(data, tsf); return ret; } EXPORT_SYMBOL(ieee80211_parse_p2p_noa); void ieee80211_recalc_dtim(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { u64 tsf = drv_get_tsf(local, sdata); u64 dtim_count = 0; u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; u8 dtim_period = sdata->vif.bss_conf.dtim_period; struct ps_data *ps; u8 bcns_from_dtim; if (tsf == -1ULL || !beacon_int || !dtim_period) return; if (sdata->vif.type == NL80211_IFTYPE_AP || sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { if (!sdata->bss) return; ps = &sdata->bss->ps; } else if (ieee80211_vif_is_mesh(&sdata->vif)) { ps = &sdata->u.mesh.ps; } else { return; } /* * actually finds last dtim_count, mac80211 will update in * __beacon_add_tim(). * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period */ do_div(tsf, beacon_int); bcns_from_dtim = do_div(tsf, dtim_period); /* just had a DTIM */ if (!bcns_from_dtim) dtim_count = 0; else dtim_count = dtim_period - bcns_from_dtim; ps->dtim_count = dtim_count; } static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, struct ieee80211_chanctx *ctx) { struct ieee80211_sub_if_data *sdata; u8 radar_detect = 0; lockdep_assert_held(&local->chanctx_mtx); if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) return 0; list_for_each_entry(sdata, &ctx->reserved_vifs, reserved_chanctx_list) if (sdata->reserved_radar_required) radar_detect |= BIT(sdata->reserved_chandef.width); /* * An in-place reservation context should not have any assigned vifs * until it replaces the other context. */ WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && !list_empty(&ctx->assigned_vifs)); list_for_each_entry(sdata, &ctx->assigned_vifs, assigned_chanctx_list) if (sdata->radar_required) radar_detect |= BIT(sdata->vif.bss_conf.chandef.width); return radar_detect; } int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, const struct cfg80211_chan_def *chandef, enum ieee80211_chanctx_mode chanmode, u8 radar_detect) { struct ieee80211_local *local = sdata->local; struct ieee80211_sub_if_data *sdata_iter; enum nl80211_iftype iftype = sdata->wdev.iftype; struct ieee80211_chanctx *ctx; int total = 1; struct iface_combination_params params = { .radar_detect = radar_detect, }; lockdep_assert_held(&local->chanctx_mtx); if (WARN_ON(hweight32(radar_detect) > 1)) return -EINVAL; if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && !chandef->chan)) return -EINVAL; if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) return -EINVAL; if (sdata->vif.type == NL80211_IFTYPE_AP || sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { /* * always passing this is harmless, since it'll be the * same value that cfg80211 finds if it finds the same * interface ... and that's always allowed */ params.new_beacon_int = sdata->vif.bss_conf.beacon_int; } /* Always allow software iftypes */ if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { if (radar_detect) return -EINVAL; return 0; } if (chandef) params.num_different_channels = 1; if (iftype != NL80211_IFTYPE_UNSPECIFIED) params.iftype_num[iftype] = 1; list_for_each_entry(ctx, &local->chanctx_list, list) { if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) continue; params.radar_detect |= ieee80211_chanctx_radar_detect(local, ctx); if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { params.num_different_channels++; continue; } if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && cfg80211_chandef_compatible(chandef, &ctx->conf.def)) continue; params.num_different_channels++; } list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { struct wireless_dev *wdev_iter; wdev_iter = &sdata_iter->wdev; if (sdata_iter == sdata || !ieee80211_sdata_running(sdata_iter) || cfg80211_iftype_allowed(local->hw.wiphy, wdev_iter->iftype, 0, 1)) continue; params.iftype_num[wdev_iter->iftype]++; total++; } if (total == 1 && !params.radar_detect) return 0; return cfg80211_check_combinations(local->hw.wiphy, ¶ms); } static void ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, void *data) { u32 *max_num_different_channels = data; *max_num_different_channels = max(*max_num_different_channels, c->num_different_channels); } int ieee80211_max_num_channels(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata; struct ieee80211_chanctx *ctx; u32 max_num_different_channels = 1; int err; struct iface_combination_params params = {0}; lockdep_assert_held(&local->chanctx_mtx); list_for_each_entry(ctx, &local->chanctx_list, list) { if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) continue; params.num_different_channels++; params.radar_detect |= ieee80211_chanctx_radar_detect(local, ctx); } list_for_each_entry_rcu(sdata, &local->interfaces, list) params.iftype_num[sdata->wdev.iftype]++; err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, ieee80211_iter_max_chans, &max_num_different_channels); if (err < 0) return err; return max_num_different_channels; } u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) { *buf++ = WLAN_EID_VENDOR_SPECIFIC; *buf++ = 7; /* len */ *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ *buf++ = 0x50; *buf++ = 0xf2; *buf++ = 2; /* WME */ *buf++ = 0; /* WME info */ *buf++ = 1; /* WME ver */ *buf++ = qosinfo; /* U-APSD no in use */ return buf; } void ieee80211_txq_get_depth(struct ieee80211_txq *txq, unsigned long *frame_cnt, unsigned long *byte_cnt) { struct txq_info *txqi = to_txq_info(txq); u32 frag_cnt = 0, frag_bytes = 0; struct sk_buff *skb; skb_queue_walk(&txqi->frags, skb) { frag_cnt++; frag_bytes += skb->len; } if (frame_cnt) *frame_cnt = txqi->tin.backlog_packets + frag_cnt; if (byte_cnt) *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; } EXPORT_SYMBOL(ieee80211_txq_get_depth); const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, IEEE80211_WMM_IE_STA_QOSINFO_AC_BK };