/* * linux/drivers/video/omap2/dss/dsi.c * * Copyright (C) 2009 Nokia Corporation * Author: Tomi Valkeinen * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #define DSS_SUBSYS_NAME "DSI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dss.h" /*#define VERBOSE_IRQ*/ #define DSI_CATCH_MISSING_TE #define DSI_BASE 0x4804FC00 struct dsi_reg { u16 idx; }; #define DSI_REG(idx) ((const struct dsi_reg) { idx }) #define DSI_SZ_REGS SZ_1K /* DSI Protocol Engine */ #define DSI_REVISION DSI_REG(0x0000) #define DSI_SYSCONFIG DSI_REG(0x0010) #define DSI_SYSSTATUS DSI_REG(0x0014) #define DSI_IRQSTATUS DSI_REG(0x0018) #define DSI_IRQENABLE DSI_REG(0x001C) #define DSI_CTRL DSI_REG(0x0040) #define DSI_COMPLEXIO_CFG1 DSI_REG(0x0048) #define DSI_COMPLEXIO_IRQ_STATUS DSI_REG(0x004C) #define DSI_COMPLEXIO_IRQ_ENABLE DSI_REG(0x0050) #define DSI_CLK_CTRL DSI_REG(0x0054) #define DSI_TIMING1 DSI_REG(0x0058) #define DSI_TIMING2 DSI_REG(0x005C) #define DSI_VM_TIMING1 DSI_REG(0x0060) #define DSI_VM_TIMING2 DSI_REG(0x0064) #define DSI_VM_TIMING3 DSI_REG(0x0068) #define DSI_CLK_TIMING DSI_REG(0x006C) #define DSI_TX_FIFO_VC_SIZE DSI_REG(0x0070) #define DSI_RX_FIFO_VC_SIZE DSI_REG(0x0074) #define DSI_COMPLEXIO_CFG2 DSI_REG(0x0078) #define DSI_RX_FIFO_VC_FULLNESS DSI_REG(0x007C) #define DSI_VM_TIMING4 DSI_REG(0x0080) #define DSI_TX_FIFO_VC_EMPTINESS DSI_REG(0x0084) #define DSI_VM_TIMING5 DSI_REG(0x0088) #define DSI_VM_TIMING6 DSI_REG(0x008C) #define DSI_VM_TIMING7 DSI_REG(0x0090) #define DSI_STOPCLK_TIMING DSI_REG(0x0094) #define DSI_VC_CTRL(n) DSI_REG(0x0100 + (n * 0x20)) #define DSI_VC_TE(n) DSI_REG(0x0104 + (n * 0x20)) #define DSI_VC_LONG_PACKET_HEADER(n) DSI_REG(0x0108 + (n * 0x20)) #define DSI_VC_LONG_PACKET_PAYLOAD(n) DSI_REG(0x010C + (n * 0x20)) #define DSI_VC_SHORT_PACKET_HEADER(n) DSI_REG(0x0110 + (n * 0x20)) #define DSI_VC_IRQSTATUS(n) DSI_REG(0x0118 + (n * 0x20)) #define DSI_VC_IRQENABLE(n) DSI_REG(0x011C + (n * 0x20)) /* DSIPHY_SCP */ #define DSI_DSIPHY_CFG0 DSI_REG(0x200 + 0x0000) #define DSI_DSIPHY_CFG1 DSI_REG(0x200 + 0x0004) #define DSI_DSIPHY_CFG2 DSI_REG(0x200 + 0x0008) #define DSI_DSIPHY_CFG5 DSI_REG(0x200 + 0x0014) /* DSI_PLL_CTRL_SCP */ #define DSI_PLL_CONTROL DSI_REG(0x300 + 0x0000) #define DSI_PLL_STATUS DSI_REG(0x300 + 0x0004) #define DSI_PLL_GO DSI_REG(0x300 + 0x0008) #define DSI_PLL_CONFIGURATION1 DSI_REG(0x300 + 0x000C) #define DSI_PLL_CONFIGURATION2 DSI_REG(0x300 + 0x0010) #define REG_GET(idx, start, end) \ FLD_GET(dsi_read_reg(idx), start, end) #define REG_FLD_MOD(idx, val, start, end) \ dsi_write_reg(idx, FLD_MOD(dsi_read_reg(idx), val, start, end)) /* Global interrupts */ #define DSI_IRQ_VC0 (1 << 0) #define DSI_IRQ_VC1 (1 << 1) #define DSI_IRQ_VC2 (1 << 2) #define DSI_IRQ_VC3 (1 << 3) #define DSI_IRQ_WAKEUP (1 << 4) #define DSI_IRQ_RESYNC (1 << 5) #define DSI_IRQ_PLL_LOCK (1 << 7) #define DSI_IRQ_PLL_UNLOCK (1 << 8) #define DSI_IRQ_PLL_RECALL (1 << 9) #define DSI_IRQ_COMPLEXIO_ERR (1 << 10) #define DSI_IRQ_HS_TX_TIMEOUT (1 << 14) #define DSI_IRQ_LP_RX_TIMEOUT (1 << 15) #define DSI_IRQ_TE_TRIGGER (1 << 16) #define DSI_IRQ_ACK_TRIGGER (1 << 17) #define DSI_IRQ_SYNC_LOST (1 << 18) #define DSI_IRQ_LDO_POWER_GOOD (1 << 19) #define DSI_IRQ_TA_TIMEOUT (1 << 20) #define DSI_IRQ_ERROR_MASK \ (DSI_IRQ_HS_TX_TIMEOUT | DSI_IRQ_LP_RX_TIMEOUT | DSI_IRQ_SYNC_LOST | \ DSI_IRQ_TA_TIMEOUT) #define DSI_IRQ_CHANNEL_MASK 0xf /* Virtual channel interrupts */ #define DSI_VC_IRQ_CS (1 << 0) #define DSI_VC_IRQ_ECC_CORR (1 << 1) #define DSI_VC_IRQ_PACKET_SENT (1 << 2) #define DSI_VC_IRQ_FIFO_TX_OVF (1 << 3) #define DSI_VC_IRQ_FIFO_RX_OVF (1 << 4) #define DSI_VC_IRQ_BTA (1 << 5) #define DSI_VC_IRQ_ECC_NO_CORR (1 << 6) #define DSI_VC_IRQ_FIFO_TX_UDF (1 << 7) #define DSI_VC_IRQ_PP_BUSY_CHANGE (1 << 8) #define DSI_VC_IRQ_ERROR_MASK \ (DSI_VC_IRQ_CS | DSI_VC_IRQ_ECC_CORR | DSI_VC_IRQ_FIFO_TX_OVF | \ DSI_VC_IRQ_FIFO_RX_OVF | DSI_VC_IRQ_ECC_NO_CORR | \ DSI_VC_IRQ_FIFO_TX_UDF) /* ComplexIO interrupts */ #define DSI_CIO_IRQ_ERRSYNCESC1 (1 << 0) #define DSI_CIO_IRQ_ERRSYNCESC2 (1 << 1) #define DSI_CIO_IRQ_ERRSYNCESC3 (1 << 2) #define DSI_CIO_IRQ_ERRESC1 (1 << 5) #define DSI_CIO_IRQ_ERRESC2 (1 << 6) #define DSI_CIO_IRQ_ERRESC3 (1 << 7) #define DSI_CIO_IRQ_ERRCONTROL1 (1 << 10) #define DSI_CIO_IRQ_ERRCONTROL2 (1 << 11) #define DSI_CIO_IRQ_ERRCONTROL3 (1 << 12) #define DSI_CIO_IRQ_STATEULPS1 (1 << 15) #define DSI_CIO_IRQ_STATEULPS2 (1 << 16) #define DSI_CIO_IRQ_STATEULPS3 (1 << 17) #define DSI_CIO_IRQ_ERRCONTENTIONLP0_1 (1 << 20) #define DSI_CIO_IRQ_ERRCONTENTIONLP1_1 (1 << 21) #define DSI_CIO_IRQ_ERRCONTENTIONLP0_2 (1 << 22) #define DSI_CIO_IRQ_ERRCONTENTIONLP1_2 (1 << 23) #define DSI_CIO_IRQ_ERRCONTENTIONLP0_3 (1 << 24) #define DSI_CIO_IRQ_ERRCONTENTIONLP1_3 (1 << 25) #define DSI_CIO_IRQ_ULPSACTIVENOT_ALL0 (1 << 30) #define DSI_CIO_IRQ_ULPSACTIVENOT_ALL1 (1 << 31) #define DSI_DT_DCS_SHORT_WRITE_0 0x05 #define DSI_DT_DCS_SHORT_WRITE_1 0x15 #define DSI_DT_DCS_READ 0x06 #define DSI_DT_SET_MAX_RET_PKG_SIZE 0x37 #define DSI_DT_NULL_PACKET 0x09 #define DSI_DT_DCS_LONG_WRITE 0x39 #define DSI_DT_RX_ACK_WITH_ERR 0x02 #define DSI_DT_RX_DCS_LONG_READ 0x1c #define DSI_DT_RX_SHORT_READ_1 0x21 #define DSI_DT_RX_SHORT_READ_2 0x22 #define FINT_MAX 2100000 #define FINT_MIN 750000 #define REGN_MAX (1 << 7) #define REGM_MAX ((1 << 11) - 1) #define REGM3_MAX (1 << 4) #define REGM4_MAX (1 << 4) #define LP_DIV_MAX ((1 << 13) - 1) enum fifo_size { DSI_FIFO_SIZE_0 = 0, DSI_FIFO_SIZE_32 = 1, DSI_FIFO_SIZE_64 = 2, DSI_FIFO_SIZE_96 = 3, DSI_FIFO_SIZE_128 = 4, }; enum dsi_vc_mode { DSI_VC_MODE_L4 = 0, DSI_VC_MODE_VP, }; struct dsi_update_region { u16 x, y, w, h; struct omap_dss_device *device; }; struct dsi_irq_stats { unsigned long last_reset; unsigned irq_count; unsigned dsi_irqs[32]; unsigned vc_irqs[4][32]; unsigned cio_irqs[32]; }; static struct { void __iomem *base; struct dsi_clock_info current_cinfo; struct regulator *vdds_dsi_reg; struct { enum dsi_vc_mode mode; struct omap_dss_device *dssdev; enum fifo_size fifo_size; } vc[4]; struct mutex lock; struct semaphore bus_lock; unsigned pll_locked; struct completion bta_completion; int update_channel; struct dsi_update_region update_region; bool te_enabled; struct workqueue_struct *workqueue; struct work_struct framedone_work; void (*framedone_callback)(int, void *); void *framedone_data; struct delayed_work framedone_timeout_work; #ifdef DSI_CATCH_MISSING_TE struct timer_list te_timer; #endif unsigned long cache_req_pck; unsigned long cache_clk_freq; struct dsi_clock_info cache_cinfo; u32 errors; spinlock_t errors_lock; #ifdef DEBUG ktime_t perf_setup_time; ktime_t perf_start_time; #endif int debug_read; int debug_write; #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS spinlock_t irq_stats_lock; struct dsi_irq_stats irq_stats; #endif } dsi; #ifdef DEBUG static unsigned int dsi_perf; module_param_named(dsi_perf, dsi_perf, bool, 0644); #endif static inline void dsi_write_reg(const struct dsi_reg idx, u32 val) { __raw_writel(val, dsi.base + idx.idx); } static inline u32 dsi_read_reg(const struct dsi_reg idx) { return __raw_readl(dsi.base + idx.idx); } void dsi_save_context(void) { } void dsi_restore_context(void) { } void dsi_bus_lock(void) { down(&dsi.bus_lock); } EXPORT_SYMBOL(dsi_bus_lock); void dsi_bus_unlock(void) { up(&dsi.bus_lock); } EXPORT_SYMBOL(dsi_bus_unlock); static bool dsi_bus_is_locked(void) { return dsi.bus_lock.count == 0; } static inline int wait_for_bit_change(const struct dsi_reg idx, int bitnum, int value) { int t = 100000; while (REG_GET(idx, bitnum, bitnum) != value) { if (--t == 0) return !value; } return value; } #ifdef DEBUG static void dsi_perf_mark_setup(void) { dsi.perf_setup_time = ktime_get(); } static void dsi_perf_mark_start(void) { dsi.perf_start_time = ktime_get(); } static void dsi_perf_show(const char *name) { ktime_t t, setup_time, trans_time; u32 total_bytes; u32 setup_us, trans_us, total_us; if (!dsi_perf) return; t = ktime_get(); setup_time = ktime_sub(dsi.perf_start_time, dsi.perf_setup_time); setup_us = (u32)ktime_to_us(setup_time); if (setup_us == 0) setup_us = 1; trans_time = ktime_sub(t, dsi.perf_start_time); trans_us = (u32)ktime_to_us(trans_time); if (trans_us == 0) trans_us = 1; total_us = setup_us + trans_us; total_bytes = dsi.update_region.w * dsi.update_region.h * dsi.update_region.device->ctrl.pixel_size / 8; printk(KERN_INFO "DSI(%s): %u us + %u us = %u us (%uHz), " "%u bytes, %u kbytes/sec\n", name, setup_us, trans_us, total_us, 1000*1000 / total_us, total_bytes, total_bytes * 1000 / total_us); } #else #define dsi_perf_mark_setup() #define dsi_perf_mark_start() #define dsi_perf_show(x) #endif static void print_irq_status(u32 status) { #ifndef VERBOSE_IRQ if ((status & ~DSI_IRQ_CHANNEL_MASK) == 0) return; #endif printk(KERN_DEBUG "DSI IRQ: 0x%x: ", status); #define PIS(x) \ if (status & DSI_IRQ_##x) \ printk(#x " "); #ifdef VERBOSE_IRQ PIS(VC0); PIS(VC1); PIS(VC2); PIS(VC3); #endif PIS(WAKEUP); PIS(RESYNC); PIS(PLL_LOCK); PIS(PLL_UNLOCK); PIS(PLL_RECALL); PIS(COMPLEXIO_ERR); PIS(HS_TX_TIMEOUT); PIS(LP_RX_TIMEOUT); PIS(TE_TRIGGER); PIS(ACK_TRIGGER); PIS(SYNC_LOST); PIS(LDO_POWER_GOOD); PIS(TA_TIMEOUT); #undef PIS printk("\n"); } static void print_irq_status_vc(int channel, u32 status) { #ifndef VERBOSE_IRQ if ((status & ~DSI_VC_IRQ_PACKET_SENT) == 0) return; #endif printk(KERN_DEBUG "DSI VC(%d) IRQ 0x%x: ", channel, status); #define PIS(x) \ if (status & DSI_VC_IRQ_##x) \ printk(#x " "); PIS(CS); PIS(ECC_CORR); #ifdef VERBOSE_IRQ PIS(PACKET_SENT); #endif PIS(FIFO_TX_OVF); PIS(FIFO_RX_OVF); PIS(BTA); PIS(ECC_NO_CORR); PIS(FIFO_TX_UDF); PIS(PP_BUSY_CHANGE); #undef PIS printk("\n"); } static void print_irq_status_cio(u32 status) { printk(KERN_DEBUG "DSI CIO IRQ 0x%x: ", status); #define PIS(x) \ if (status & DSI_CIO_IRQ_##x) \ printk(#x " "); PIS(ERRSYNCESC1); PIS(ERRSYNCESC2); PIS(ERRSYNCESC3); PIS(ERRESC1); PIS(ERRESC2); PIS(ERRESC3); PIS(ERRCONTROL1); PIS(ERRCONTROL2); PIS(ERRCONTROL3); PIS(STATEULPS1); PIS(STATEULPS2); PIS(STATEULPS3); PIS(ERRCONTENTIONLP0_1); PIS(ERRCONTENTIONLP1_1); PIS(ERRCONTENTIONLP0_2); PIS(ERRCONTENTIONLP1_2); PIS(ERRCONTENTIONLP0_3); PIS(ERRCONTENTIONLP1_3); PIS(ULPSACTIVENOT_ALL0); PIS(ULPSACTIVENOT_ALL1); #undef PIS printk("\n"); } static int debug_irq; /* called from dss */ void dsi_irq_handler(void) { u32 irqstatus, vcstatus, ciostatus; int i; irqstatus = dsi_read_reg(DSI_IRQSTATUS); #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS spin_lock(&dsi.irq_stats_lock); dsi.irq_stats.irq_count++; dss_collect_irq_stats(irqstatus, dsi.irq_stats.dsi_irqs); #endif if (irqstatus & DSI_IRQ_ERROR_MASK) { DSSERR("DSI error, irqstatus %x\n", irqstatus); print_irq_status(irqstatus); spin_lock(&dsi.errors_lock); dsi.errors |= irqstatus & DSI_IRQ_ERROR_MASK; spin_unlock(&dsi.errors_lock); } else if (debug_irq) { print_irq_status(irqstatus); } #ifdef DSI_CATCH_MISSING_TE if (irqstatus & DSI_IRQ_TE_TRIGGER) del_timer(&dsi.te_timer); #endif for (i = 0; i < 4; ++i) { if ((irqstatus & (1<phy.dsi.div.lp_clk_div; if (lp_clk_div == 0 || lp_clk_div > LP_DIV_MAX) return -EINVAL; dsi_fclk = dsi_fclk_rate(); lp_clk = dsi_fclk / 2 / lp_clk_div; DSSDBG("LP_CLK_DIV %u, LP_CLK %lu\n", lp_clk_div, lp_clk); dsi.current_cinfo.lp_clk = lp_clk; dsi.current_cinfo.lp_clk_div = lp_clk_div; REG_FLD_MOD(DSI_CLK_CTRL, lp_clk_div, 12, 0); /* LP_CLK_DIVISOR */ REG_FLD_MOD(DSI_CLK_CTRL, dsi_fclk > 30000000 ? 1 : 0, 21, 21); /* LP_RX_SYNCHRO_ENABLE */ return 0; } enum dsi_pll_power_state { DSI_PLL_POWER_OFF = 0x0, DSI_PLL_POWER_ON_HSCLK = 0x1, DSI_PLL_POWER_ON_ALL = 0x2, DSI_PLL_POWER_ON_DIV = 0x3, }; static int dsi_pll_power(enum dsi_pll_power_state state) { int t = 0; REG_FLD_MOD(DSI_CLK_CTRL, state, 31, 30); /* PLL_PWR_CMD */ /* PLL_PWR_STATUS */ while (FLD_GET(dsi_read_reg(DSI_CLK_CTRL), 29, 28) != state) { if (++t > 1000) { DSSERR("Failed to set DSI PLL power mode to %d\n", state); return -ENODEV; } udelay(1); } return 0; } /* calculate clock rates using dividers in cinfo */ static int dsi_calc_clock_rates(struct dsi_clock_info *cinfo) { if (cinfo->regn == 0 || cinfo->regn > REGN_MAX) return -EINVAL; if (cinfo->regm == 0 || cinfo->regm > REGM_MAX) return -EINVAL; if (cinfo->regm3 > REGM3_MAX) return -EINVAL; if (cinfo->regm4 > REGM4_MAX) return -EINVAL; if (cinfo->use_dss2_fck) { cinfo->clkin = dss_clk_get_rate(DSS_CLK_FCK2); /* XXX it is unclear if highfreq should be used * with DSS2_FCK source also */ cinfo->highfreq = 0; } else { cinfo->clkin = dispc_pclk_rate(); if (cinfo->clkin < 32000000) cinfo->highfreq = 0; else cinfo->highfreq = 1; } cinfo->fint = cinfo->clkin / (cinfo->regn * (cinfo->highfreq ? 2 : 1)); if (cinfo->fint > FINT_MAX || cinfo->fint < FINT_MIN) return -EINVAL; cinfo->clkin4ddr = 2 * cinfo->regm * cinfo->fint; if (cinfo->clkin4ddr > 1800 * 1000 * 1000) return -EINVAL; if (cinfo->regm3 > 0) cinfo->dsi1_pll_fclk = cinfo->clkin4ddr / cinfo->regm3; else cinfo->dsi1_pll_fclk = 0; if (cinfo->regm4 > 0) cinfo->dsi2_pll_fclk = cinfo->clkin4ddr / cinfo->regm4; else cinfo->dsi2_pll_fclk = 0; return 0; } int dsi_pll_calc_clock_div_pck(bool is_tft, unsigned long req_pck, struct dsi_clock_info *dsi_cinfo, struct dispc_clock_info *dispc_cinfo) { struct dsi_clock_info cur, best; struct dispc_clock_info best_dispc; int min_fck_per_pck; int match = 0; unsigned long dss_clk_fck2; dss_clk_fck2 = dss_clk_get_rate(DSS_CLK_FCK2); if (req_pck == dsi.cache_req_pck && dsi.cache_cinfo.clkin == dss_clk_fck2) { DSSDBG("DSI clock info found from cache\n"); *dsi_cinfo = dsi.cache_cinfo; dispc_find_clk_divs(is_tft, req_pck, dsi_cinfo->dsi1_pll_fclk, dispc_cinfo); return 0; } min_fck_per_pck = CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK; if (min_fck_per_pck && req_pck * min_fck_per_pck > DISPC_MAX_FCK) { DSSERR("Requested pixel clock not possible with the current " "OMAP2_DSS_MIN_FCK_PER_PCK setting. Turning " "the constraint off.\n"); min_fck_per_pck = 0; } DSSDBG("dsi_pll_calc\n"); retry: memset(&best, 0, sizeof(best)); memset(&best_dispc, 0, sizeof(best_dispc)); memset(&cur, 0, sizeof(cur)); cur.clkin = dss_clk_fck2; cur.use_dss2_fck = 1; cur.highfreq = 0; /* no highfreq: 0.75MHz < Fint = clkin / regn < 2.1MHz */ /* highfreq: 0.75MHz < Fint = clkin / (2*regn) < 2.1MHz */ /* To reduce PLL lock time, keep Fint high (around 2 MHz) */ for (cur.regn = 1; cur.regn < REGN_MAX; ++cur.regn) { if (cur.highfreq == 0) cur.fint = cur.clkin / cur.regn; else cur.fint = cur.clkin / (2 * cur.regn); if (cur.fint > FINT_MAX || cur.fint < FINT_MIN) continue; /* DSIPHY(MHz) = (2 * regm / regn) * (clkin / (highfreq + 1)) */ for (cur.regm = 1; cur.regm < REGM_MAX; ++cur.regm) { unsigned long a, b; a = 2 * cur.regm * (cur.clkin/1000); b = cur.regn * (cur.highfreq + 1); cur.clkin4ddr = a / b * 1000; if (cur.clkin4ddr > 1800 * 1000 * 1000) break; /* DSI1_PLL_FCLK(MHz) = DSIPHY(MHz) / regm3 < 173MHz */ for (cur.regm3 = 1; cur.regm3 < REGM3_MAX; ++cur.regm3) { struct dispc_clock_info cur_dispc; cur.dsi1_pll_fclk = cur.clkin4ddr / cur.regm3; /* this will narrow down the search a bit, * but still give pixclocks below what was * requested */ if (cur.dsi1_pll_fclk < req_pck) break; if (cur.dsi1_pll_fclk > DISPC_MAX_FCK) continue; if (min_fck_per_pck && cur.dsi1_pll_fclk < req_pck * min_fck_per_pck) continue; match = 1; dispc_find_clk_divs(is_tft, req_pck, cur.dsi1_pll_fclk, &cur_dispc); if (abs(cur_dispc.pck - req_pck) < abs(best_dispc.pck - req_pck)) { best = cur; best_dispc = cur_dispc; if (cur_dispc.pck == req_pck) goto found; } } } } found: if (!match) { if (min_fck_per_pck) { DSSERR("Could not find suitable clock settings.\n" "Turning FCK/PCK constraint off and" "trying again.\n"); min_fck_per_pck = 0; goto retry; } DSSERR("Could not find suitable clock settings.\n"); return -EINVAL; } /* DSI2_PLL_FCLK (regm4) is not used */ best.regm4 = 0; best.dsi2_pll_fclk = 0; if (dsi_cinfo) *dsi_cinfo = best; if (dispc_cinfo) *dispc_cinfo = best_dispc; dsi.cache_req_pck = req_pck; dsi.cache_clk_freq = 0; dsi.cache_cinfo = best; return 0; } int dsi_pll_set_clock_div(struct dsi_clock_info *cinfo) { int r = 0; u32 l; int f; DSSDBGF(); dsi.current_cinfo.fint = cinfo->fint; dsi.current_cinfo.clkin4ddr = cinfo->clkin4ddr; dsi.current_cinfo.dsi1_pll_fclk = cinfo->dsi1_pll_fclk; dsi.current_cinfo.dsi2_pll_fclk = cinfo->dsi2_pll_fclk; dsi.current_cinfo.regn = cinfo->regn; dsi.current_cinfo.regm = cinfo->regm; dsi.current_cinfo.regm3 = cinfo->regm3; dsi.current_cinfo.regm4 = cinfo->regm4; DSSDBG("DSI Fint %ld\n", cinfo->fint); DSSDBG("clkin (%s) rate %ld, highfreq %d\n", cinfo->use_dss2_fck ? "dss2_fck" : "pclkfree", cinfo->clkin, cinfo->highfreq); /* DSIPHY == CLKIN4DDR */ DSSDBG("CLKIN4DDR = 2 * %d / %d * %lu / %d = %lu\n", cinfo->regm, cinfo->regn, cinfo->clkin, cinfo->highfreq + 1, cinfo->clkin4ddr); DSSDBG("Data rate on 1 DSI lane %ld Mbps\n", cinfo->clkin4ddr / 1000 / 1000 / 2); DSSDBG("Clock lane freq %ld Hz\n", cinfo->clkin4ddr / 4); DSSDBG("regm3 = %d, dsi1_pll_fclk = %lu\n", cinfo->regm3, cinfo->dsi1_pll_fclk); DSSDBG("regm4 = %d, dsi2_pll_fclk = %lu\n", cinfo->regm4, cinfo->dsi2_pll_fclk); REG_FLD_MOD(DSI_PLL_CONTROL, 0, 0, 0); /* DSI_PLL_AUTOMODE = manual */ l = dsi_read_reg(DSI_PLL_CONFIGURATION1); l = FLD_MOD(l, 1, 0, 0); /* DSI_PLL_STOPMODE */ l = FLD_MOD(l, cinfo->regn - 1, 7, 1); /* DSI_PLL_REGN */ l = FLD_MOD(l, cinfo->regm, 18, 8); /* DSI_PLL_REGM */ l = FLD_MOD(l, cinfo->regm3 > 0 ? cinfo->regm3 - 1 : 0, 22, 19); /* DSI_CLOCK_DIV */ l = FLD_MOD(l, cinfo->regm4 > 0 ? cinfo->regm4 - 1 : 0, 26, 23); /* DSIPROTO_CLOCK_DIV */ dsi_write_reg(DSI_PLL_CONFIGURATION1, l); BUG_ON(cinfo->fint < 750000 || cinfo->fint > 2100000); if (cinfo->fint < 1000000) f = 0x3; else if (cinfo->fint < 1250000) f = 0x4; else if (cinfo->fint < 1500000) f = 0x5; else if (cinfo->fint < 1750000) f = 0x6; else f = 0x7; l = dsi_read_reg(DSI_PLL_CONFIGURATION2); l = FLD_MOD(l, f, 4, 1); /* DSI_PLL_FREQSEL */ l = FLD_MOD(l, cinfo->use_dss2_fck ? 0 : 1, 11, 11); /* DSI_PLL_CLKSEL */ l = FLD_MOD(l, cinfo->highfreq, 12, 12); /* DSI_PLL_HIGHFREQ */ l = FLD_MOD(l, 1, 13, 13); /* DSI_PLL_REFEN */ l = FLD_MOD(l, 0, 14, 14); /* DSIPHY_CLKINEN */ l = FLD_MOD(l, 1, 20, 20); /* DSI_HSDIVBYPASS */ dsi_write_reg(DSI_PLL_CONFIGURATION2, l); REG_FLD_MOD(DSI_PLL_GO, 1, 0, 0); /* DSI_PLL_GO */ if (wait_for_bit_change(DSI_PLL_GO, 0, 0) != 0) { DSSERR("dsi pll go bit not going down.\n"); r = -EIO; goto err; } if (wait_for_bit_change(DSI_PLL_STATUS, 1, 1) != 1) { DSSERR("cannot lock PLL\n"); r = -EIO; goto err; } dsi.pll_locked = 1; l = dsi_read_reg(DSI_PLL_CONFIGURATION2); l = FLD_MOD(l, 0, 0, 0); /* DSI_PLL_IDLE */ l = FLD_MOD(l, 0, 5, 5); /* DSI_PLL_PLLLPMODE */ l = FLD_MOD(l, 0, 6, 6); /* DSI_PLL_LOWCURRSTBY */ l = FLD_MOD(l, 0, 7, 7); /* DSI_PLL_TIGHTPHASELOCK */ l = FLD_MOD(l, 0, 8, 8); /* DSI_PLL_DRIFTGUARDEN */ l = FLD_MOD(l, 0, 10, 9); /* DSI_PLL_LOCKSEL */ l = FLD_MOD(l, 1, 13, 13); /* DSI_PLL_REFEN */ l = FLD_MOD(l, 1, 14, 14); /* DSIPHY_CLKINEN */ l = FLD_MOD(l, 0, 15, 15); /* DSI_BYPASSEN */ l = FLD_MOD(l, 1, 16, 16); /* DSS_CLOCK_EN */ l = FLD_MOD(l, 0, 17, 17); /* DSS_CLOCK_PWDN */ l = FLD_MOD(l, 1, 18, 18); /* DSI_PROTO_CLOCK_EN */ l = FLD_MOD(l, 0, 19, 19); /* DSI_PROTO_CLOCK_PWDN */ l = FLD_MOD(l, 0, 20, 20); /* DSI_HSDIVBYPASS */ dsi_write_reg(DSI_PLL_CONFIGURATION2, l); DSSDBG("PLL config done\n"); err: return r; } int dsi_pll_init(struct omap_dss_device *dssdev, bool enable_hsclk, bool enable_hsdiv) { int r = 0; enum dsi_pll_power_state pwstate; DSSDBG("PLL init\n"); enable_clocks(1); dsi_enable_pll_clock(1); r = regulator_enable(dsi.vdds_dsi_reg); if (r) goto err0; /* XXX PLL does not come out of reset without this... */ dispc_pck_free_enable(1); if (wait_for_bit_change(DSI_PLL_STATUS, 0, 1) != 1) { DSSERR("PLL not coming out of reset.\n"); r = -ENODEV; goto err1; } /* XXX ... but if left on, we get problems when planes do not * fill the whole display. No idea about this */ dispc_pck_free_enable(0); if (enable_hsclk && enable_hsdiv) pwstate = DSI_PLL_POWER_ON_ALL; else if (enable_hsclk) pwstate = DSI_PLL_POWER_ON_HSCLK; else if (enable_hsdiv) pwstate = DSI_PLL_POWER_ON_DIV; else pwstate = DSI_PLL_POWER_OFF; r = dsi_pll_power(pwstate); if (r) goto err1; DSSDBG("PLL init done\n"); return 0; err1: regulator_disable(dsi.vdds_dsi_reg); err0: enable_clocks(0); dsi_enable_pll_clock(0); return r; } void dsi_pll_uninit(void) { enable_clocks(0); dsi_enable_pll_clock(0); dsi.pll_locked = 0; dsi_pll_power(DSI_PLL_POWER_OFF); regulator_disable(dsi.vdds_dsi_reg); DSSDBG("PLL uninit done\n"); } void dsi_dump_clocks(struct seq_file *s) { int clksel; struct dsi_clock_info *cinfo = &dsi.current_cinfo; enable_clocks(1); clksel = REG_GET(DSI_PLL_CONFIGURATION2, 11, 11); seq_printf(s, "- DSI PLL -\n"); seq_printf(s, "dsi pll source = %s\n", clksel == 0 ? "dss2_alwon_fclk" : "pclkfree"); seq_printf(s, "Fint\t\t%-16luregn %u\n", cinfo->fint, cinfo->regn); seq_printf(s, "CLKIN4DDR\t%-16luregm %u\n", cinfo->clkin4ddr, cinfo->regm); seq_printf(s, "dsi1_pll_fck\t%-16luregm3 %u\t(%s)\n", cinfo->dsi1_pll_fclk, cinfo->regm3, dss_get_dispc_clk_source() == DSS_SRC_DSS1_ALWON_FCLK ? "off" : "on"); seq_printf(s, "dsi2_pll_fck\t%-16luregm4 %u\t(%s)\n", cinfo->dsi2_pll_fclk, cinfo->regm4, dss_get_dsi_clk_source() == DSS_SRC_DSS1_ALWON_FCLK ? "off" : "on"); seq_printf(s, "- DSI -\n"); seq_printf(s, "dsi fclk source = %s\n", dss_get_dsi_clk_source() == DSS_SRC_DSS1_ALWON_FCLK ? "dss1_alwon_fclk" : "dsi2_pll_fclk"); seq_printf(s, "DSI_FCLK\t%lu\n", dsi_fclk_rate()); seq_printf(s, "DDR_CLK\t\t%lu\n", cinfo->clkin4ddr / 4); seq_printf(s, "TxByteClkHS\t%lu\n", dsi_get_txbyteclkhs()); seq_printf(s, "LP_CLK\t\t%lu\n", cinfo->lp_clk); seq_printf(s, "VP_CLK\t\t%lu\n" "VP_PCLK\t\t%lu\n", dispc_lclk_rate(), dispc_pclk_rate()); enable_clocks(0); } #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS void dsi_dump_irqs(struct seq_file *s) { unsigned long flags; struct dsi_irq_stats stats; spin_lock_irqsave(&dsi.irq_stats_lock, flags); stats = dsi.irq_stats; memset(&dsi.irq_stats, 0, sizeof(dsi.irq_stats)); dsi.irq_stats.last_reset = jiffies; spin_unlock_irqrestore(&dsi.irq_stats_lock, flags); seq_printf(s, "period %u ms\n", jiffies_to_msecs(jiffies - stats.last_reset)); seq_printf(s, "irqs %d\n", stats.irq_count); #define PIS(x) \ seq_printf(s, "%-20s %10d\n", #x, stats.dsi_irqs[ffs(DSI_IRQ_##x)-1]); seq_printf(s, "-- DSI interrupts --\n"); PIS(VC0); PIS(VC1); PIS(VC2); PIS(VC3); PIS(WAKEUP); PIS(RESYNC); PIS(PLL_LOCK); PIS(PLL_UNLOCK); PIS(PLL_RECALL); PIS(COMPLEXIO_ERR); PIS(HS_TX_TIMEOUT); PIS(LP_RX_TIMEOUT); PIS(TE_TRIGGER); PIS(ACK_TRIGGER); PIS(SYNC_LOST); PIS(LDO_POWER_GOOD); PIS(TA_TIMEOUT); #undef PIS #define PIS(x) \ seq_printf(s, "%-20s %10d %10d %10d %10d\n", #x, \ stats.vc_irqs[0][ffs(DSI_VC_IRQ_##x)-1], \ stats.vc_irqs[1][ffs(DSI_VC_IRQ_##x)-1], \ stats.vc_irqs[2][ffs(DSI_VC_IRQ_##x)-1], \ stats.vc_irqs[3][ffs(DSI_VC_IRQ_##x)-1]); seq_printf(s, "-- VC interrupts --\n"); PIS(CS); PIS(ECC_CORR); PIS(PACKET_SENT); PIS(FIFO_TX_OVF); PIS(FIFO_RX_OVF); PIS(BTA); PIS(ECC_NO_CORR); PIS(FIFO_TX_UDF); PIS(PP_BUSY_CHANGE); #undef PIS #define PIS(x) \ seq_printf(s, "%-20s %10d\n", #x, \ stats.cio_irqs[ffs(DSI_CIO_IRQ_##x)-1]); seq_printf(s, "-- CIO interrupts --\n"); PIS(ERRSYNCESC1); PIS(ERRSYNCESC2); PIS(ERRSYNCESC3); PIS(ERRESC1); PIS(ERRESC2); PIS(ERRESC3); PIS(ERRCONTROL1); PIS(ERRCONTROL2); PIS(ERRCONTROL3); PIS(STATEULPS1); PIS(STATEULPS2); PIS(STATEULPS3); PIS(ERRCONTENTIONLP0_1); PIS(ERRCONTENTIONLP1_1); PIS(ERRCONTENTIONLP0_2); PIS(ERRCONTENTIONLP1_2); PIS(ERRCONTENTIONLP0_3); PIS(ERRCONTENTIONLP1_3); PIS(ULPSACTIVENOT_ALL0); PIS(ULPSACTIVENOT_ALL1); #undef PIS } #endif void dsi_dump_regs(struct seq_file *s) { #define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, dsi_read_reg(r)) dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1); DUMPREG(DSI_REVISION); DUMPREG(DSI_SYSCONFIG); DUMPREG(DSI_SYSSTATUS); DUMPREG(DSI_IRQSTATUS); DUMPREG(DSI_IRQENABLE); DUMPREG(DSI_CTRL); DUMPREG(DSI_COMPLEXIO_CFG1); DUMPREG(DSI_COMPLEXIO_IRQ_STATUS); DUMPREG(DSI_COMPLEXIO_IRQ_ENABLE); DUMPREG(DSI_CLK_CTRL); DUMPREG(DSI_TIMING1); DUMPREG(DSI_TIMING2); DUMPREG(DSI_VM_TIMING1); DUMPREG(DSI_VM_TIMING2); DUMPREG(DSI_VM_TIMING3); DUMPREG(DSI_CLK_TIMING); DUMPREG(DSI_TX_FIFO_VC_SIZE); DUMPREG(DSI_RX_FIFO_VC_SIZE); DUMPREG(DSI_COMPLEXIO_CFG2); DUMPREG(DSI_RX_FIFO_VC_FULLNESS); DUMPREG(DSI_VM_TIMING4); DUMPREG(DSI_TX_FIFO_VC_EMPTINESS); DUMPREG(DSI_VM_TIMING5); DUMPREG(DSI_VM_TIMING6); DUMPREG(DSI_VM_TIMING7); DUMPREG(DSI_STOPCLK_TIMING); DUMPREG(DSI_VC_CTRL(0)); DUMPREG(DSI_VC_TE(0)); DUMPREG(DSI_VC_LONG_PACKET_HEADER(0)); DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(0)); DUMPREG(DSI_VC_SHORT_PACKET_HEADER(0)); DUMPREG(DSI_VC_IRQSTATUS(0)); DUMPREG(DSI_VC_IRQENABLE(0)); DUMPREG(DSI_VC_CTRL(1)); DUMPREG(DSI_VC_TE(1)); DUMPREG(DSI_VC_LONG_PACKET_HEADER(1)); DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(1)); DUMPREG(DSI_VC_SHORT_PACKET_HEADER(1)); DUMPREG(DSI_VC_IRQSTATUS(1)); DUMPREG(DSI_VC_IRQENABLE(1)); DUMPREG(DSI_VC_CTRL(2)); DUMPREG(DSI_VC_TE(2)); DUMPREG(DSI_VC_LONG_PACKET_HEADER(2)); DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(2)); DUMPREG(DSI_VC_SHORT_PACKET_HEADER(2)); DUMPREG(DSI_VC_IRQSTATUS(2)); DUMPREG(DSI_VC_IRQENABLE(2)); DUMPREG(DSI_VC_CTRL(3)); DUMPREG(DSI_VC_TE(3)); DUMPREG(DSI_VC_LONG_PACKET_HEADER(3)); DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(3)); DUMPREG(DSI_VC_SHORT_PACKET_HEADER(3)); DUMPREG(DSI_VC_IRQSTATUS(3)); DUMPREG(DSI_VC_IRQENABLE(3)); DUMPREG(DSI_DSIPHY_CFG0); DUMPREG(DSI_DSIPHY_CFG1); DUMPREG(DSI_DSIPHY_CFG2); DUMPREG(DSI_DSIPHY_CFG5); DUMPREG(DSI_PLL_CONTROL); DUMPREG(DSI_PLL_STATUS); DUMPREG(DSI_PLL_GO); DUMPREG(DSI_PLL_CONFIGURATION1); DUMPREG(DSI_PLL_CONFIGURATION2); dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1); #undef DUMPREG } enum dsi_complexio_power_state { DSI_COMPLEXIO_POWER_OFF = 0x0, DSI_COMPLEXIO_POWER_ON = 0x1, DSI_COMPLEXIO_POWER_ULPS = 0x2, }; static int dsi_complexio_power(enum dsi_complexio_power_state state) { int t = 0; /* PWR_CMD */ REG_FLD_MOD(DSI_COMPLEXIO_CFG1, state, 28, 27); /* PWR_STATUS */ while (FLD_GET(dsi_read_reg(DSI_COMPLEXIO_CFG1), 26, 25) != state) { if (++t > 1000) { DSSERR("failed to set complexio power state to " "%d\n", state); return -ENODEV; } udelay(1); } return 0; } static void dsi_complexio_config(struct omap_dss_device *dssdev) { u32 r; int clk_lane = dssdev->phy.dsi.clk_lane; int data1_lane = dssdev->phy.dsi.data1_lane; int data2_lane = dssdev->phy.dsi.data2_lane; int clk_pol = dssdev->phy.dsi.clk_pol; int data1_pol = dssdev->phy.dsi.data1_pol; int data2_pol = dssdev->phy.dsi.data2_pol; r = dsi_read_reg(DSI_COMPLEXIO_CFG1); r = FLD_MOD(r, clk_lane, 2, 0); r = FLD_MOD(r, clk_pol, 3, 3); r = FLD_MOD(r, data1_lane, 6, 4); r = FLD_MOD(r, data1_pol, 7, 7); r = FLD_MOD(r, data2_lane, 10, 8); r = FLD_MOD(r, data2_pol, 11, 11); dsi_write_reg(DSI_COMPLEXIO_CFG1, r); /* The configuration of the DSI complex I/O (number of data lanes, position, differential order) should not be changed while DSS.DSI_CLK_CRTRL[20] LP_CLK_ENABLE bit is set to 1. In order for the hardware to take into account a new configuration of the complex I/O (done in DSS.DSI_COMPLEXIO_CFG1 register), it is recommended to follow this sequence: First set the DSS.DSI_CTRL[0] IF_EN bit to 1, then reset the DSS.DSI_CTRL[0] IF_EN to 0, then set DSS.DSI_CLK_CTRL[20] LP_CLK_ENABLE to 1 and finally set again the DSS.DSI_CTRL[0] IF_EN bit to 1. If the sequence is not followed, the DSI complex I/O configuration is unknown. */ /* REG_FLD_MOD(DSI_CTRL, 1, 0, 0); REG_FLD_MOD(DSI_CTRL, 0, 0, 0); REG_FLD_MOD(DSI_CLK_CTRL, 1, 20, 20); REG_FLD_MOD(DSI_CTRL, 1, 0, 0); */ } static inline unsigned ns2ddr(unsigned ns) { /* convert time in ns to ddr ticks, rounding up */ unsigned long ddr_clk = dsi.current_cinfo.clkin4ddr / 4; return (ns * (ddr_clk / 1000 / 1000) + 999) / 1000; } static inline unsigned ddr2ns(unsigned ddr) { unsigned long ddr_clk = dsi.current_cinfo.clkin4ddr / 4; return ddr * 1000 * 1000 / (ddr_clk / 1000); } static void dsi_complexio_timings(void) { u32 r; u32 ths_prepare, ths_prepare_ths_zero, ths_trail, ths_exit; u32 tlpx_half, tclk_trail, tclk_zero; u32 tclk_prepare; /* calculate timings */ /* 1 * DDR_CLK = 2 * UI */ /* min 40ns + 4*UI max 85ns + 6*UI */ ths_prepare = ns2ddr(70) + 2; /* min 145ns + 10*UI */ ths_prepare_ths_zero = ns2ddr(175) + 2; /* min max(8*UI, 60ns+4*UI) */ ths_trail = ns2ddr(60) + 5; /* min 100ns */ ths_exit = ns2ddr(145); /* tlpx min 50n */ tlpx_half = ns2ddr(25); /* min 60ns */ tclk_trail = ns2ddr(60) + 2; /* min 38ns, max 95ns */ tclk_prepare = ns2ddr(65); /* min tclk-prepare + tclk-zero = 300ns */ tclk_zero = ns2ddr(260); DSSDBG("ths_prepare %u (%uns), ths_prepare_ths_zero %u (%uns)\n", ths_prepare, ddr2ns(ths_prepare), ths_prepare_ths_zero, ddr2ns(ths_prepare_ths_zero)); DSSDBG("ths_trail %u (%uns), ths_exit %u (%uns)\n", ths_trail, ddr2ns(ths_trail), ths_exit, ddr2ns(ths_exit)); DSSDBG("tlpx_half %u (%uns), tclk_trail %u (%uns), " "tclk_zero %u (%uns)\n", tlpx_half, ddr2ns(tlpx_half), tclk_trail, ddr2ns(tclk_trail), tclk_zero, ddr2ns(tclk_zero)); DSSDBG("tclk_prepare %u (%uns)\n", tclk_prepare, ddr2ns(tclk_prepare)); /* program timings */ r = dsi_read_reg(DSI_DSIPHY_CFG0); r = FLD_MOD(r, ths_prepare, 31, 24); r = FLD_MOD(r, ths_prepare_ths_zero, 23, 16); r = FLD_MOD(r, ths_trail, 15, 8); r = FLD_MOD(r, ths_exit, 7, 0); dsi_write_reg(DSI_DSIPHY_CFG0, r); r = dsi_read_reg(DSI_DSIPHY_CFG1); r = FLD_MOD(r, tlpx_half, 22, 16); r = FLD_MOD(r, tclk_trail, 15, 8); r = FLD_MOD(r, tclk_zero, 7, 0); dsi_write_reg(DSI_DSIPHY_CFG1, r); r = dsi_read_reg(DSI_DSIPHY_CFG2); r = FLD_MOD(r, tclk_prepare, 7, 0); dsi_write_reg(DSI_DSIPHY_CFG2, r); } static int dsi_complexio_init(struct omap_dss_device *dssdev) { int r = 0; DSSDBG("dsi_complexio_init\n"); /* CIO_CLK_ICG, enable L3 clk to CIO */ REG_FLD_MOD(DSI_CLK_CTRL, 1, 14, 14); /* A dummy read using the SCP interface to any DSIPHY register is * required after DSIPHY reset to complete the reset of the DSI complex * I/O. */ dsi_read_reg(DSI_DSIPHY_CFG5); if (wait_for_bit_change(DSI_DSIPHY_CFG5, 30, 1) != 1) { DSSERR("ComplexIO PHY not coming out of reset.\n"); r = -ENODEV; goto err; } dsi_complexio_config(dssdev); r = dsi_complexio_power(DSI_COMPLEXIO_POWER_ON); if (r) goto err; if (wait_for_bit_change(DSI_COMPLEXIO_CFG1, 29, 1) != 1) { DSSERR("ComplexIO not coming out of reset.\n"); r = -ENODEV; goto err; } if (wait_for_bit_change(DSI_COMPLEXIO_CFG1, 21, 1) != 1) { DSSERR("ComplexIO LDO power down.\n"); r = -ENODEV; goto err; } dsi_complexio_timings(); /* The configuration of the DSI complex I/O (number of data lanes, position, differential order) should not be changed while DSS.DSI_CLK_CRTRL[20] LP_CLK_ENABLE bit is set to 1. For the hardware to recognize a new configuration of the complex I/O (done in DSS.DSI_COMPLEXIO_CFG1 register), it is recommended to follow this sequence: First set the DSS.DSI_CTRL[0] IF_EN bit to 1, next reset the DSS.DSI_CTRL[0] IF_EN to 0, then set DSS.DSI_CLK_CTRL[20] LP_CLK_ENABLE to 1, and finally, set again the DSS.DSI_CTRL[0] IF_EN bit to 1. If the sequence is not followed, the DSi complex I/O configuration is undetermined. */ dsi_if_enable(1); dsi_if_enable(0); REG_FLD_MOD(DSI_CLK_CTRL, 1, 20, 20); /* LP_CLK_ENABLE */ dsi_if_enable(1); dsi_if_enable(0); DSSDBG("CIO init done\n"); err: return r; } static void dsi_complexio_uninit(void) { dsi_complexio_power(DSI_COMPLEXIO_POWER_OFF); } static int _dsi_wait_reset(void) { int t = 0; while (REG_GET(DSI_SYSSTATUS, 0, 0) == 0) { if (++t > 5) { DSSERR("soft reset failed\n"); return -ENODEV; } udelay(1); } return 0; } static int _dsi_reset(void) { /* Soft reset */ REG_FLD_MOD(DSI_SYSCONFIG, 1, 1, 1); return _dsi_wait_reset(); } static void dsi_reset_tx_fifo(int channel) { u32 mask; u32 l; /* set fifosize of the channel to 0, then return the old size */ l = dsi_read_reg(DSI_TX_FIFO_VC_SIZE); mask = FLD_MASK((8 * channel) + 7, (8 * channel) + 4); dsi_write_reg(DSI_TX_FIFO_VC_SIZE, l & ~mask); dsi_write_reg(DSI_TX_FIFO_VC_SIZE, l); } static void dsi_config_tx_fifo(enum fifo_size size1, enum fifo_size size2, enum fifo_size size3, enum fifo_size size4) { u32 r = 0; int add = 0; int i; dsi.vc[0].fifo_size = size1; dsi.vc[1].fifo_size = size2; dsi.vc[2].fifo_size = size3; dsi.vc[3].fifo_size = size4; for (i = 0; i < 4; i++) { u8 v; int size = dsi.vc[i].fifo_size; if (add + size > 4) { DSSERR("Illegal FIFO configuration\n"); BUG(); } v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4); r |= v << (8 * i); /*DSSDBG("TX FIFO vc %d: size %d, add %d\n", i, size, add); */ add += size; } dsi_write_reg(DSI_TX_FIFO_VC_SIZE, r); } static void dsi_config_rx_fifo(enum fifo_size size1, enum fifo_size size2, enum fifo_size size3, enum fifo_size size4) { u32 r = 0; int add = 0; int i; dsi.vc[0].fifo_size = size1; dsi.vc[1].fifo_size = size2; dsi.vc[2].fifo_size = size3; dsi.vc[3].fifo_size = size4; for (i = 0; i < 4; i++) { u8 v; int size = dsi.vc[i].fifo_size; if (add + size > 4) { DSSERR("Illegal FIFO configuration\n"); BUG(); } v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4); r |= v << (8 * i); /*DSSDBG("RX FIFO vc %d: size %d, add %d\n", i, size, add); */ add += size; } dsi_write_reg(DSI_RX_FIFO_VC_SIZE, r); } static int dsi_force_tx_stop_mode_io(void) { u32 r; r = dsi_read_reg(DSI_TIMING1); r = FLD_MOD(r, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */ dsi_write_reg(DSI_TIMING1, r); if (wait_for_bit_change(DSI_TIMING1, 15, 0) != 0) { DSSERR("TX_STOP bit not going down\n"); return -EIO; } return 0; } static int dsi_vc_enable(int channel, bool enable) { DSSDBG("dsi_vc_enable channel %d, enable %d\n", channel, enable); enable = enable ? 1 : 0; REG_FLD_MOD(DSI_VC_CTRL(channel), enable, 0, 0); if (wait_for_bit_change(DSI_VC_CTRL(channel), 0, enable) != enable) { DSSERR("Failed to set dsi_vc_enable to %d\n", enable); return -EIO; } return 0; } static void dsi_vc_initial_config(int channel) { u32 r; DSSDBGF("%d", channel); r = dsi_read_reg(DSI_VC_CTRL(channel)); if (FLD_GET(r, 15, 15)) /* VC_BUSY */ DSSERR("VC(%d) busy when trying to configure it!\n", channel); r = FLD_MOD(r, 0, 1, 1); /* SOURCE, 0 = L4 */ r = FLD_MOD(r, 0, 2, 2); /* BTA_SHORT_EN */ r = FLD_MOD(r, 0, 3, 3); /* BTA_LONG_EN */ r = FLD_MOD(r, 0, 4, 4); /* MODE, 0 = command */ r = FLD_MOD(r, 1, 7, 7); /* CS_TX_EN */ r = FLD_MOD(r, 1, 8, 8); /* ECC_TX_EN */ r = FLD_MOD(r, 0, 9, 9); /* MODE_SPEED, high speed on/off */ r = FLD_MOD(r, 4, 29, 27); /* DMA_RX_REQ_NB = no dma */ r = FLD_MOD(r, 4, 23, 21); /* DMA_TX_REQ_NB = no dma */ dsi_write_reg(DSI_VC_CTRL(channel), r); dsi.vc[channel].mode = DSI_VC_MODE_L4; } static void dsi_vc_config_l4(int channel) { if (dsi.vc[channel].mode == DSI_VC_MODE_L4) return; DSSDBGF("%d", channel); dsi_vc_enable(channel, 0); if (REG_GET(DSI_VC_CTRL(channel), 15, 15)) /* VC_BUSY */ DSSERR("vc(%d) busy when trying to config for L4\n", channel); REG_FLD_MOD(DSI_VC_CTRL(channel), 0, 1, 1); /* SOURCE, 0 = L4 */ dsi_vc_enable(channel, 1); dsi.vc[channel].mode = DSI_VC_MODE_L4; } static void dsi_vc_config_vp(int channel) { if (dsi.vc[channel].mode == DSI_VC_MODE_VP) return; DSSDBGF("%d", channel); dsi_vc_enable(channel, 0); if (REG_GET(DSI_VC_CTRL(channel), 15, 15)) /* VC_BUSY */ DSSERR("vc(%d) busy when trying to config for VP\n", channel); REG_FLD_MOD(DSI_VC_CTRL(channel), 1, 1, 1); /* SOURCE, 1 = video port */ dsi_vc_enable(channel, 1); dsi.vc[channel].mode = DSI_VC_MODE_VP; } void omapdss_dsi_vc_enable_hs(int channel, bool enable) { DSSDBG("dsi_vc_enable_hs(%d, %d)\n", channel, enable); WARN_ON(!dsi_bus_is_locked()); dsi_vc_enable(channel, 0); dsi_if_enable(0); REG_FLD_MOD(DSI_VC_CTRL(channel), enable, 9, 9); dsi_vc_enable(channel, 1); dsi_if_enable(1); dsi_force_tx_stop_mode_io(); } EXPORT_SYMBOL(omapdss_dsi_vc_enable_hs); static void dsi_vc_flush_long_data(int channel) { while (REG_GET(DSI_VC_CTRL(channel), 20, 20)) { u32 val; val = dsi_read_reg(DSI_VC_SHORT_PACKET_HEADER(channel)); DSSDBG("\t\tb1 %#02x b2 %#02x b3 %#02x b4 %#02x\n", (val >> 0) & 0xff, (val >> 8) & 0xff, (val >> 16) & 0xff, (val >> 24) & 0xff); } } static void dsi_show_rx_ack_with_err(u16 err) { DSSERR("\tACK with ERROR (%#x):\n", err); if (err & (1 << 0)) DSSERR("\t\tSoT Error\n"); if (err & (1 << 1)) DSSERR("\t\tSoT Sync Error\n"); if (err & (1 << 2)) DSSERR("\t\tEoT Sync Error\n"); if (err & (1 << 3)) DSSERR("\t\tEscape Mode Entry Command Error\n"); if (err & (1 << 4)) DSSERR("\t\tLP Transmit Sync Error\n"); if (err & (1 << 5)) DSSERR("\t\tHS Receive Timeout Error\n"); if (err & (1 << 6)) DSSERR("\t\tFalse Control Error\n"); if (err & (1 << 7)) DSSERR("\t\t(reserved7)\n"); if (err & (1 << 8)) DSSERR("\t\tECC Error, single-bit (corrected)\n"); if (err & (1 << 9)) DSSERR("\t\tECC Error, multi-bit (not corrected)\n"); if (err & (1 << 10)) DSSERR("\t\tChecksum Error\n"); if (err & (1 << 11)) DSSERR("\t\tData type not recognized\n"); if (err & (1 << 12)) DSSERR("\t\tInvalid VC ID\n"); if (err & (1 << 13)) DSSERR("\t\tInvalid Transmission Length\n"); if (err & (1 << 14)) DSSERR("\t\t(reserved14)\n"); if (err & (1 << 15)) DSSERR("\t\tDSI Protocol Violation\n"); } static u16 dsi_vc_flush_receive_data(int channel) { /* RX_FIFO_NOT_EMPTY */ while (REG_GET(DSI_VC_CTRL(channel), 20, 20)) { u32 val; u8 dt; val = dsi_read_reg(DSI_VC_SHORT_PACKET_HEADER(channel)); DSSERR("\trawval %#08x\n", val); dt = FLD_GET(val, 5, 0); if (dt == DSI_DT_RX_ACK_WITH_ERR) { u16 err = FLD_GET(val, 23, 8); dsi_show_rx_ack_with_err(err); } else if (dt == DSI_DT_RX_SHORT_READ_1) { DSSERR("\tDCS short response, 1 byte: %#x\n", FLD_GET(val, 23, 8)); } else if (dt == DSI_DT_RX_SHORT_READ_2) { DSSERR("\tDCS short response, 2 byte: %#x\n", FLD_GET(val, 23, 8)); } else if (dt == DSI_DT_RX_DCS_LONG_READ) { DSSERR("\tDCS long response, len %d\n", FLD_GET(val, 23, 8)); dsi_vc_flush_long_data(channel); } else { DSSERR("\tunknown datatype 0x%02x\n", dt); } } return 0; } static int dsi_vc_send_bta(int channel) { if (dsi.debug_write || dsi.debug_read) DSSDBG("dsi_vc_send_bta %d\n", channel); WARN_ON(!dsi_bus_is_locked()); if (REG_GET(DSI_VC_CTRL(channel), 20, 20)) { /* RX_FIFO_NOT_EMPTY */ DSSERR("rx fifo not empty when sending BTA, dumping data:\n"); dsi_vc_flush_receive_data(channel); } REG_FLD_MOD(DSI_VC_CTRL(channel), 1, 6, 6); /* BTA_EN */ return 0; } int dsi_vc_send_bta_sync(int channel) { int r = 0; u32 err; INIT_COMPLETION(dsi.bta_completion); dsi_vc_enable_bta_irq(channel); r = dsi_vc_send_bta(channel); if (r) goto err; if (wait_for_completion_timeout(&dsi.bta_completion, msecs_to_jiffies(500)) == 0) { DSSERR("Failed to receive BTA\n"); r = -EIO; goto err; } err = dsi_get_errors(); if (err) { DSSERR("Error while sending BTA: %x\n", err); r = -EIO; goto err; } err: dsi_vc_disable_bta_irq(channel); return r; } EXPORT_SYMBOL(dsi_vc_send_bta_sync); static inline void dsi_vc_write_long_header(int channel, u8 data_type, u16 len, u8 ecc) { u32 val; u8 data_id; WARN_ON(!dsi_bus_is_locked()); data_id = data_type | channel << 6; val = FLD_VAL(data_id, 7, 0) | FLD_VAL(len, 23, 8) | FLD_VAL(ecc, 31, 24); dsi_write_reg(DSI_VC_LONG_PACKET_HEADER(channel), val); } static inline void dsi_vc_write_long_payload(int channel, u8 b1, u8 b2, u8 b3, u8 b4) { u32 val; val = b4 << 24 | b3 << 16 | b2 << 8 | b1 << 0; /* DSSDBG("\twriting %02x, %02x, %02x, %02x (%#010x)\n", b1, b2, b3, b4, val); */ dsi_write_reg(DSI_VC_LONG_PACKET_PAYLOAD(channel), val); } static int dsi_vc_send_long(int channel, u8 data_type, u8 *data, u16 len, u8 ecc) { /*u32 val; */ int i; u8 *p; int r = 0; u8 b1, b2, b3, b4; if (dsi.debug_write) DSSDBG("dsi_vc_send_long, %d bytes\n", len); /* len + header */ if (dsi.vc[channel].fifo_size * 32 * 4 < len + 4) { DSSERR("unable to send long packet: packet too long.\n"); return -EINVAL; } dsi_vc_config_l4(channel); dsi_vc_write_long_header(channel, data_type, len, ecc); p = data; for (i = 0; i < len >> 2; i++) { if (dsi.debug_write) DSSDBG("\tsending full packet %d\n", i); b1 = *p++; b2 = *p++; b3 = *p++; b4 = *p++; dsi_vc_write_long_payload(channel, b1, b2, b3, b4); } i = len % 4; if (i) { b1 = 0; b2 = 0; b3 = 0; if (dsi.debug_write) DSSDBG("\tsending remainder bytes %d\n", i); switch (i) { case 3: b1 = *p++; b2 = *p++; b3 = *p++; break; case 2: b1 = *p++; b2 = *p++; break; case 1: b1 = *p++; break; } dsi_vc_write_long_payload(channel, b1, b2, b3, 0); } return r; } static int dsi_vc_send_short(int channel, u8 data_type, u16 data, u8 ecc) { u32 r; u8 data_id; WARN_ON(!dsi_bus_is_locked()); if (dsi.debug_write) DSSDBG("dsi_vc_send_short(ch%d, dt %#x, b1 %#x, b2 %#x)\n", channel, data_type, data & 0xff, (data >> 8) & 0xff); dsi_vc_config_l4(channel); if (FLD_GET(dsi_read_reg(DSI_VC_CTRL(channel)), 16, 16)) { DSSERR("ERROR FIFO FULL, aborting transfer\n"); return -EINVAL; } data_id = data_type | channel << 6; r = (data_id << 0) | (data << 8) | (ecc << 24); dsi_write_reg(DSI_VC_SHORT_PACKET_HEADER(channel), r); return 0; } int dsi_vc_send_null(int channel) { u8 nullpkg[] = {0, 0, 0, 0}; return dsi_vc_send_long(channel, DSI_DT_NULL_PACKET, nullpkg, 4, 0); } EXPORT_SYMBOL(dsi_vc_send_null); int dsi_vc_dcs_write_nosync(int channel, u8 *data, int len) { int r; BUG_ON(len == 0); if (len == 1) { r = dsi_vc_send_short(channel, DSI_DT_DCS_SHORT_WRITE_0, data[0], 0); } else if (len == 2) { r = dsi_vc_send_short(channel, DSI_DT_DCS_SHORT_WRITE_1, data[0] | (data[1] << 8), 0); } else { /* 0x39 = DCS Long Write */ r = dsi_vc_send_long(channel, DSI_DT_DCS_LONG_WRITE, data, len, 0); } return r; } EXPORT_SYMBOL(dsi_vc_dcs_write_nosync); int dsi_vc_dcs_write(int channel, u8 *data, int len) { int r; r = dsi_vc_dcs_write_nosync(channel, data, len); if (r) goto err; r = dsi_vc_send_bta_sync(channel); if (r) goto err; if (REG_GET(DSI_VC_CTRL(channel), 20, 20)) { /* RX_FIFO_NOT_EMPTY */ DSSERR("rx fifo not empty after write, dumping data:\n"); dsi_vc_flush_receive_data(channel); r = -EIO; goto err; } return 0; err: DSSERR("dsi_vc_dcs_write(ch %d, cmd 0x%02x, len %d) failed\n", channel, data[0], len); return r; } EXPORT_SYMBOL(dsi_vc_dcs_write); int dsi_vc_dcs_write_0(int channel, u8 dcs_cmd) { return dsi_vc_dcs_write(channel, &dcs_cmd, 1); } EXPORT_SYMBOL(dsi_vc_dcs_write_0); int dsi_vc_dcs_write_1(int channel, u8 dcs_cmd, u8 param) { u8 buf[2]; buf[0] = dcs_cmd; buf[1] = param; return dsi_vc_dcs_write(channel, buf, 2); } EXPORT_SYMBOL(dsi_vc_dcs_write_1); int dsi_vc_dcs_read(int channel, u8 dcs_cmd, u8 *buf, int buflen) { u32 val; u8 dt; int r; if (dsi.debug_read) DSSDBG("dsi_vc_dcs_read(ch%d, dcs_cmd %x)\n", channel, dcs_cmd); r = dsi_vc_send_short(channel, DSI_DT_DCS_READ, dcs_cmd, 0); if (r) goto err; r = dsi_vc_send_bta_sync(channel); if (r) goto err; /* RX_FIFO_NOT_EMPTY */ if (REG_GET(DSI_VC_CTRL(channel), 20, 20) == 0) { DSSERR("RX fifo empty when trying to read.\n"); r = -EIO; goto err; } val = dsi_read_reg(DSI_VC_SHORT_PACKET_HEADER(channel)); if (dsi.debug_read) DSSDBG("\theader: %08x\n", val); dt = FLD_GET(val, 5, 0); if (dt == DSI_DT_RX_ACK_WITH_ERR) { u16 err = FLD_GET(val, 23, 8); dsi_show_rx_ack_with_err(err); r = -EIO; goto err; } else if (dt == DSI_DT_RX_SHORT_READ_1) { u8 data = FLD_GET(val, 15, 8); if (dsi.debug_read) DSSDBG("\tDCS short response, 1 byte: %02x\n", data); if (buflen < 1) { r = -EIO; goto err; } buf[0] = data; return 1; } else if (dt == DSI_DT_RX_SHORT_READ_2) { u16 data = FLD_GET(val, 23, 8); if (dsi.debug_read) DSSDBG("\tDCS short response, 2 byte: %04x\n", data); if (buflen < 2) { r = -EIO; goto err; } buf[0] = data & 0xff; buf[1] = (data >> 8) & 0xff; return 2; } else if (dt == DSI_DT_RX_DCS_LONG_READ) { int w; int len = FLD_GET(val, 23, 8); if (dsi.debug_read) DSSDBG("\tDCS long response, len %d\n", len); if (len > buflen) { r = -EIO; goto err; } /* two byte checksum ends the packet, not included in len */ for (w = 0; w < len + 2;) { int b; val = dsi_read_reg(DSI_VC_SHORT_PACKET_HEADER(channel)); if (dsi.debug_read) DSSDBG("\t\t%02x %02x %02x %02x\n", (val >> 0) & 0xff, (val >> 8) & 0xff, (val >> 16) & 0xff, (val >> 24) & 0xff); for (b = 0; b < 4; ++b) { if (w < len) buf[w] = (val >> (b * 8)) & 0xff; /* we discard the 2 byte checksum */ ++w; } } return len; } else { DSSERR("\tunknown datatype 0x%02x\n", dt); r = -EIO; goto err; } BUG(); err: DSSERR("dsi_vc_dcs_read(ch %d, cmd 0x%02x) failed\n", channel, dcs_cmd); return r; } EXPORT_SYMBOL(dsi_vc_dcs_read); int dsi_vc_dcs_read_1(int channel, u8 dcs_cmd, u8 *data) { int r; r = dsi_vc_dcs_read(channel, dcs_cmd, data, 1); if (r < 0) return r; if (r != 1) return -EIO; return 0; } EXPORT_SYMBOL(dsi_vc_dcs_read_1); int dsi_vc_dcs_read_2(int channel, u8 dcs_cmd, u8 *data1, u8 *data2) { u8 buf[2]; int r; r = dsi_vc_dcs_read(channel, dcs_cmd, buf, 2); if (r < 0) return r; if (r != 2) return -EIO; *data1 = buf[0]; *data2 = buf[1]; return 0; } EXPORT_SYMBOL(dsi_vc_dcs_read_2); int dsi_vc_set_max_rx_packet_size(int channel, u16 len) { int r; r = dsi_vc_send_short(channel, DSI_DT_SET_MAX_RET_PKG_SIZE, len, 0); if (r) return r; r = dsi_vc_send_bta_sync(channel); return r; } EXPORT_SYMBOL(dsi_vc_set_max_rx_packet_size); static void dsi_set_lp_rx_timeout(unsigned ticks, bool x4, bool x16) { unsigned long fck; unsigned long total_ticks; u32 r; BUG_ON(ticks > 0x1fff); /* ticks in DSI_FCK */ fck = dsi_fclk_rate(); r = dsi_read_reg(DSI_TIMING2); r = FLD_MOD(r, 1, 15, 15); /* LP_RX_TO */ r = FLD_MOD(r, x16 ? 1 : 0, 14, 14); /* LP_RX_TO_X16 */ r = FLD_MOD(r, x4 ? 1 : 0, 13, 13); /* LP_RX_TO_X4 */ r = FLD_MOD(r, ticks, 12, 0); /* LP_RX_COUNTER */ dsi_write_reg(DSI_TIMING2, r); total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1); DSSDBG("LP_RX_TO %lu ticks (%#x%s%s) = %lu ns\n", total_ticks, ticks, x4 ? " x4" : "", x16 ? " x16" : "", (total_ticks * 1000) / (fck / 1000 / 1000)); } static void dsi_set_ta_timeout(unsigned ticks, bool x8, bool x16) { unsigned long fck; unsigned long total_ticks; u32 r; BUG_ON(ticks > 0x1fff); /* ticks in DSI_FCK */ fck = dsi_fclk_rate(); r = dsi_read_reg(DSI_TIMING1); r = FLD_MOD(r, 1, 31, 31); /* TA_TO */ r = FLD_MOD(r, x16 ? 1 : 0, 30, 30); /* TA_TO_X16 */ r = FLD_MOD(r, x8 ? 1 : 0, 29, 29); /* TA_TO_X8 */ r = FLD_MOD(r, ticks, 28, 16); /* TA_TO_COUNTER */ dsi_write_reg(DSI_TIMING1, r); total_ticks = ticks * (x16 ? 16 : 1) * (x8 ? 8 : 1); DSSDBG("TA_TO %lu ticks (%#x%s%s) = %lu ns\n", total_ticks, ticks, x8 ? " x8" : "", x16 ? " x16" : "", (total_ticks * 1000) / (fck / 1000 / 1000)); } static void dsi_set_stop_state_counter(unsigned ticks, bool x4, bool x16) { unsigned long fck; unsigned long total_ticks; u32 r; BUG_ON(ticks > 0x1fff); /* ticks in DSI_FCK */ fck = dsi_fclk_rate(); r = dsi_read_reg(DSI_TIMING1); r = FLD_MOD(r, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */ r = FLD_MOD(r, x16 ? 1 : 0, 14, 14); /* STOP_STATE_X16_IO */ r = FLD_MOD(r, x4 ? 1 : 0, 13, 13); /* STOP_STATE_X4_IO */ r = FLD_MOD(r, ticks, 12, 0); /* STOP_STATE_COUNTER_IO */ dsi_write_reg(DSI_TIMING1, r); total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1); DSSDBG("STOP_STATE_COUNTER %lu ticks (%#x%s%s) = %lu ns\n", total_ticks, ticks, x4 ? " x4" : "", x16 ? " x16" : "", (total_ticks * 1000) / (fck / 1000 / 1000)); } static void dsi_set_hs_tx_timeout(unsigned ticks, bool x4, bool x16) { unsigned long fck; unsigned long total_ticks; u32 r; BUG_ON(ticks > 0x1fff); /* ticks in TxByteClkHS */ fck = dsi_get_txbyteclkhs(); r = dsi_read_reg(DSI_TIMING2); r = FLD_MOD(r, 1, 31, 31); /* HS_TX_TO */ r = FLD_MOD(r, x16 ? 1 : 0, 30, 30); /* HS_TX_TO_X16 */ r = FLD_MOD(r, x4 ? 1 : 0, 29, 29); /* HS_TX_TO_X8 (4 really) */ r = FLD_MOD(r, ticks, 28, 16); /* HS_TX_TO_COUNTER */ dsi_write_reg(DSI_TIMING2, r); total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1); DSSDBG("HS_TX_TO %lu ticks (%#x%s%s) = %lu ns\n", total_ticks, ticks, x4 ? " x4" : "", x16 ? " x16" : "", (total_ticks * 1000) / (fck / 1000 / 1000)); } static int dsi_proto_config(struct omap_dss_device *dssdev) { u32 r; int buswidth = 0; dsi_config_tx_fifo(DSI_FIFO_SIZE_32, DSI_FIFO_SIZE_32, DSI_FIFO_SIZE_32, DSI_FIFO_SIZE_32); dsi_config_rx_fifo(DSI_FIFO_SIZE_32, DSI_FIFO_SIZE_32, DSI_FIFO_SIZE_32, DSI_FIFO_SIZE_32); /* XXX what values for the timeouts? */ dsi_set_stop_state_counter(0x1000, false, false); dsi_set_ta_timeout(0x1fff, true, true); dsi_set_lp_rx_timeout(0x1fff, true, true); dsi_set_hs_tx_timeout(0x1fff, true, true); switch (dssdev->ctrl.pixel_size) { case 16: buswidth = 0; break; case 18: buswidth = 1; break; case 24: buswidth = 2; break; default: BUG(); } r = dsi_read_reg(DSI_CTRL); r = FLD_MOD(r, 1, 1, 1); /* CS_RX_EN */ r = FLD_MOD(r, 1, 2, 2); /* ECC_RX_EN */ r = FLD_MOD(r, 1, 3, 3); /* TX_FIFO_ARBITRATION */ r = FLD_MOD(r, 1, 4, 4); /* VP_CLK_RATIO, always 1, see errata*/ r = FLD_MOD(r, buswidth, 7, 6); /* VP_DATA_BUS_WIDTH */ r = FLD_MOD(r, 0, 8, 8); /* VP_CLK_POL */ r = FLD_MOD(r, 2, 13, 12); /* LINE_BUFFER, 2 lines */ r = FLD_MOD(r, 1, 14, 14); /* TRIGGER_RESET_MODE */ r = FLD_MOD(r, 1, 19, 19); /* EOT_ENABLE */ r = FLD_MOD(r, 1, 24, 24); /* DCS_CMD_ENABLE */ r = FLD_MOD(r, 0, 25, 25); /* DCS_CMD_CODE, 1=start, 0=continue */ dsi_write_reg(DSI_CTRL, r); dsi_vc_initial_config(0); dsi_vc_initial_config(1); dsi_vc_initial_config(2); dsi_vc_initial_config(3); return 0; } static void dsi_proto_timings(struct omap_dss_device *dssdev) { unsigned tlpx, tclk_zero, tclk_prepare, tclk_trail; unsigned tclk_pre, tclk_post; unsigned ths_prepare, ths_prepare_ths_zero, ths_zero; unsigned ths_trail, ths_exit; unsigned ddr_clk_pre, ddr_clk_post; unsigned enter_hs_mode_lat, exit_hs_mode_lat; unsigned ths_eot; u32 r; r = dsi_read_reg(DSI_DSIPHY_CFG0); ths_prepare = FLD_GET(r, 31, 24); ths_prepare_ths_zero = FLD_GET(r, 23, 16); ths_zero = ths_prepare_ths_zero - ths_prepare; ths_trail = FLD_GET(r, 15, 8); ths_exit = FLD_GET(r, 7, 0); r = dsi_read_reg(DSI_DSIPHY_CFG1); tlpx = FLD_GET(r, 22, 16) * 2; tclk_trail = FLD_GET(r, 15, 8); tclk_zero = FLD_GET(r, 7, 0); r = dsi_read_reg(DSI_DSIPHY_CFG2); tclk_prepare = FLD_GET(r, 7, 0); /* min 8*UI */ tclk_pre = 20; /* min 60ns + 52*UI */ tclk_post = ns2ddr(60) + 26; /* ths_eot is 2 for 2 datalanes and 4 for 1 datalane */ if (dssdev->phy.dsi.data1_lane != 0 && dssdev->phy.dsi.data2_lane != 0) ths_eot = 2; else ths_eot = 4; ddr_clk_pre = DIV_ROUND_UP(tclk_pre + tlpx + tclk_zero + tclk_prepare, 4); ddr_clk_post = DIV_ROUND_UP(tclk_post + ths_trail, 4) + ths_eot; BUG_ON(ddr_clk_pre == 0 || ddr_clk_pre > 255); BUG_ON(ddr_clk_post == 0 || ddr_clk_post > 255); r = dsi_read_reg(DSI_CLK_TIMING); r = FLD_MOD(r, ddr_clk_pre, 15, 8); r = FLD_MOD(r, ddr_clk_post, 7, 0); dsi_write_reg(DSI_CLK_TIMING, r); DSSDBG("ddr_clk_pre %u, ddr_clk_post %u\n", ddr_clk_pre, ddr_clk_post); enter_hs_mode_lat = 1 + DIV_ROUND_UP(tlpx, 4) + DIV_ROUND_UP(ths_prepare, 4) + DIV_ROUND_UP(ths_zero + 3, 4); exit_hs_mode_lat = DIV_ROUND_UP(ths_trail + ths_exit, 4) + 1 + ths_eot; r = FLD_VAL(enter_hs_mode_lat, 31, 16) | FLD_VAL(exit_hs_mode_lat, 15, 0); dsi_write_reg(DSI_VM_TIMING7, r); DSSDBG("enter_hs_mode_lat %u, exit_hs_mode_lat %u\n", enter_hs_mode_lat, exit_hs_mode_lat); } #define DSI_DECL_VARS \ int __dsi_cb = 0; u32 __dsi_cv = 0; #define DSI_FLUSH(ch) \ if (__dsi_cb > 0) { \ /*DSSDBG("sending long packet %#010x\n", __dsi_cv);*/ \ dsi_write_reg(DSI_VC_LONG_PACKET_PAYLOAD(ch), __dsi_cv); \ __dsi_cb = __dsi_cv = 0; \ } #define DSI_PUSH(ch, data) \ do { \ __dsi_cv |= (data) << (__dsi_cb * 8); \ /*DSSDBG("cv = %#010x, cb = %d\n", __dsi_cv, __dsi_cb);*/ \ if (++__dsi_cb > 3) \ DSI_FLUSH(ch); \ } while (0) static int dsi_update_screen_l4(struct omap_dss_device *dssdev, int x, int y, int w, int h) { /* Note: supports only 24bit colors in 32bit container */ int first = 1; int fifo_stalls = 0; int max_dsi_packet_size; int max_data_per_packet; int max_pixels_per_packet; int pixels_left; int bytespp = dssdev->ctrl.pixel_size / 8; int scr_width; u32 __iomem *data; int start_offset; int horiz_inc; int current_x; struct omap_overlay *ovl; debug_irq = 0; DSSDBG("dsi_update_screen_l4 (%d,%d %dx%d)\n", x, y, w, h); ovl = dssdev->manager->overlays[0]; if (ovl->info.color_mode != OMAP_DSS_COLOR_RGB24U) return -EINVAL; if (dssdev->ctrl.pixel_size != 24) return -EINVAL; scr_width = ovl->info.screen_width; data = ovl->info.vaddr; start_offset = scr_width * y + x; horiz_inc = scr_width - w; current_x = x; /* We need header(4) + DCSCMD(1) + pixels(numpix*bytespp) bytes * in fifo */ /* When using CPU, max long packet size is TX buffer size */ max_dsi_packet_size = dsi.vc[0].fifo_size * 32 * 4; /* we seem to get better perf if we divide the tx fifo to half, and while the other half is being sent, we fill the other half max_dsi_packet_size /= 2; */ max_data_per_packet = max_dsi_packet_size - 4 - 1; max_pixels_per_packet = max_data_per_packet / bytespp; DSSDBG("max_pixels_per_packet %d\n", max_pixels_per_packet); pixels_left = w * h; DSSDBG("total pixels %d\n", pixels_left); data += start_offset; while (pixels_left > 0) { /* 0x2c = write_memory_start */ /* 0x3c = write_memory_continue */ u8 dcs_cmd = first ? 0x2c : 0x3c; int pixels; DSI_DECL_VARS; first = 0; #if 1 /* using fifo not empty */ /* TX_FIFO_NOT_EMPTY */ while (FLD_GET(dsi_read_reg(DSI_VC_CTRL(0)), 5, 5)) { fifo_stalls++; if (fifo_stalls > 0xfffff) { DSSERR("fifo stalls overflow, pixels left %d\n", pixels_left); dsi_if_enable(0); return -EIO; } udelay(1); } #elif 1 /* using fifo emptiness */ while ((REG_GET(DSI_TX_FIFO_VC_EMPTINESS, 7, 0)+1)*4 < max_dsi_packet_size) { fifo_stalls++; if (fifo_stalls > 0xfffff) { DSSERR("fifo stalls overflow, pixels left %d\n", pixels_left); dsi_if_enable(0); return -EIO; } } #else while ((REG_GET(DSI_TX_FIFO_VC_EMPTINESS, 7, 0)+1)*4 == 0) { fifo_stalls++; if (fifo_stalls > 0xfffff) { DSSERR("fifo stalls overflow, pixels left %d\n", pixels_left); dsi_if_enable(0); return -EIO; } } #endif pixels = min(max_pixels_per_packet, pixels_left); pixels_left -= pixels; dsi_vc_write_long_header(0, DSI_DT_DCS_LONG_WRITE, 1 + pixels * bytespp, 0); DSI_PUSH(0, dcs_cmd); while (pixels-- > 0) { u32 pix = __raw_readl(data++); DSI_PUSH(0, (pix >> 16) & 0xff); DSI_PUSH(0, (pix >> 8) & 0xff); DSI_PUSH(0, (pix >> 0) & 0xff); current_x++; if (current_x == x+w) { current_x = x; data += horiz_inc; } } DSI_FLUSH(0); } return 0; } static void dsi_update_screen_dispc(struct omap_dss_device *dssdev, u16 x, u16 y, u16 w, u16 h) { unsigned bytespp; unsigned bytespl; unsigned bytespf; unsigned total_len; unsigned packet_payload; unsigned packet_len; u32 l; int r; const unsigned channel = dsi.update_channel; /* line buffer is 1024 x 24bits */ /* XXX: for some reason using full buffer size causes considerable TX * slowdown with update sizes that fill the whole buffer */ const unsigned line_buf_size = 1023 * 3; DSSDBG("dsi_update_screen_dispc(%d,%d %dx%d)\n", x, y, w, h); dsi_vc_config_vp(channel); bytespp = dssdev->ctrl.pixel_size / 8; bytespl = w * bytespp; bytespf = bytespl * h; /* NOTE: packet_payload has to be equal to N * bytespl, where N is * number of lines in a packet. See errata about VP_CLK_RATIO */ if (bytespf < line_buf_size) packet_payload = bytespf; else packet_payload = (line_buf_size) / bytespl * bytespl; packet_len = packet_payload + 1; /* 1 byte for DCS cmd */ total_len = (bytespf / packet_payload) * packet_len; if (bytespf % packet_payload) total_len += (bytespf % packet_payload) + 1; l = FLD_VAL(total_len, 23, 0); /* TE_SIZE */ dsi_write_reg(DSI_VC_TE(channel), l); dsi_vc_write_long_header(channel, DSI_DT_DCS_LONG_WRITE, packet_len, 0); if (dsi.te_enabled) l = FLD_MOD(l, 1, 30, 30); /* TE_EN */ else l = FLD_MOD(l, 1, 31, 31); /* TE_START */ dsi_write_reg(DSI_VC_TE(channel), l); /* We put SIDLEMODE to no-idle for the duration of the transfer, * because DSS interrupts are not capable of waking up the CPU and the * framedone interrupt could be delayed for quite a long time. I think * the same goes for any DSS interrupts, but for some reason I have not * seen the problem anywhere else than here. */ dispc_disable_sidle(); dsi_perf_mark_start(); r = queue_delayed_work(dsi.workqueue, &dsi.framedone_timeout_work, msecs_to_jiffies(250)); BUG_ON(r == 0); dss_start_update(dssdev); if (dsi.te_enabled) { /* disable LP_RX_TO, so that we can receive TE. Time to wait * for TE is longer than the timer allows */ REG_FLD_MOD(DSI_TIMING2, 0, 15, 15); /* LP_RX_TO */ dsi_vc_send_bta(channel); #ifdef DSI_CATCH_MISSING_TE mod_timer(&dsi.te_timer, jiffies + msecs_to_jiffies(250)); #endif } } #ifdef DSI_CATCH_MISSING_TE static void dsi_te_timeout(unsigned long arg) { DSSERR("TE not received for 250ms!\n"); } #endif static void dsi_framedone_timeout_work_callback(struct work_struct *work) { int r; const int channel = dsi.update_channel; DSSERR("Framedone not received for 250ms!\n"); /* XXX While extremely unlikely, we could get FRAMEDONE interrupt after * 250ms which would conflict with this timeout work. What should be * done is first cancel the transfer on the HW, and then cancel the * possibly scheduled framedone work */ /* SIDLEMODE back to smart-idle */ dispc_enable_sidle(); if (dsi.te_enabled) { /* enable LP_RX_TO again after the TE */ REG_FLD_MOD(DSI_TIMING2, 1, 15, 15); /* LP_RX_TO */ } /* Send BTA after the frame. We need this for the TE to work, as TE * trigger is only sent for BTAs without preceding packet. Thus we need * to BTA after the pixel packets so that next BTA will cause TE * trigger. * * This is not needed when TE is not in use, but we do it anyway to * make sure that the transfer has been completed. It would be more * optimal, but more complex, to wait only just before starting next * transfer. */ r = dsi_vc_send_bta_sync(channel); if (r) DSSERR("BTA after framedone failed\n"); /* RX_FIFO_NOT_EMPTY */ if (REG_GET(DSI_VC_CTRL(channel), 20, 20)) { DSSERR("Received error during frame transfer:\n"); dsi_vc_flush_receive_data(channel); } dsi.framedone_callback(-ETIMEDOUT, dsi.framedone_data); } static void dsi_framedone_irq_callback(void *data, u32 mask) { int r; /* Note: We get FRAMEDONE when DISPC has finished sending pixels and * turns itself off. However, DSI still has the pixels in its buffers, * and is sending the data. */ /* SIDLEMODE back to smart-idle */ dispc_enable_sidle(); r = queue_work(dsi.workqueue, &dsi.framedone_work); BUG_ON(r == 0); } static void dsi_handle_framedone(void) { int r; const int channel = dsi.update_channel; DSSDBG("FRAMEDONE\n"); if (dsi.te_enabled) { /* enable LP_RX_TO again after the TE */ REG_FLD_MOD(DSI_TIMING2, 1, 15, 15); /* LP_RX_TO */ } /* Send BTA after the frame. We need this for the TE to work, as TE * trigger is only sent for BTAs without preceding packet. Thus we need * to BTA after the pixel packets so that next BTA will cause TE * trigger. * * This is not needed when TE is not in use, but we do it anyway to * make sure that the transfer has been completed. It would be more * optimal, but more complex, to wait only just before starting next * transfer. */ r = dsi_vc_send_bta_sync(channel); if (r) DSSERR("BTA after framedone failed\n"); /* RX_FIFO_NOT_EMPTY */ if (REG_GET(DSI_VC_CTRL(channel), 20, 20)) { DSSERR("Received error during frame transfer:\n"); dsi_vc_flush_receive_data(channel); } #ifdef CONFIG_OMAP2_DSS_FAKE_VSYNC dispc_fake_vsync_irq(); #endif } static void dsi_framedone_work_callback(struct work_struct *work) { DSSDBGF(); cancel_delayed_work_sync(&dsi.framedone_timeout_work); dsi_handle_framedone(); dsi_perf_show("DISPC"); dsi.framedone_callback(0, dsi.framedone_data); } int omap_dsi_prepare_update(struct omap_dss_device *dssdev, u16 *x, u16 *y, u16 *w, u16 *h) { u16 dw, dh; dssdev->driver->get_resolution(dssdev, &dw, &dh); if (*x > dw || *y > dh) return -EINVAL; if (*x + *w > dw) return -EINVAL; if (*y + *h > dh) return -EINVAL; if (*w == 1) return -EINVAL; if (*w == 0 || *h == 0) return -EINVAL; dsi_perf_mark_setup(); if (dssdev->manager->caps & OMAP_DSS_OVL_MGR_CAP_DISPC) { dss_setup_partial_planes(dssdev, x, y, w, h); dispc_set_lcd_size(*w, *h); } return 0; } EXPORT_SYMBOL(omap_dsi_prepare_update); int omap_dsi_update(struct omap_dss_device *dssdev, int channel, u16 x, u16 y, u16 w, u16 h, void (*callback)(int, void *), void *data) { dsi.update_channel = channel; if (dssdev->manager->caps & OMAP_DSS_OVL_MGR_CAP_DISPC) { dsi.framedone_callback = callback; dsi.framedone_data = data; dsi.update_region.x = x; dsi.update_region.y = y; dsi.update_region.w = w; dsi.update_region.h = h; dsi.update_region.device = dssdev; dsi_update_screen_dispc(dssdev, x, y, w, h); } else { dsi_update_screen_l4(dssdev, x, y, w, h); dsi_perf_show("L4"); callback(0, data); } return 0; } EXPORT_SYMBOL(omap_dsi_update); /* Display funcs */ static int dsi_display_init_dispc(struct omap_dss_device *dssdev) { int r; r = omap_dispc_register_isr(dsi_framedone_irq_callback, NULL, DISPC_IRQ_FRAMEDONE); if (r) { DSSERR("can't get FRAMEDONE irq\n"); return r; } dispc_set_lcd_display_type(OMAP_DSS_LCD_DISPLAY_TFT); dispc_set_parallel_interface_mode(OMAP_DSS_PARALLELMODE_DSI); dispc_enable_fifohandcheck(1); dispc_set_tft_data_lines(dssdev->ctrl.pixel_size); { struct omap_video_timings timings = { .hsw = 1, .hfp = 1, .hbp = 1, .vsw = 1, .vfp = 0, .vbp = 0, }; dispc_set_lcd_timings(&timings); } return 0; } static void dsi_display_uninit_dispc(struct omap_dss_device *dssdev) { omap_dispc_unregister_isr(dsi_framedone_irq_callback, NULL, DISPC_IRQ_FRAMEDONE); } static int dsi_configure_dsi_clocks(struct omap_dss_device *dssdev) { struct dsi_clock_info cinfo; int r; /* we always use DSS2_FCK as input clock */ cinfo.use_dss2_fck = true; cinfo.regn = dssdev->phy.dsi.div.regn; cinfo.regm = dssdev->phy.dsi.div.regm; cinfo.regm3 = dssdev->phy.dsi.div.regm3; cinfo.regm4 = dssdev->phy.dsi.div.regm4; r = dsi_calc_clock_rates(&cinfo); if (r) return r; r = dsi_pll_set_clock_div(&cinfo); if (r) { DSSERR("Failed to set dsi clocks\n"); return r; } return 0; } static int dsi_configure_dispc_clocks(struct omap_dss_device *dssdev) { struct dispc_clock_info dispc_cinfo; int r; unsigned long long fck; fck = dsi_get_dsi1_pll_rate(); dispc_cinfo.lck_div = dssdev->phy.dsi.div.lck_div; dispc_cinfo.pck_div = dssdev->phy.dsi.div.pck_div; r = dispc_calc_clock_rates(fck, &dispc_cinfo); if (r) { DSSERR("Failed to calc dispc clocks\n"); return r; } r = dispc_set_clock_div(&dispc_cinfo); if (r) { DSSERR("Failed to set dispc clocks\n"); return r; } return 0; } static int dsi_display_init_dsi(struct omap_dss_device *dssdev) { int r; _dsi_print_reset_status(); r = dsi_pll_init(dssdev, true, true); if (r) goto err0; r = dsi_configure_dsi_clocks(dssdev); if (r) goto err1; dss_select_dispc_clk_source(DSS_SRC_DSI1_PLL_FCLK); dss_select_dsi_clk_source(DSS_SRC_DSI2_PLL_FCLK); DSSDBG("PLL OK\n"); r = dsi_configure_dispc_clocks(dssdev); if (r) goto err2; r = dsi_complexio_init(dssdev); if (r) goto err2; _dsi_print_reset_status(); dsi_proto_timings(dssdev); dsi_set_lp_clk_divisor(dssdev); if (1) _dsi_print_reset_status(); r = dsi_proto_config(dssdev); if (r) goto err3; /* enable interface */ dsi_vc_enable(0, 1); dsi_vc_enable(1, 1); dsi_vc_enable(2, 1); dsi_vc_enable(3, 1); dsi_if_enable(1); dsi_force_tx_stop_mode_io(); return 0; err3: dsi_complexio_uninit(); err2: dss_select_dispc_clk_source(DSS_SRC_DSS1_ALWON_FCLK); dss_select_dsi_clk_source(DSS_SRC_DSS1_ALWON_FCLK); err1: dsi_pll_uninit(); err0: return r; } static void dsi_display_uninit_dsi(struct omap_dss_device *dssdev) { dss_select_dispc_clk_source(DSS_SRC_DSS1_ALWON_FCLK); dss_select_dsi_clk_source(DSS_SRC_DSS1_ALWON_FCLK); dsi_complexio_uninit(); dsi_pll_uninit(); } static int dsi_core_init(void) { /* Autoidle */ REG_FLD_MOD(DSI_SYSCONFIG, 1, 0, 0); /* ENWAKEUP */ REG_FLD_MOD(DSI_SYSCONFIG, 1, 2, 2); /* SIDLEMODE smart-idle */ REG_FLD_MOD(DSI_SYSCONFIG, 2, 4, 3); _dsi_initialize_irq(); return 0; } int omapdss_dsi_display_enable(struct omap_dss_device *dssdev) { int r = 0; DSSDBG("dsi_display_enable\n"); WARN_ON(!dsi_bus_is_locked()); mutex_lock(&dsi.lock); r = omap_dss_start_device(dssdev); if (r) { DSSERR("failed to start device\n"); goto err0; } enable_clocks(1); dsi_enable_pll_clock(1); r = _dsi_reset(); if (r) goto err1; dsi_core_init(); r = dsi_display_init_dispc(dssdev); if (r) goto err1; r = dsi_display_init_dsi(dssdev); if (r) goto err2; mutex_unlock(&dsi.lock); return 0; err2: dsi_display_uninit_dispc(dssdev); err1: enable_clocks(0); dsi_enable_pll_clock(0); omap_dss_stop_device(dssdev); err0: mutex_unlock(&dsi.lock); DSSDBG("dsi_display_enable FAILED\n"); return r; } EXPORT_SYMBOL(omapdss_dsi_display_enable); void omapdss_dsi_display_disable(struct omap_dss_device *dssdev) { DSSDBG("dsi_display_disable\n"); WARN_ON(!dsi_bus_is_locked()); mutex_lock(&dsi.lock); dsi_display_uninit_dispc(dssdev); dsi_display_uninit_dsi(dssdev); enable_clocks(0); dsi_enable_pll_clock(0); omap_dss_stop_device(dssdev); mutex_unlock(&dsi.lock); } EXPORT_SYMBOL(omapdss_dsi_display_disable); int omapdss_dsi_enable_te(struct omap_dss_device *dssdev, bool enable) { dsi.te_enabled = enable; return 0; } EXPORT_SYMBOL(omapdss_dsi_enable_te); void dsi_get_overlay_fifo_thresholds(enum omap_plane plane, u32 fifo_size, enum omap_burst_size *burst_size, u32 *fifo_low, u32 *fifo_high) { unsigned burst_size_bytes; *burst_size = OMAP_DSS_BURST_16x32; burst_size_bytes = 16 * 32 / 8; *fifo_high = fifo_size - burst_size_bytes; *fifo_low = fifo_size - burst_size_bytes * 8; } int dsi_init_display(struct omap_dss_device *dssdev) { DSSDBG("DSI init\n"); /* XXX these should be figured out dynamically */ dssdev->caps = OMAP_DSS_DISPLAY_CAP_MANUAL_UPDATE | OMAP_DSS_DISPLAY_CAP_TEAR_ELIM; dsi.vc[0].dssdev = dssdev; dsi.vc[1].dssdev = dssdev; return 0; } int dsi_init(struct platform_device *pdev) { u32 rev; int r; spin_lock_init(&dsi.errors_lock); dsi.errors = 0; #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS spin_lock_init(&dsi.irq_stats_lock); dsi.irq_stats.last_reset = jiffies; #endif init_completion(&dsi.bta_completion); mutex_init(&dsi.lock); sema_init(&dsi.bus_lock, 1); dsi.workqueue = create_singlethread_workqueue("dsi"); if (dsi.workqueue == NULL) return -ENOMEM; INIT_WORK(&dsi.framedone_work, dsi_framedone_work_callback); INIT_DELAYED_WORK_DEFERRABLE(&dsi.framedone_timeout_work, dsi_framedone_timeout_work_callback); #ifdef DSI_CATCH_MISSING_TE init_timer(&dsi.te_timer); dsi.te_timer.function = dsi_te_timeout; dsi.te_timer.data = 0; #endif dsi.base = ioremap(DSI_BASE, DSI_SZ_REGS); if (!dsi.base) { DSSERR("can't ioremap DSI\n"); r = -ENOMEM; goto err1; } dsi.vdds_dsi_reg = dss_get_vdds_dsi(); if (IS_ERR(dsi.vdds_dsi_reg)) { iounmap(dsi.base); DSSERR("can't get VDDS_DSI regulator\n"); r = PTR_ERR(dsi.vdds_dsi_reg); goto err2; } enable_clocks(1); rev = dsi_read_reg(DSI_REVISION); printk(KERN_INFO "OMAP DSI rev %d.%d\n", FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0)); enable_clocks(0); return 0; err2: iounmap(dsi.base); err1: destroy_workqueue(dsi.workqueue); return r; } void dsi_exit(void) { iounmap(dsi.base); destroy_workqueue(dsi.workqueue); DSSDBG("omap_dsi_exit\n"); }