// SPDX-License-Identifier: GPL-2.0-only /* * Generic entry points for the idle threads and * implementation of the idle task scheduling class. * * (NOTE: these are not related to SCHED_IDLE batch scheduled * tasks which are handled in sched/fair.c ) */ /* Linker adds these: start and end of __cpuidle functions */ extern char __cpuidle_text_start[], __cpuidle_text_end[]; /** * sched_idle_set_state - Record idle state for the current CPU. * @idle_state: State to record. */ void sched_idle_set_state(struct cpuidle_state *idle_state) { idle_set_state(this_rq(), idle_state); } static int __read_mostly cpu_idle_force_poll; void cpu_idle_poll_ctrl(bool enable) { if (enable) { cpu_idle_force_poll++; } else { cpu_idle_force_poll--; WARN_ON_ONCE(cpu_idle_force_poll < 0); } } #ifdef CONFIG_GENERIC_IDLE_POLL_SETUP static int __init cpu_idle_poll_setup(char *__unused) { cpu_idle_force_poll = 1; return 1; } __setup("nohlt", cpu_idle_poll_setup); static int __init cpu_idle_nopoll_setup(char *__unused) { cpu_idle_force_poll = 0; return 1; } __setup("hlt", cpu_idle_nopoll_setup); #endif static noinline int __cpuidle cpu_idle_poll(void) { instrumentation_begin(); trace_cpu_idle(0, smp_processor_id()); stop_critical_timings(); ct_cpuidle_enter(); raw_local_irq_enable(); while (!tif_need_resched() && (cpu_idle_force_poll || tick_check_broadcast_expired())) cpu_relax(); raw_local_irq_disable(); ct_cpuidle_exit(); start_critical_timings(); trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id()); local_irq_enable(); instrumentation_end(); return 1; } /* Weak implementations for optional arch specific functions */ void __weak arch_cpu_idle_prepare(void) { } void __weak arch_cpu_idle_enter(void) { } void __weak arch_cpu_idle_exit(void) { } void __weak __noreturn arch_cpu_idle_dead(void) { while (1); } void __weak arch_cpu_idle(void) { cpu_idle_force_poll = 1; } #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE DEFINE_STATIC_KEY_FALSE(arch_needs_tick_broadcast); static inline void cond_tick_broadcast_enter(void) { if (static_branch_unlikely(&arch_needs_tick_broadcast)) tick_broadcast_enter(); } static inline void cond_tick_broadcast_exit(void) { if (static_branch_unlikely(&arch_needs_tick_broadcast)) tick_broadcast_exit(); } #else static inline void cond_tick_broadcast_enter(void) { } static inline void cond_tick_broadcast_exit(void) { } #endif /** * default_idle_call - Default CPU idle routine. * * To use when the cpuidle framework cannot be used. */ void __cpuidle default_idle_call(void) { instrumentation_begin(); if (!current_clr_polling_and_test()) { cond_tick_broadcast_enter(); trace_cpu_idle(1, smp_processor_id()); stop_critical_timings(); ct_cpuidle_enter(); arch_cpu_idle(); ct_cpuidle_exit(); start_critical_timings(); trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id()); cond_tick_broadcast_exit(); } local_irq_enable(); instrumentation_end(); } static int call_cpuidle_s2idle(struct cpuidle_driver *drv, struct cpuidle_device *dev) { if (current_clr_polling_and_test()) return -EBUSY; return cpuidle_enter_s2idle(drv, dev); } static int call_cpuidle(struct cpuidle_driver *drv, struct cpuidle_device *dev, int next_state) { /* * The idle task must be scheduled, it is pointless to go to idle, just * update no idle residency and return. */ if (current_clr_polling_and_test()) { dev->last_residency_ns = 0; local_irq_enable(); return -EBUSY; } /* * Enter the idle state previously returned by the governor decision. * This function will block until an interrupt occurs and will take * care of re-enabling the local interrupts */ return cpuidle_enter(drv, dev, next_state); } /** * cpuidle_idle_call - the main idle function * * NOTE: no locks or semaphores should be used here * * On architectures that support TIF_POLLING_NRFLAG, is called with polling * set, and it returns with polling set. If it ever stops polling, it * must clear the polling bit. */ static void cpuidle_idle_call(void) { struct cpuidle_device *dev = cpuidle_get_device(); struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); int next_state, entered_state; /* * Check if the idle task must be rescheduled. If it is the * case, exit the function after re-enabling the local IRQ. */ if (need_resched()) { local_irq_enable(); return; } if (cpuidle_not_available(drv, dev)) { tick_nohz_idle_stop_tick(); default_idle_call(); goto exit_idle; } /* * Suspend-to-idle ("s2idle") is a system state in which all user space * has been frozen, all I/O devices have been suspended and the only * activity happens here and in interrupts (if any). In that case bypass * the cpuidle governor and go straight for the deepest idle state * available. Possibly also suspend the local tick and the entire * timekeeping to prevent timer interrupts from kicking us out of idle * until a proper wakeup interrupt happens. */ if (idle_should_enter_s2idle() || dev->forced_idle_latency_limit_ns) { u64 max_latency_ns; if (idle_should_enter_s2idle()) { entered_state = call_cpuidle_s2idle(drv, dev); if (entered_state > 0) goto exit_idle; max_latency_ns = U64_MAX; } else { max_latency_ns = dev->forced_idle_latency_limit_ns; } tick_nohz_idle_stop_tick(); next_state = cpuidle_find_deepest_state(drv, dev, max_latency_ns); call_cpuidle(drv, dev, next_state); } else { bool stop_tick = true; /* * Ask the cpuidle framework to choose a convenient idle state. */ next_state = cpuidle_select(drv, dev, &stop_tick); if (stop_tick || tick_nohz_tick_stopped()) tick_nohz_idle_stop_tick(); else tick_nohz_idle_retain_tick(); entered_state = call_cpuidle(drv, dev, next_state); /* * Give the governor an opportunity to reflect on the outcome */ cpuidle_reflect(dev, entered_state); } exit_idle: __current_set_polling(); /* * It is up to the idle functions to re-enable local interrupts */ if (WARN_ON_ONCE(irqs_disabled())) local_irq_enable(); } /* * Generic idle loop implementation * * Called with polling cleared. */ static void do_idle(void) { int cpu = smp_processor_id(); /* * Check if we need to update blocked load */ nohz_run_idle_balance(cpu); /* * If the arch has a polling bit, we maintain an invariant: * * Our polling bit is clear if we're not scheduled (i.e. if rq->curr != * rq->idle). This means that, if rq->idle has the polling bit set, * then setting need_resched is guaranteed to cause the CPU to * reschedule. */ __current_set_polling(); tick_nohz_idle_enter(); while (!need_resched()) { rmb(); /* * Interrupts shouldn't be re-enabled from that point on until * the CPU sleeping instruction is reached. Otherwise an interrupt * may fire and queue a timer that would be ignored until the CPU * wakes from the sleeping instruction. And testing need_resched() * doesn't tell about pending needed timer reprogram. * * Several cases to consider: * * - SLEEP-UNTIL-PENDING-INTERRUPT based instructions such as * "wfi" or "mwait" are fine because they can be entered with * interrupt disabled. * * - sti;mwait() couple is fine because the interrupts are * re-enabled only upon the execution of mwait, leaving no gap * in-between. * * - ROLLBACK based idle handlers with the sleeping instruction * called with interrupts enabled are NOT fine. In this scheme * when the interrupt detects it has interrupted an idle handler, * it rolls back to its beginning which performs the * need_resched() check before re-executing the sleeping * instruction. This can leak a pending needed timer reprogram. * If such a scheme is really mandatory due to the lack of an * appropriate CPU sleeping instruction, then a FAST-FORWARD * must instead be applied: when the interrupt detects it has * interrupted an idle handler, it must resume to the end of * this idle handler so that the generic idle loop is iterated * again to reprogram the tick. */ local_irq_disable(); if (cpu_is_offline(cpu)) { cpuhp_report_idle_dead(); arch_cpu_idle_dead(); } arch_cpu_idle_enter(); rcu_nocb_flush_deferred_wakeup(); /* * In poll mode we re-enable interrupts and spin. Also if we * detected in the wakeup from idle path that the tick * broadcast device expired for us, we don't want to go deep * idle as we know that the IPI is going to arrive right away. */ if (cpu_idle_force_poll || tick_check_broadcast_expired()) { tick_nohz_idle_restart_tick(); cpu_idle_poll(); } else { cpuidle_idle_call(); } arch_cpu_idle_exit(); } /* * Since we fell out of the loop above, we know TIF_NEED_RESCHED must * be set, propagate it into PREEMPT_NEED_RESCHED. * * This is required because for polling idle loops we will not have had * an IPI to fold the state for us. */ preempt_set_need_resched(); tick_nohz_idle_exit(); __current_clr_polling(); /* * We promise to call sched_ttwu_pending() and reschedule if * need_resched() is set while polling is set. That means that clearing * polling needs to be visible before doing these things. */ smp_mb__after_atomic(); /* * RCU relies on this call to be done outside of an RCU read-side * critical section. */ flush_smp_call_function_queue(); schedule_idle(); if (unlikely(klp_patch_pending(current))) klp_update_patch_state(current); } bool cpu_in_idle(unsigned long pc) { return pc >= (unsigned long)__cpuidle_text_start && pc < (unsigned long)__cpuidle_text_end; } struct idle_timer { struct hrtimer timer; int done; }; static enum hrtimer_restart idle_inject_timer_fn(struct hrtimer *timer) { struct idle_timer *it = container_of(timer, struct idle_timer, timer); WRITE_ONCE(it->done, 1); set_tsk_need_resched(current); return HRTIMER_NORESTART; } void play_idle_precise(u64 duration_ns, u64 latency_ns) { struct idle_timer it; /* * Only FIFO tasks can disable the tick since they don't need the forced * preemption. */ WARN_ON_ONCE(current->policy != SCHED_FIFO); WARN_ON_ONCE(current->nr_cpus_allowed != 1); WARN_ON_ONCE(!(current->flags & PF_KTHREAD)); WARN_ON_ONCE(!(current->flags & PF_NO_SETAFFINITY)); WARN_ON_ONCE(!duration_ns); WARN_ON_ONCE(current->mm); rcu_sleep_check(); preempt_disable(); current->flags |= PF_IDLE; cpuidle_use_deepest_state(latency_ns); it.done = 0; hrtimer_init_on_stack(&it.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); it.timer.function = idle_inject_timer_fn; hrtimer_start(&it.timer, ns_to_ktime(duration_ns), HRTIMER_MODE_REL_PINNED_HARD); while (!READ_ONCE(it.done)) do_idle(); cpuidle_use_deepest_state(0); current->flags &= ~PF_IDLE; preempt_fold_need_resched(); preempt_enable(); } EXPORT_SYMBOL_GPL(play_idle_precise); void cpu_startup_entry(enum cpuhp_state state) { current->flags |= PF_IDLE; arch_cpu_idle_prepare(); cpuhp_online_idle(state); while (1) do_idle(); } /* * idle-task scheduling class. */ #ifdef CONFIG_SMP static int select_task_rq_idle(struct task_struct *p, int cpu, int flags) { return task_cpu(p); /* IDLE tasks as never migrated */ } static int balance_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) { return WARN_ON_ONCE(1); } #endif /* * Idle tasks are unconditionally rescheduled: */ static void wakeup_preempt_idle(struct rq *rq, struct task_struct *p, int flags) { resched_curr(rq); } static void put_prev_task_idle(struct rq *rq, struct task_struct *prev) { dl_server_update_idle_time(rq, prev); scx_update_idle(rq, false); } static void set_next_task_idle(struct rq *rq, struct task_struct *next, bool first) { update_idle_core(rq); scx_update_idle(rq, true); schedstat_inc(rq->sched_goidle); next->se.exec_start = rq_clock_task(rq); } #ifdef CONFIG_SMP static struct task_struct *pick_task_idle(struct rq *rq) { return rq->idle; } #endif struct task_struct *pick_next_task_idle(struct rq *rq) { struct task_struct *next = rq->idle; set_next_task_idle(rq, next, true); return next; } /* * It is not legal to sleep in the idle task - print a warning * message if some code attempts to do it: */ static void dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags) { raw_spin_rq_unlock_irq(rq); printk(KERN_ERR "bad: scheduling from the idle thread!\n"); dump_stack(); raw_spin_rq_lock_irq(rq); } /* * scheduler tick hitting a task of our scheduling class. * * NOTE: This function can be called remotely by the tick offload that * goes along full dynticks. Therefore no local assumption can be made * and everything must be accessed through the @rq and @curr passed in * parameters. */ static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued) { } static void switched_to_idle(struct rq *rq, struct task_struct *p) { BUG(); } static void prio_changed_idle(struct rq *rq, struct task_struct *p, int oldprio) { BUG(); } static void update_curr_idle(struct rq *rq) { } /* * Simple, special scheduling class for the per-CPU idle tasks: */ DEFINE_SCHED_CLASS(idle) = { /* no enqueue/yield_task for idle tasks */ /* dequeue is not valid, we print a debug message there: */ .dequeue_task = dequeue_task_idle, .wakeup_preempt = wakeup_preempt_idle, .pick_next_task = pick_next_task_idle, .put_prev_task = put_prev_task_idle, .set_next_task = set_next_task_idle, #ifdef CONFIG_SMP .balance = balance_idle, .pick_task = pick_task_idle, .select_task_rq = select_task_rq_idle, .set_cpus_allowed = set_cpus_allowed_common, #endif .task_tick = task_tick_idle, .prio_changed = prio_changed_idle, .switched_to = switched_to_idle, .update_curr = update_curr_idle, };