/* * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "intel.h" #include "nfit.h" /* * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is * irrelevant. */ #include static bool force_enable_dimms; module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status"); static bool disable_vendor_specific; module_param(disable_vendor_specific, bool, S_IRUGO); MODULE_PARM_DESC(disable_vendor_specific, "Limit commands to the publicly specified set"); static unsigned long override_dsm_mask; module_param(override_dsm_mask, ulong, S_IRUGO); MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions"); static int default_dsm_family = -1; module_param(default_dsm_family, int, S_IRUGO); MODULE_PARM_DESC(default_dsm_family, "Try this DSM type first when identifying NVDIMM family"); static bool no_init_ars; module_param(no_init_ars, bool, 0644); MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time"); LIST_HEAD(acpi_descs); DEFINE_MUTEX(acpi_desc_lock); static struct workqueue_struct *nfit_wq; struct nfit_table_prev { struct list_head spas; struct list_head memdevs; struct list_head dcrs; struct list_head bdws; struct list_head idts; struct list_head flushes; }; static guid_t nfit_uuid[NFIT_UUID_MAX]; const guid_t *to_nfit_uuid(enum nfit_uuids id) { return &nfit_uuid[id]; } EXPORT_SYMBOL(to_nfit_uuid); static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc) { struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; /* * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct * acpi_device. */ if (!nd_desc->provider_name || strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0) return NULL; return to_acpi_device(acpi_desc->dev); } static int xlat_bus_status(void *buf, unsigned int cmd, u32 status) { struct nd_cmd_clear_error *clear_err; struct nd_cmd_ars_status *ars_status; u16 flags; switch (cmd) { case ND_CMD_ARS_CAP: if ((status & 0xffff) == NFIT_ARS_CAP_NONE) return -ENOTTY; /* Command failed */ if (status & 0xffff) return -EIO; /* No supported scan types for this range */ flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE; if ((status >> 16 & flags) == 0) return -ENOTTY; return 0; case ND_CMD_ARS_START: /* ARS is in progress */ if ((status & 0xffff) == NFIT_ARS_START_BUSY) return -EBUSY; /* Command failed */ if (status & 0xffff) return -EIO; return 0; case ND_CMD_ARS_STATUS: ars_status = buf; /* Command failed */ if (status & 0xffff) return -EIO; /* Check extended status (Upper two bytes) */ if (status == NFIT_ARS_STATUS_DONE) return 0; /* ARS is in progress */ if (status == NFIT_ARS_STATUS_BUSY) return -EBUSY; /* No ARS performed for the current boot */ if (status == NFIT_ARS_STATUS_NONE) return -EAGAIN; /* * ARS interrupted, either we overflowed or some other * agent wants the scan to stop. If we didn't overflow * then just continue with the returned results. */ if (status == NFIT_ARS_STATUS_INTR) { if (ars_status->out_length >= 40 && (ars_status->flags & NFIT_ARS_F_OVERFLOW)) return -ENOSPC; return 0; } /* Unknown status */ if (status >> 16) return -EIO; return 0; case ND_CMD_CLEAR_ERROR: clear_err = buf; if (status & 0xffff) return -EIO; if (!clear_err->cleared) return -EIO; if (clear_err->length > clear_err->cleared) return clear_err->cleared; return 0; default: break; } /* all other non-zero status results in an error */ if (status) return -EIO; return 0; } #define ACPI_LABELS_LOCKED 3 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd, u32 status) { struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); switch (cmd) { case ND_CMD_GET_CONFIG_SIZE: /* * In the _LSI, _LSR, _LSW case the locked status is * communicated via the read/write commands */ if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) break; if (status >> 16 & ND_CONFIG_LOCKED) return -EACCES; break; case ND_CMD_GET_CONFIG_DATA: if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags) && status == ACPI_LABELS_LOCKED) return -EACCES; break; case ND_CMD_SET_CONFIG_DATA: if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags) && status == ACPI_LABELS_LOCKED) return -EACCES; break; default: break; } /* all other non-zero status results in an error */ if (status) return -EIO; return 0; } static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd, u32 status) { if (!nvdimm) return xlat_bus_status(buf, cmd, status); return xlat_nvdimm_status(nvdimm, buf, cmd, status); } /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */ static union acpi_object *pkg_to_buf(union acpi_object *pkg) { int i; void *dst; size_t size = 0; union acpi_object *buf = NULL; if (pkg->type != ACPI_TYPE_PACKAGE) { WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", pkg->type); goto err; } for (i = 0; i < pkg->package.count; i++) { union acpi_object *obj = &pkg->package.elements[i]; if (obj->type == ACPI_TYPE_INTEGER) size += 4; else if (obj->type == ACPI_TYPE_BUFFER) size += obj->buffer.length; else { WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", obj->type); goto err; } } buf = ACPI_ALLOCATE(sizeof(*buf) + size); if (!buf) goto err; dst = buf + 1; buf->type = ACPI_TYPE_BUFFER; buf->buffer.length = size; buf->buffer.pointer = dst; for (i = 0; i < pkg->package.count; i++) { union acpi_object *obj = &pkg->package.elements[i]; if (obj->type == ACPI_TYPE_INTEGER) { memcpy(dst, &obj->integer.value, 4); dst += 4; } else if (obj->type == ACPI_TYPE_BUFFER) { memcpy(dst, obj->buffer.pointer, obj->buffer.length); dst += obj->buffer.length; } } err: ACPI_FREE(pkg); return buf; } static union acpi_object *int_to_buf(union acpi_object *integer) { union acpi_object *buf = ACPI_ALLOCATE(sizeof(*buf) + 4); void *dst = NULL; if (!buf) goto err; if (integer->type != ACPI_TYPE_INTEGER) { WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n", integer->type); goto err; } dst = buf + 1; buf->type = ACPI_TYPE_BUFFER; buf->buffer.length = 4; buf->buffer.pointer = dst; memcpy(dst, &integer->integer.value, 4); err: ACPI_FREE(integer); return buf; } static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset, u32 len, void *data) { acpi_status rc; struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; struct acpi_object_list input = { .count = 3, .pointer = (union acpi_object []) { [0] = { .integer.type = ACPI_TYPE_INTEGER, .integer.value = offset, }, [1] = { .integer.type = ACPI_TYPE_INTEGER, .integer.value = len, }, [2] = { .buffer.type = ACPI_TYPE_BUFFER, .buffer.pointer = data, .buffer.length = len, }, }, }; rc = acpi_evaluate_object(handle, "_LSW", &input, &buf); if (ACPI_FAILURE(rc)) return NULL; return int_to_buf(buf.pointer); } static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset, u32 len) { acpi_status rc; struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; struct acpi_object_list input = { .count = 2, .pointer = (union acpi_object []) { [0] = { .integer.type = ACPI_TYPE_INTEGER, .integer.value = offset, }, [1] = { .integer.type = ACPI_TYPE_INTEGER, .integer.value = len, }, }, }; rc = acpi_evaluate_object(handle, "_LSR", &input, &buf); if (ACPI_FAILURE(rc)) return NULL; return pkg_to_buf(buf.pointer); } static union acpi_object *acpi_label_info(acpi_handle handle) { acpi_status rc; struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf); if (ACPI_FAILURE(rc)) return NULL; return pkg_to_buf(buf.pointer); } static u8 nfit_dsm_revid(unsigned family, unsigned func) { static const u8 revid_table[NVDIMM_FAMILY_MAX+1][32] = { [NVDIMM_FAMILY_INTEL] = { [NVDIMM_INTEL_GET_MODES] = 2, [NVDIMM_INTEL_GET_FWINFO] = 2, [NVDIMM_INTEL_START_FWUPDATE] = 2, [NVDIMM_INTEL_SEND_FWUPDATE] = 2, [NVDIMM_INTEL_FINISH_FWUPDATE] = 2, [NVDIMM_INTEL_QUERY_FWUPDATE] = 2, [NVDIMM_INTEL_SET_THRESHOLD] = 2, [NVDIMM_INTEL_INJECT_ERROR] = 2, [NVDIMM_INTEL_GET_SECURITY_STATE] = 2, [NVDIMM_INTEL_SET_PASSPHRASE] = 2, [NVDIMM_INTEL_DISABLE_PASSPHRASE] = 2, [NVDIMM_INTEL_UNLOCK_UNIT] = 2, [NVDIMM_INTEL_FREEZE_LOCK] = 2, [NVDIMM_INTEL_SECURE_ERASE] = 2, [NVDIMM_INTEL_OVERWRITE] = 2, [NVDIMM_INTEL_QUERY_OVERWRITE] = 2, [NVDIMM_INTEL_SET_MASTER_PASSPHRASE] = 2, [NVDIMM_INTEL_MASTER_SECURE_ERASE] = 2, }, }; u8 id; if (family > NVDIMM_FAMILY_MAX) return 0; if (func > 31) return 0; id = revid_table[family][func]; if (id == 0) return 1; /* default */ return id; } static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func) { struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL && func >= NVDIMM_INTEL_GET_SECURITY_STATE && func <= NVDIMM_INTEL_MASTER_SECURE_ERASE) return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG); return true; } static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd, struct nd_cmd_pkg *call_pkg) { if (call_pkg) { int i; if (nfit_mem->family != call_pkg->nd_family) return -ENOTTY; for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++) if (call_pkg->nd_reserved2[i]) return -EINVAL; return call_pkg->nd_command; } /* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */ if (nfit_mem->family == NVDIMM_FAMILY_INTEL) return cmd; /* * Force function number validation to fail since 0 is never * published as a valid function in dsm_mask. */ return 0; } int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc) { struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); union acpi_object in_obj, in_buf, *out_obj; const struct nd_cmd_desc *desc = NULL; struct device *dev = acpi_desc->dev; struct nd_cmd_pkg *call_pkg = NULL; const char *cmd_name, *dimm_name; unsigned long cmd_mask, dsm_mask; u32 offset, fw_status = 0; acpi_handle handle; const guid_t *guid; int func, rc, i; if (cmd_rc) *cmd_rc = -EINVAL; if (nvdimm) { struct acpi_device *adev = nfit_mem->adev; if (!adev) return -ENOTTY; if (cmd == ND_CMD_CALL) call_pkg = buf; func = cmd_to_func(nfit_mem, cmd, call_pkg); if (func < 0) return func; dimm_name = nvdimm_name(nvdimm); cmd_name = nvdimm_cmd_name(cmd); cmd_mask = nvdimm_cmd_mask(nvdimm); dsm_mask = nfit_mem->dsm_mask; desc = nd_cmd_dimm_desc(cmd); guid = to_nfit_uuid(nfit_mem->family); handle = adev->handle; } else { struct acpi_device *adev = to_acpi_dev(acpi_desc); func = cmd; cmd_name = nvdimm_bus_cmd_name(cmd); cmd_mask = nd_desc->cmd_mask; dsm_mask = cmd_mask; if (cmd == ND_CMD_CALL) dsm_mask = nd_desc->bus_dsm_mask; desc = nd_cmd_bus_desc(cmd); guid = to_nfit_uuid(NFIT_DEV_BUS); handle = adev->handle; dimm_name = "bus"; } if (!desc || (cmd && (desc->out_num + desc->in_num == 0))) return -ENOTTY; /* * Check for a valid command. For ND_CMD_CALL, we also have to * make sure that the DSM function is supported. */ if (cmd == ND_CMD_CALL && !test_bit(func, &dsm_mask)) return -ENOTTY; else if (!test_bit(cmd, &cmd_mask)) return -ENOTTY; in_obj.type = ACPI_TYPE_PACKAGE; in_obj.package.count = 1; in_obj.package.elements = &in_buf; in_buf.type = ACPI_TYPE_BUFFER; in_buf.buffer.pointer = buf; in_buf.buffer.length = 0; /* libnvdimm has already validated the input envelope */ for (i = 0; i < desc->in_num; i++) in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc, i, buf); if (call_pkg) { /* skip over package wrapper */ in_buf.buffer.pointer = (void *) &call_pkg->nd_payload; in_buf.buffer.length = call_pkg->nd_size_in; } dev_dbg(dev, "%s cmd: %d: func: %d input length: %d\n", dimm_name, cmd, func, in_buf.buffer.length); if (payload_dumpable(nvdimm, func)) print_hex_dump_debug("nvdimm in ", DUMP_PREFIX_OFFSET, 4, 4, in_buf.buffer.pointer, min_t(u32, 256, in_buf.buffer.length), true); /* call the BIOS, prefer the named methods over _DSM if available */ if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) out_obj = acpi_label_info(handle); else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) { struct nd_cmd_get_config_data_hdr *p = buf; out_obj = acpi_label_read(handle, p->in_offset, p->in_length); } else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA && test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) { struct nd_cmd_set_config_hdr *p = buf; out_obj = acpi_label_write(handle, p->in_offset, p->in_length, p->in_buf); } else { u8 revid; if (nvdimm) revid = nfit_dsm_revid(nfit_mem->family, func); else revid = 1; out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj); } if (!out_obj) { dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name); return -EINVAL; } if (call_pkg) { call_pkg->nd_fw_size = out_obj->buffer.length; memcpy(call_pkg->nd_payload + call_pkg->nd_size_in, out_obj->buffer.pointer, min(call_pkg->nd_fw_size, call_pkg->nd_size_out)); ACPI_FREE(out_obj); /* * Need to support FW function w/o known size in advance. * Caller can determine required size based upon nd_fw_size. * If we return an error (like elsewhere) then caller wouldn't * be able to rely upon data returned to make calculation. */ if (cmd_rc) *cmd_rc = 0; return 0; } if (out_obj->package.type != ACPI_TYPE_BUFFER) { dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n", dimm_name, cmd_name, out_obj->type); rc = -EINVAL; goto out; } dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name, cmd_name, out_obj->buffer.length); print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4, out_obj->buffer.pointer, min_t(u32, 128, out_obj->buffer.length), true); for (i = 0, offset = 0; i < desc->out_num; i++) { u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf, (u32 *) out_obj->buffer.pointer, out_obj->buffer.length - offset); if (offset + out_size > out_obj->buffer.length) { dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n", dimm_name, cmd_name, i); break; } if (in_buf.buffer.length + offset + out_size > buf_len) { dev_dbg(dev, "%s output overrun cmd: %s field: %d\n", dimm_name, cmd_name, i); rc = -ENXIO; goto out; } memcpy(buf + in_buf.buffer.length + offset, out_obj->buffer.pointer + offset, out_size); offset += out_size; } /* * Set fw_status for all the commands with a known format to be * later interpreted by xlat_status(). */ if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP && cmd <= ND_CMD_CLEAR_ERROR) || (nvdimm && cmd >= ND_CMD_SMART && cmd <= ND_CMD_VENDOR))) fw_status = *(u32 *) out_obj->buffer.pointer; if (offset + in_buf.buffer.length < buf_len) { if (i >= 1) { /* * status valid, return the number of bytes left * unfilled in the output buffer */ rc = buf_len - offset - in_buf.buffer.length; if (cmd_rc) *cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status); } else { dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n", __func__, dimm_name, cmd_name, buf_len, offset); rc = -ENXIO; } } else { rc = 0; if (cmd_rc) *cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status); } out: ACPI_FREE(out_obj); return rc; } EXPORT_SYMBOL_GPL(acpi_nfit_ctl); static const char *spa_type_name(u16 type) { static const char *to_name[] = { [NFIT_SPA_VOLATILE] = "volatile", [NFIT_SPA_PM] = "pmem", [NFIT_SPA_DCR] = "dimm-control-region", [NFIT_SPA_BDW] = "block-data-window", [NFIT_SPA_VDISK] = "volatile-disk", [NFIT_SPA_VCD] = "volatile-cd", [NFIT_SPA_PDISK] = "persistent-disk", [NFIT_SPA_PCD] = "persistent-cd", }; if (type > NFIT_SPA_PCD) return "unknown"; return to_name[type]; } int nfit_spa_type(struct acpi_nfit_system_address *spa) { int i; for (i = 0; i < NFIT_UUID_MAX; i++) if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid)) return i; return -1; } static bool add_spa(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev, struct acpi_nfit_system_address *spa) { struct device *dev = acpi_desc->dev; struct nfit_spa *nfit_spa; if (spa->header.length != sizeof(*spa)) return false; list_for_each_entry(nfit_spa, &prev->spas, list) { if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) { list_move_tail(&nfit_spa->list, &acpi_desc->spas); return true; } } nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa), GFP_KERNEL); if (!nfit_spa) return false; INIT_LIST_HEAD(&nfit_spa->list); memcpy(nfit_spa->spa, spa, sizeof(*spa)); list_add_tail(&nfit_spa->list, &acpi_desc->spas); dev_dbg(dev, "spa index: %d type: %s\n", spa->range_index, spa_type_name(nfit_spa_type(spa))); return true; } static bool add_memdev(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev, struct acpi_nfit_memory_map *memdev) { struct device *dev = acpi_desc->dev; struct nfit_memdev *nfit_memdev; if (memdev->header.length != sizeof(*memdev)) return false; list_for_each_entry(nfit_memdev, &prev->memdevs, list) if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) { list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs); return true; } nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev), GFP_KERNEL); if (!nfit_memdev) return false; INIT_LIST_HEAD(&nfit_memdev->list); memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev)); list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs); dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n", memdev->device_handle, memdev->range_index, memdev->region_index, memdev->flags); return true; } int nfit_get_smbios_id(u32 device_handle, u16 *flags) { struct acpi_nfit_memory_map *memdev; struct acpi_nfit_desc *acpi_desc; struct nfit_mem *nfit_mem; u16 physical_id; mutex_lock(&acpi_desc_lock); list_for_each_entry(acpi_desc, &acpi_descs, list) { mutex_lock(&acpi_desc->init_mutex); list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { memdev = __to_nfit_memdev(nfit_mem); if (memdev->device_handle == device_handle) { *flags = memdev->flags; physical_id = memdev->physical_id; mutex_unlock(&acpi_desc->init_mutex); mutex_unlock(&acpi_desc_lock); return physical_id; } } mutex_unlock(&acpi_desc->init_mutex); } mutex_unlock(&acpi_desc_lock); return -ENODEV; } EXPORT_SYMBOL_GPL(nfit_get_smbios_id); /* * An implementation may provide a truncated control region if no block windows * are defined. */ static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr) { if (dcr->header.length < offsetof(struct acpi_nfit_control_region, window_size)) return 0; if (dcr->windows) return sizeof(*dcr); return offsetof(struct acpi_nfit_control_region, window_size); } static bool add_dcr(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev, struct acpi_nfit_control_region *dcr) { struct device *dev = acpi_desc->dev; struct nfit_dcr *nfit_dcr; if (!sizeof_dcr(dcr)) return false; list_for_each_entry(nfit_dcr, &prev->dcrs, list) if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) { list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs); return true; } nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr), GFP_KERNEL); if (!nfit_dcr) return false; INIT_LIST_HEAD(&nfit_dcr->list); memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)); list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs); dev_dbg(dev, "dcr index: %d windows: %d\n", dcr->region_index, dcr->windows); return true; } static bool add_bdw(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev, struct acpi_nfit_data_region *bdw) { struct device *dev = acpi_desc->dev; struct nfit_bdw *nfit_bdw; if (bdw->header.length != sizeof(*bdw)) return false; list_for_each_entry(nfit_bdw, &prev->bdws, list) if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) { list_move_tail(&nfit_bdw->list, &acpi_desc->bdws); return true; } nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw), GFP_KERNEL); if (!nfit_bdw) return false; INIT_LIST_HEAD(&nfit_bdw->list); memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw)); list_add_tail(&nfit_bdw->list, &acpi_desc->bdws); dev_dbg(dev, "bdw dcr: %d windows: %d\n", bdw->region_index, bdw->windows); return true; } static size_t sizeof_idt(struct acpi_nfit_interleave *idt) { if (idt->header.length < sizeof(*idt)) return 0; return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1); } static bool add_idt(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev, struct acpi_nfit_interleave *idt) { struct device *dev = acpi_desc->dev; struct nfit_idt *nfit_idt; if (!sizeof_idt(idt)) return false; list_for_each_entry(nfit_idt, &prev->idts, list) { if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt)) continue; if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) { list_move_tail(&nfit_idt->list, &acpi_desc->idts); return true; } } nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt), GFP_KERNEL); if (!nfit_idt) return false; INIT_LIST_HEAD(&nfit_idt->list); memcpy(nfit_idt->idt, idt, sizeof_idt(idt)); list_add_tail(&nfit_idt->list, &acpi_desc->idts); dev_dbg(dev, "idt index: %d num_lines: %d\n", idt->interleave_index, idt->line_count); return true; } static size_t sizeof_flush(struct acpi_nfit_flush_address *flush) { if (flush->header.length < sizeof(*flush)) return 0; return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1); } static bool add_flush(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev, struct acpi_nfit_flush_address *flush) { struct device *dev = acpi_desc->dev; struct nfit_flush *nfit_flush; if (!sizeof_flush(flush)) return false; list_for_each_entry(nfit_flush, &prev->flushes, list) { if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush)) continue; if (memcmp(nfit_flush->flush, flush, sizeof_flush(flush)) == 0) { list_move_tail(&nfit_flush->list, &acpi_desc->flushes); return true; } } nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush) + sizeof_flush(flush), GFP_KERNEL); if (!nfit_flush) return false; INIT_LIST_HEAD(&nfit_flush->list); memcpy(nfit_flush->flush, flush, sizeof_flush(flush)); list_add_tail(&nfit_flush->list, &acpi_desc->flushes); dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n", flush->device_handle, flush->hint_count); return true; } static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc, struct acpi_nfit_capabilities *pcap) { struct device *dev = acpi_desc->dev; u32 mask; mask = (1 << (pcap->highest_capability + 1)) - 1; acpi_desc->platform_cap = pcap->capabilities & mask; dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap); return true; } static void *add_table(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev, void *table, const void *end) { struct device *dev = acpi_desc->dev; struct acpi_nfit_header *hdr; void *err = ERR_PTR(-ENOMEM); if (table >= end) return NULL; hdr = table; if (!hdr->length) { dev_warn(dev, "found a zero length table '%d' parsing nfit\n", hdr->type); return NULL; } switch (hdr->type) { case ACPI_NFIT_TYPE_SYSTEM_ADDRESS: if (!add_spa(acpi_desc, prev, table)) return err; break; case ACPI_NFIT_TYPE_MEMORY_MAP: if (!add_memdev(acpi_desc, prev, table)) return err; break; case ACPI_NFIT_TYPE_CONTROL_REGION: if (!add_dcr(acpi_desc, prev, table)) return err; break; case ACPI_NFIT_TYPE_DATA_REGION: if (!add_bdw(acpi_desc, prev, table)) return err; break; case ACPI_NFIT_TYPE_INTERLEAVE: if (!add_idt(acpi_desc, prev, table)) return err; break; case ACPI_NFIT_TYPE_FLUSH_ADDRESS: if (!add_flush(acpi_desc, prev, table)) return err; break; case ACPI_NFIT_TYPE_SMBIOS: dev_dbg(dev, "smbios\n"); break; case ACPI_NFIT_TYPE_CAPABILITIES: if (!add_platform_cap(acpi_desc, table)) return err; break; default: dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type); break; } return table + hdr->length; } static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc, struct nfit_mem *nfit_mem) { u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle; u16 dcr = nfit_mem->dcr->region_index; struct nfit_spa *nfit_spa; list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { u16 range_index = nfit_spa->spa->range_index; int type = nfit_spa_type(nfit_spa->spa); struct nfit_memdev *nfit_memdev; if (type != NFIT_SPA_BDW) continue; list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { if (nfit_memdev->memdev->range_index != range_index) continue; if (nfit_memdev->memdev->device_handle != device_handle) continue; if (nfit_memdev->memdev->region_index != dcr) continue; nfit_mem->spa_bdw = nfit_spa->spa; return; } } dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n", nfit_mem->spa_dcr->range_index); nfit_mem->bdw = NULL; } static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc, struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa) { u16 dcr = __to_nfit_memdev(nfit_mem)->region_index; struct nfit_memdev *nfit_memdev; struct nfit_bdw *nfit_bdw; struct nfit_idt *nfit_idt; u16 idt_idx, range_index; list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) { if (nfit_bdw->bdw->region_index != dcr) continue; nfit_mem->bdw = nfit_bdw->bdw; break; } if (!nfit_mem->bdw) return; nfit_mem_find_spa_bdw(acpi_desc, nfit_mem); if (!nfit_mem->spa_bdw) return; range_index = nfit_mem->spa_bdw->range_index; list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { if (nfit_memdev->memdev->range_index != range_index || nfit_memdev->memdev->region_index != dcr) continue; nfit_mem->memdev_bdw = nfit_memdev->memdev; idt_idx = nfit_memdev->memdev->interleave_index; list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { if (nfit_idt->idt->interleave_index != idt_idx) continue; nfit_mem->idt_bdw = nfit_idt->idt; break; } break; } } static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc, struct acpi_nfit_system_address *spa) { struct nfit_mem *nfit_mem, *found; struct nfit_memdev *nfit_memdev; int type = spa ? nfit_spa_type(spa) : 0; switch (type) { case NFIT_SPA_DCR: case NFIT_SPA_PM: break; default: if (spa) return 0; } /* * This loop runs in two modes, when a dimm is mapped the loop * adds memdev associations to an existing dimm, or creates a * dimm. In the unmapped dimm case this loop sweeps for memdev * instances with an invalid / zero range_index and adds those * dimms without spa associations. */ list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { struct nfit_flush *nfit_flush; struct nfit_dcr *nfit_dcr; u32 device_handle; u16 dcr; if (spa && nfit_memdev->memdev->range_index != spa->range_index) continue; if (!spa && nfit_memdev->memdev->range_index) continue; found = NULL; dcr = nfit_memdev->memdev->region_index; device_handle = nfit_memdev->memdev->device_handle; list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle) { found = nfit_mem; break; } if (found) nfit_mem = found; else { nfit_mem = devm_kzalloc(acpi_desc->dev, sizeof(*nfit_mem), GFP_KERNEL); if (!nfit_mem) return -ENOMEM; INIT_LIST_HEAD(&nfit_mem->list); nfit_mem->acpi_desc = acpi_desc; list_add(&nfit_mem->list, &acpi_desc->dimms); } list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { if (nfit_dcr->dcr->region_index != dcr) continue; /* * Record the control region for the dimm. For * the ACPI 6.1 case, where there are separate * control regions for the pmem vs blk * interfaces, be sure to record the extended * blk details. */ if (!nfit_mem->dcr) nfit_mem->dcr = nfit_dcr->dcr; else if (nfit_mem->dcr->windows == 0 && nfit_dcr->dcr->windows) nfit_mem->dcr = nfit_dcr->dcr; break; } list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) { struct acpi_nfit_flush_address *flush; u16 i; if (nfit_flush->flush->device_handle != device_handle) continue; nfit_mem->nfit_flush = nfit_flush; flush = nfit_flush->flush; nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev, flush->hint_count, sizeof(struct resource), GFP_KERNEL); if (!nfit_mem->flush_wpq) return -ENOMEM; for (i = 0; i < flush->hint_count; i++) { struct resource *res = &nfit_mem->flush_wpq[i]; res->start = flush->hint_address[i]; res->end = res->start + 8 - 1; } break; } if (dcr && !nfit_mem->dcr) { dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n", spa->range_index, dcr); return -ENODEV; } if (type == NFIT_SPA_DCR) { struct nfit_idt *nfit_idt; u16 idt_idx; /* multiple dimms may share a SPA when interleaved */ nfit_mem->spa_dcr = spa; nfit_mem->memdev_dcr = nfit_memdev->memdev; idt_idx = nfit_memdev->memdev->interleave_index; list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { if (nfit_idt->idt->interleave_index != idt_idx) continue; nfit_mem->idt_dcr = nfit_idt->idt; break; } nfit_mem_init_bdw(acpi_desc, nfit_mem, spa); } else if (type == NFIT_SPA_PM) { /* * A single dimm may belong to multiple SPA-PM * ranges, record at least one in addition to * any SPA-DCR range. */ nfit_mem->memdev_pmem = nfit_memdev->memdev; } else nfit_mem->memdev_dcr = nfit_memdev->memdev; } return 0; } static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b) { struct nfit_mem *a = container_of(_a, typeof(*a), list); struct nfit_mem *b = container_of(_b, typeof(*b), list); u32 handleA, handleB; handleA = __to_nfit_memdev(a)->device_handle; handleB = __to_nfit_memdev(b)->device_handle; if (handleA < handleB) return -1; else if (handleA > handleB) return 1; return 0; } static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc) { struct nfit_spa *nfit_spa; int rc; /* * For each SPA-DCR or SPA-PMEM address range find its * corresponding MEMDEV(s). From each MEMDEV find the * corresponding DCR. Then, if we're operating on a SPA-DCR, * try to find a SPA-BDW and a corresponding BDW that references * the DCR. Throw it all into an nfit_mem object. Note, that * BDWs are optional. */ list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { rc = __nfit_mem_init(acpi_desc, nfit_spa->spa); if (rc) return rc; } /* * If a DIMM has failed to be mapped into SPA there will be no * SPA entries above. Find and register all the unmapped DIMMs * for reporting and recovery purposes. */ rc = __nfit_mem_init(acpi_desc, NULL); if (rc) return rc; list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp); return 0; } static ssize_t bus_dsm_mask_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); return sprintf(buf, "%#lx\n", nd_desc->bus_dsm_mask); } static struct device_attribute dev_attr_bus_dsm_mask = __ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL); static ssize_t revision_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision); } static DEVICE_ATTR_RO(revision); static ssize_t hw_error_scrub_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); return sprintf(buf, "%d\n", acpi_desc->scrub_mode); } /* * The 'hw_error_scrub' attribute can have the following values written to it: * '0': Switch to the default mode where an exception will only insert * the address of the memory error into the poison and badblocks lists. * '1': Enable a full scrub to happen if an exception for a memory error is * received. */ static ssize_t hw_error_scrub_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct nvdimm_bus_descriptor *nd_desc; ssize_t rc; long val; rc = kstrtol(buf, 0, &val); if (rc) return rc; device_lock(dev); nd_desc = dev_get_drvdata(dev); if (nd_desc) { struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); switch (val) { case HW_ERROR_SCRUB_ON: acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON; break; case HW_ERROR_SCRUB_OFF: acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF; break; default: rc = -EINVAL; break; } } device_unlock(dev); if (rc) return rc; return size; } static DEVICE_ATTR_RW(hw_error_scrub); /* * This shows the number of full Address Range Scrubs that have been * completed since driver load time. Userspace can wait on this using * select/poll etc. A '+' at the end indicates an ARS is in progress */ static ssize_t scrub_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm_bus_descriptor *nd_desc; ssize_t rc = -ENXIO; device_lock(dev); nd_desc = dev_get_drvdata(dev); if (nd_desc) { struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); mutex_lock(&acpi_desc->init_mutex); rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, acpi_desc->scrub_busy && !acpi_desc->cancel ? "+\n" : "\n"); mutex_unlock(&acpi_desc->init_mutex); } device_unlock(dev); return rc; } static ssize_t scrub_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct nvdimm_bus_descriptor *nd_desc; ssize_t rc; long val; rc = kstrtol(buf, 0, &val); if (rc) return rc; if (val != 1) return -EINVAL; device_lock(dev); nd_desc = dev_get_drvdata(dev); if (nd_desc) { struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG); } device_unlock(dev); if (rc) return rc; return size; } static DEVICE_ATTR_RW(scrub); static bool ars_supported(struct nvdimm_bus *nvdimm_bus) { struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START | 1 << ND_CMD_ARS_STATUS; return (nd_desc->cmd_mask & mask) == mask; } static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = container_of(kobj, struct device, kobj); struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus)) return 0; return a->mode; } static struct attribute *acpi_nfit_attributes[] = { &dev_attr_revision.attr, &dev_attr_scrub.attr, &dev_attr_hw_error_scrub.attr, &dev_attr_bus_dsm_mask.attr, NULL, }; static const struct attribute_group acpi_nfit_attribute_group = { .name = "nfit", .attrs = acpi_nfit_attributes, .is_visible = nfit_visible, }; static const struct attribute_group *acpi_nfit_attribute_groups[] = { &nvdimm_bus_attribute_group, &acpi_nfit_attribute_group, NULL, }; static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev) { struct nvdimm *nvdimm = to_nvdimm(dev); struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); return __to_nfit_memdev(nfit_mem); } static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev) { struct nvdimm *nvdimm = to_nvdimm(dev); struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); return nfit_mem->dcr; } static ssize_t handle_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); return sprintf(buf, "%#x\n", memdev->device_handle); } static DEVICE_ATTR_RO(handle); static ssize_t phys_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); return sprintf(buf, "%#x\n", memdev->physical_id); } static DEVICE_ATTR_RO(phys_id); static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id)); } static DEVICE_ATTR_RO(vendor); static ssize_t rev_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id)); } static DEVICE_ATTR_RO(rev_id); static ssize_t device_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id)); } static DEVICE_ATTR_RO(device); static ssize_t subsystem_vendor_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id)); } static DEVICE_ATTR_RO(subsystem_vendor); static ssize_t subsystem_rev_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_revision_id)); } static DEVICE_ATTR_RO(subsystem_rev_id); static ssize_t subsystem_device_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id)); } static DEVICE_ATTR_RO(subsystem_device); static int num_nvdimm_formats(struct nvdimm *nvdimm) { struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); int formats = 0; if (nfit_mem->memdev_pmem) formats++; if (nfit_mem->memdev_bdw) formats++; return formats; } static ssize_t format_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code)); } static DEVICE_ATTR_RO(format); static ssize_t format1_show(struct device *dev, struct device_attribute *attr, char *buf) { u32 handle; ssize_t rc = -ENXIO; struct nfit_mem *nfit_mem; struct nfit_memdev *nfit_memdev; struct acpi_nfit_desc *acpi_desc; struct nvdimm *nvdimm = to_nvdimm(dev); struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); nfit_mem = nvdimm_provider_data(nvdimm); acpi_desc = nfit_mem->acpi_desc; handle = to_nfit_memdev(dev)->device_handle; /* assumes DIMMs have at most 2 published interface codes */ mutex_lock(&acpi_desc->init_mutex); list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; struct nfit_dcr *nfit_dcr; if (memdev->device_handle != handle) continue; list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { if (nfit_dcr->dcr->region_index != memdev->region_index) continue; if (nfit_dcr->dcr->code == dcr->code) continue; rc = sprintf(buf, "0x%04x\n", le16_to_cpu(nfit_dcr->dcr->code)); break; } if (rc != ENXIO) break; } mutex_unlock(&acpi_desc->init_mutex); return rc; } static DEVICE_ATTR_RO(format1); static ssize_t formats_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm *nvdimm = to_nvdimm(dev); return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm)); } static DEVICE_ATTR_RO(formats); static ssize_t serial_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number)); } static DEVICE_ATTR_RO(serial); static ssize_t family_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm *nvdimm = to_nvdimm(dev); struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); if (nfit_mem->family < 0) return -ENXIO; return sprintf(buf, "%d\n", nfit_mem->family); } static DEVICE_ATTR_RO(family); static ssize_t dsm_mask_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm *nvdimm = to_nvdimm(dev); struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); if (nfit_mem->family < 0) return -ENXIO; return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask); } static DEVICE_ATTR_RO(dsm_mask); static ssize_t flags_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm *nvdimm = to_nvdimm(dev); struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); u16 flags = __to_nfit_memdev(nfit_mem)->flags; if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags)) flags |= ACPI_NFIT_MEM_FLUSH_FAILED; return sprintf(buf, "%s%s%s%s%s%s%s\n", flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "", flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "", flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "", flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "", flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "", flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "", flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : ""); } static DEVICE_ATTR_RO(flags); static ssize_t id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm *nvdimm = to_nvdimm(dev); struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); return sprintf(buf, "%s\n", nfit_mem->id); } static DEVICE_ATTR_RO(id); static ssize_t dirty_shutdown_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm *nvdimm = to_nvdimm(dev); struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown); } static DEVICE_ATTR_RO(dirty_shutdown); static struct attribute *acpi_nfit_dimm_attributes[] = { &dev_attr_handle.attr, &dev_attr_phys_id.attr, &dev_attr_vendor.attr, &dev_attr_device.attr, &dev_attr_rev_id.attr, &dev_attr_subsystem_vendor.attr, &dev_attr_subsystem_device.attr, &dev_attr_subsystem_rev_id.attr, &dev_attr_format.attr, &dev_attr_formats.attr, &dev_attr_format1.attr, &dev_attr_serial.attr, &dev_attr_flags.attr, &dev_attr_id.attr, &dev_attr_family.attr, &dev_attr_dsm_mask.attr, &dev_attr_dirty_shutdown.attr, NULL, }; static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = container_of(kobj, struct device, kobj); struct nvdimm *nvdimm = to_nvdimm(dev); struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); if (!to_nfit_dcr(dev)) { /* Without a dcr only the memdev attributes can be surfaced */ if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr || a == &dev_attr_flags.attr || a == &dev_attr_family.attr || a == &dev_attr_dsm_mask.attr) return a->mode; return 0; } if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1) return 0; if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags) && a == &dev_attr_dirty_shutdown.attr) return 0; return a->mode; } static const struct attribute_group acpi_nfit_dimm_attribute_group = { .name = "nfit", .attrs = acpi_nfit_dimm_attributes, .is_visible = acpi_nfit_dimm_attr_visible, }; static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = { &nvdimm_attribute_group, &nd_device_attribute_group, &acpi_nfit_dimm_attribute_group, NULL, }; static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc, u32 device_handle) { struct nfit_mem *nfit_mem; list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle) return nfit_mem->nvdimm; return NULL; } void __acpi_nvdimm_notify(struct device *dev, u32 event) { struct nfit_mem *nfit_mem; struct acpi_nfit_desc *acpi_desc; dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev), event); if (event != NFIT_NOTIFY_DIMM_HEALTH) { dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev), event); return; } acpi_desc = dev_get_drvdata(dev->parent); if (!acpi_desc) return; /* * If we successfully retrieved acpi_desc, then we know nfit_mem data * is still valid. */ nfit_mem = dev_get_drvdata(dev); if (nfit_mem && nfit_mem->flags_attr) sysfs_notify_dirent(nfit_mem->flags_attr); } EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify); static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data) { struct acpi_device *adev = data; struct device *dev = &adev->dev; device_lock(dev->parent); __acpi_nvdimm_notify(dev, event); device_unlock(dev->parent); } static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method) { acpi_handle handle; acpi_status status; status = acpi_get_handle(adev->handle, method, &handle); if (ACPI_SUCCESS(status)) return true; return false; } __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem) { struct nd_intel_smart smart = { 0 }; union acpi_object in_buf = { .type = ACPI_TYPE_BUFFER, .buffer.pointer = (char *) &smart, .buffer.length = sizeof(smart), }; union acpi_object in_obj = { .type = ACPI_TYPE_PACKAGE, .package.count = 1, .package.elements = &in_buf, }; const u8 func = ND_INTEL_SMART; const guid_t *guid = to_nfit_uuid(nfit_mem->family); u8 revid = nfit_dsm_revid(nfit_mem->family, func); struct acpi_device *adev = nfit_mem->adev; acpi_handle handle = adev->handle; union acpi_object *out_obj; if ((nfit_mem->dsm_mask & (1 << func)) == 0) return; out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj); if (!out_obj) return; if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) { if (smart.shutdown_state) set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags); } if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) { set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags); nfit_mem->dirty_shutdown = smart.shutdown_count; } ACPI_FREE(out_obj); } static void populate_shutdown_status(struct nfit_mem *nfit_mem) { /* * For DIMMs that provide a dynamic facility to retrieve a * dirty-shutdown status and/or a dirty-shutdown count, cache * these values in nfit_mem. */ if (nfit_mem->family == NVDIMM_FAMILY_INTEL) nfit_intel_shutdown_status(nfit_mem); } static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc, struct nfit_mem *nfit_mem, u32 device_handle) { struct acpi_device *adev, *adev_dimm; struct device *dev = acpi_desc->dev; unsigned long dsm_mask, label_mask; const guid_t *guid; int i; int family = -1; struct acpi_nfit_control_region *dcr = nfit_mem->dcr; /* nfit test assumes 1:1 relationship between commands and dsms */ nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en; nfit_mem->family = NVDIMM_FAMILY_INTEL; if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID) sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x", be16_to_cpu(dcr->vendor_id), dcr->manufacturing_location, be16_to_cpu(dcr->manufacturing_date), be32_to_cpu(dcr->serial_number)); else sprintf(nfit_mem->id, "%04x-%08x", be16_to_cpu(dcr->vendor_id), be32_to_cpu(dcr->serial_number)); adev = to_acpi_dev(acpi_desc); if (!adev) { /* unit test case */ populate_shutdown_status(nfit_mem); return 0; } adev_dimm = acpi_find_child_device(adev, device_handle, false); nfit_mem->adev = adev_dimm; if (!adev_dimm) { dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n", device_handle); return force_enable_dimms ? 0 : -ENODEV; } if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle, ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) { dev_err(dev, "%s: notification registration failed\n", dev_name(&adev_dimm->dev)); return -ENXIO; } /* * Record nfit_mem for the notification path to track back to * the nfit sysfs attributes for this dimm device object. */ dev_set_drvdata(&adev_dimm->dev, nfit_mem); /* * Until standardization materializes we need to consider 4 * different command sets. Note, that checking for function0 (bit0) * tells us if any commands are reachable through this GUID. */ for (i = 0; i <= NVDIMM_FAMILY_MAX; i++) if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) if (family < 0 || i == default_dsm_family) family = i; /* limit the supported commands to those that are publicly documented */ nfit_mem->family = family; if (override_dsm_mask && !disable_vendor_specific) dsm_mask = override_dsm_mask; else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) { dsm_mask = NVDIMM_INTEL_CMDMASK; if (disable_vendor_specific) dsm_mask &= ~(1 << ND_CMD_VENDOR); } else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) { dsm_mask = 0x1c3c76; } else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) { dsm_mask = 0x1fe; if (disable_vendor_specific) dsm_mask &= ~(1 << 8); } else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) { dsm_mask = 0xffffffff; } else { dev_dbg(dev, "unknown dimm command family\n"); nfit_mem->family = -1; /* DSMs are optional, continue loading the driver... */ return 0; } /* * Function 0 is the command interrogation function, don't * export it to potential userspace use, and enable it to be * used as an error value in acpi_nfit_ctl(). */ dsm_mask &= ~1UL; guid = to_nfit_uuid(nfit_mem->family); for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) if (acpi_check_dsm(adev_dimm->handle, guid, nfit_dsm_revid(nfit_mem->family, i), 1ULL << i)) set_bit(i, &nfit_mem->dsm_mask); /* * Prefer the NVDIMM_FAMILY_INTEL label read commands if present * due to their better semantics handling locked capacity. */ label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA | 1 << ND_CMD_SET_CONFIG_DATA; if (family == NVDIMM_FAMILY_INTEL && (dsm_mask & label_mask) == label_mask) return 0; if (acpi_nvdimm_has_method(adev_dimm, "_LSI") && acpi_nvdimm_has_method(adev_dimm, "_LSR")) { dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev)); set_bit(NFIT_MEM_LSR, &nfit_mem->flags); } if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags) && acpi_nvdimm_has_method(adev_dimm, "_LSW")) { dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev)); set_bit(NFIT_MEM_LSW, &nfit_mem->flags); } populate_shutdown_status(nfit_mem); return 0; } static void shutdown_dimm_notify(void *data) { struct acpi_nfit_desc *acpi_desc = data; struct nfit_mem *nfit_mem; mutex_lock(&acpi_desc->init_mutex); /* * Clear out the nfit_mem->flags_attr and shut down dimm event * notifications. */ list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { struct acpi_device *adev_dimm = nfit_mem->adev; if (nfit_mem->flags_attr) { sysfs_put(nfit_mem->flags_attr); nfit_mem->flags_attr = NULL; } if (adev_dimm) { acpi_remove_notify_handler(adev_dimm->handle, ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify); dev_set_drvdata(&adev_dimm->dev, NULL); } } mutex_unlock(&acpi_desc->init_mutex); } static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family) { switch (family) { case NVDIMM_FAMILY_INTEL: return intel_security_ops; default: return NULL; } } static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc) { struct nfit_mem *nfit_mem; int dimm_count = 0, rc; struct nvdimm *nvdimm; list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { struct acpi_nfit_flush_address *flush; unsigned long flags = 0, cmd_mask; struct nfit_memdev *nfit_memdev; u32 device_handle; u16 mem_flags; device_handle = __to_nfit_memdev(nfit_mem)->device_handle; nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle); if (nvdimm) { dimm_count++; continue; } if (nfit_mem->bdw && nfit_mem->memdev_pmem) set_bit(NDD_ALIASING, &flags); /* collate flags across all memdevs for this dimm */ list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { struct acpi_nfit_memory_map *dimm_memdev; dimm_memdev = __to_nfit_memdev(nfit_mem); if (dimm_memdev->device_handle != nfit_memdev->memdev->device_handle) continue; dimm_memdev->flags |= nfit_memdev->memdev->flags; } mem_flags = __to_nfit_memdev(nfit_mem)->flags; if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED) set_bit(NDD_UNARMED, &flags); rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle); if (rc) continue; /* * TODO: provide translation for non-NVDIMM_FAMILY_INTEL * devices (i.e. from nd_cmd to acpi_dsm) to standardize the * userspace interface. */ cmd_mask = 1UL << ND_CMD_CALL; if (nfit_mem->family == NVDIMM_FAMILY_INTEL) { /* * These commands have a 1:1 correspondence * between DSM payload and libnvdimm ioctl * payload format. */ cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK; } if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) { set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask); set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask); } if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask); flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush : NULL; nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem, acpi_nfit_dimm_attribute_groups, flags, cmd_mask, flush ? flush->hint_count : 0, nfit_mem->flush_wpq, &nfit_mem->id[0], acpi_nfit_get_security_ops(nfit_mem->family)); if (!nvdimm) return -ENOMEM; nfit_mem->nvdimm = nvdimm; dimm_count++; if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0) continue; dev_info(acpi_desc->dev, "%s flags:%s%s%s%s%s\n", nvdimm_name(nvdimm), mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "", mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"", mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "", mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "", mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : ""); } rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count); if (rc) return rc; /* * Now that dimms are successfully registered, and async registration * is flushed, attempt to enable event notification. */ list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { struct kernfs_node *nfit_kernfs; nvdimm = nfit_mem->nvdimm; if (!nvdimm) continue; nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit"); if (nfit_kernfs) nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs, "flags"); sysfs_put(nfit_kernfs); if (!nfit_mem->flags_attr) dev_warn(acpi_desc->dev, "%s: notifications disabled\n", nvdimm_name(nvdimm)); } return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify, acpi_desc); } /* * These constants are private because there are no kernel consumers of * these commands. */ enum nfit_aux_cmds { NFIT_CMD_TRANSLATE_SPA = 5, NFIT_CMD_ARS_INJECT_SET = 7, NFIT_CMD_ARS_INJECT_CLEAR = 8, NFIT_CMD_ARS_INJECT_GET = 9, }; static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc) { struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS); struct acpi_device *adev; unsigned long dsm_mask; int i; nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en; nd_desc->bus_dsm_mask = acpi_desc->bus_nfit_cmd_force_en; adev = to_acpi_dev(acpi_desc); if (!adev) return; for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++) if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) set_bit(i, &nd_desc->cmd_mask); set_bit(ND_CMD_CALL, &nd_desc->cmd_mask); dsm_mask = (1 << ND_CMD_ARS_CAP) | (1 << ND_CMD_ARS_START) | (1 << ND_CMD_ARS_STATUS) | (1 << ND_CMD_CLEAR_ERROR) | (1 << NFIT_CMD_TRANSLATE_SPA) | (1 << NFIT_CMD_ARS_INJECT_SET) | (1 << NFIT_CMD_ARS_INJECT_CLEAR) | (1 << NFIT_CMD_ARS_INJECT_GET); for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i)) set_bit(i, &nd_desc->bus_dsm_mask); } static ssize_t range_index_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_region *nd_region = to_nd_region(dev); struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region); return sprintf(buf, "%d\n", nfit_spa->spa->range_index); } static DEVICE_ATTR_RO(range_index); static struct attribute *acpi_nfit_region_attributes[] = { &dev_attr_range_index.attr, NULL, }; static const struct attribute_group acpi_nfit_region_attribute_group = { .name = "nfit", .attrs = acpi_nfit_region_attributes, }; static const struct attribute_group *acpi_nfit_region_attribute_groups[] = { &nd_region_attribute_group, &nd_mapping_attribute_group, &nd_device_attribute_group, &nd_numa_attribute_group, &acpi_nfit_region_attribute_group, NULL, }; /* enough info to uniquely specify an interleave set */ struct nfit_set_info { struct nfit_set_info_map { u64 region_offset; u32 serial_number; u32 pad; } mapping[0]; }; struct nfit_set_info2 { struct nfit_set_info_map2 { u64 region_offset; u32 serial_number; u16 vendor_id; u16 manufacturing_date; u8 manufacturing_location; u8 reserved[31]; } mapping[0]; }; static size_t sizeof_nfit_set_info(int num_mappings) { return sizeof(struct nfit_set_info) + num_mappings * sizeof(struct nfit_set_info_map); } static size_t sizeof_nfit_set_info2(int num_mappings) { return sizeof(struct nfit_set_info2) + num_mappings * sizeof(struct nfit_set_info_map2); } static int cmp_map_compat(const void *m0, const void *m1) { const struct nfit_set_info_map *map0 = m0; const struct nfit_set_info_map *map1 = m1; return memcmp(&map0->region_offset, &map1->region_offset, sizeof(u64)); } static int cmp_map(const void *m0, const void *m1) { const struct nfit_set_info_map *map0 = m0; const struct nfit_set_info_map *map1 = m1; if (map0->region_offset < map1->region_offset) return -1; else if (map0->region_offset > map1->region_offset) return 1; return 0; } static int cmp_map2(const void *m0, const void *m1) { const struct nfit_set_info_map2 *map0 = m0; const struct nfit_set_info_map2 *map1 = m1; if (map0->region_offset < map1->region_offset) return -1; else if (map0->region_offset > map1->region_offset) return 1; return 0; } /* Retrieve the nth entry referencing this spa */ static struct acpi_nfit_memory_map *memdev_from_spa( struct acpi_nfit_desc *acpi_desc, u16 range_index, int n) { struct nfit_memdev *nfit_memdev; list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) if (nfit_memdev->memdev->range_index == range_index) if (n-- == 0) return nfit_memdev->memdev; return NULL; } static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc, struct nd_region_desc *ndr_desc, struct acpi_nfit_system_address *spa) { struct device *dev = acpi_desc->dev; struct nd_interleave_set *nd_set; u16 nr = ndr_desc->num_mappings; struct nfit_set_info2 *info2; struct nfit_set_info *info; int i; nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL); if (!nd_set) return -ENOMEM; guid_copy(&nd_set->type_guid, (guid_t *) spa->range_guid); info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL); if (!info) return -ENOMEM; info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL); if (!info2) return -ENOMEM; for (i = 0; i < nr; i++) { struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; struct nfit_set_info_map *map = &info->mapping[i]; struct nfit_set_info_map2 *map2 = &info2->mapping[i]; struct nvdimm *nvdimm = mapping->nvdimm; struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc, spa->range_index, i); struct acpi_nfit_control_region *dcr = nfit_mem->dcr; if (!memdev || !nfit_mem->dcr) { dev_err(dev, "%s: failed to find DCR\n", __func__); return -ENODEV; } map->region_offset = memdev->region_offset; map->serial_number = dcr->serial_number; map2->region_offset = memdev->region_offset; map2->serial_number = dcr->serial_number; map2->vendor_id = dcr->vendor_id; map2->manufacturing_date = dcr->manufacturing_date; map2->manufacturing_location = dcr->manufacturing_location; } /* v1.1 namespaces */ sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map), cmp_map, NULL); nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0); /* v1.2 namespaces */ sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2), cmp_map2, NULL); nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0); /* support v1.1 namespaces created with the wrong sort order */ sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map), cmp_map_compat, NULL); nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0); /* record the result of the sort for the mapping position */ for (i = 0; i < nr; i++) { struct nfit_set_info_map2 *map2 = &info2->mapping[i]; int j; for (j = 0; j < nr; j++) { struct nd_mapping_desc *mapping = &ndr_desc->mapping[j]; struct nvdimm *nvdimm = mapping->nvdimm; struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); struct acpi_nfit_control_region *dcr = nfit_mem->dcr; if (map2->serial_number == dcr->serial_number && map2->vendor_id == dcr->vendor_id && map2->manufacturing_date == dcr->manufacturing_date && map2->manufacturing_location == dcr->manufacturing_location) { mapping->position = i; break; } } } ndr_desc->nd_set = nd_set; devm_kfree(dev, info); devm_kfree(dev, info2); return 0; } static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio) { struct acpi_nfit_interleave *idt = mmio->idt; u32 sub_line_offset, line_index, line_offset; u64 line_no, table_skip_count, table_offset; line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset); table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index); line_offset = idt->line_offset[line_index] * mmio->line_size; table_offset = table_skip_count * mmio->table_size; return mmio->base_offset + line_offset + table_offset + sub_line_offset; } static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw) { struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; u64 offset = nfit_blk->stat_offset + mmio->size * bw; const u32 STATUS_MASK = 0x80000037; if (mmio->num_lines) offset = to_interleave_offset(offset, mmio); return readl(mmio->addr.base + offset) & STATUS_MASK; } static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw, resource_size_t dpa, unsigned int len, unsigned int write) { u64 cmd, offset; struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; enum { BCW_OFFSET_MASK = (1ULL << 48)-1, BCW_LEN_SHIFT = 48, BCW_LEN_MASK = (1ULL << 8) - 1, BCW_CMD_SHIFT = 56, }; cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK; len = len >> L1_CACHE_SHIFT; cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT; cmd |= ((u64) write) << BCW_CMD_SHIFT; offset = nfit_blk->cmd_offset + mmio->size * bw; if (mmio->num_lines) offset = to_interleave_offset(offset, mmio); writeq(cmd, mmio->addr.base + offset); nvdimm_flush(nfit_blk->nd_region); if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH) readq(mmio->addr.base + offset); } static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk, resource_size_t dpa, void *iobuf, size_t len, int rw, unsigned int lane) { struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; unsigned int copied = 0; u64 base_offset; int rc; base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES + lane * mmio->size; write_blk_ctl(nfit_blk, lane, dpa, len, rw); while (len) { unsigned int c; u64 offset; if (mmio->num_lines) { u32 line_offset; offset = to_interleave_offset(base_offset + copied, mmio); div_u64_rem(offset, mmio->line_size, &line_offset); c = min_t(size_t, len, mmio->line_size - line_offset); } else { offset = base_offset + nfit_blk->bdw_offset; c = len; } if (rw) memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c); else { if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH) arch_invalidate_pmem((void __force *) mmio->addr.aperture + offset, c); memcpy(iobuf + copied, mmio->addr.aperture + offset, c); } copied += c; len -= c; } if (rw) nvdimm_flush(nfit_blk->nd_region); rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0; return rc; } static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr, resource_size_t dpa, void *iobuf, u64 len, int rw) { struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr); struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; struct nd_region *nd_region = nfit_blk->nd_region; unsigned int lane, copied = 0; int rc = 0; lane = nd_region_acquire_lane(nd_region); while (len) { u64 c = min(len, mmio->size); rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied, iobuf + copied, c, rw, lane); if (rc) break; copied += c; len -= c; } nd_region_release_lane(nd_region, lane); return rc; } static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio, struct acpi_nfit_interleave *idt, u16 interleave_ways) { if (idt) { mmio->num_lines = idt->line_count; mmio->line_size = idt->line_size; if (interleave_ways == 0) return -ENXIO; mmio->table_size = mmio->num_lines * interleave_ways * mmio->line_size; } return 0; } static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, struct nfit_blk *nfit_blk) { struct nd_cmd_dimm_flags flags; int rc; memset(&flags, 0, sizeof(flags)); rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags, sizeof(flags), NULL); if (rc >= 0 && flags.status == 0) nfit_blk->dimm_flags = flags.flags; else if (rc == -ENOTTY) { /* fall back to a conservative default */ nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH; rc = 0; } else rc = -ENXIO; return rc; } static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus, struct device *dev) { struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); struct nd_blk_region *ndbr = to_nd_blk_region(dev); struct nfit_blk_mmio *mmio; struct nfit_blk *nfit_blk; struct nfit_mem *nfit_mem; struct nvdimm *nvdimm; int rc; nvdimm = nd_blk_region_to_dimm(ndbr); nfit_mem = nvdimm_provider_data(nvdimm); if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) { dev_dbg(dev, "missing%s%s%s\n", nfit_mem ? "" : " nfit_mem", (nfit_mem && nfit_mem->dcr) ? "" : " dcr", (nfit_mem && nfit_mem->bdw) ? "" : " bdw"); return -ENXIO; } nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL); if (!nfit_blk) return -ENOMEM; nd_blk_region_set_provider_data(ndbr, nfit_blk); nfit_blk->nd_region = to_nd_region(dev); /* map block aperture memory */ nfit_blk->bdw_offset = nfit_mem->bdw->offset; mmio = &nfit_blk->mmio[BDW]; mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address, nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr)); if (!mmio->addr.base) { dev_dbg(dev, "%s failed to map bdw\n", nvdimm_name(nvdimm)); return -ENOMEM; } mmio->size = nfit_mem->bdw->size; mmio->base_offset = nfit_mem->memdev_bdw->region_offset; mmio->idt = nfit_mem->idt_bdw; mmio->spa = nfit_mem->spa_bdw; rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw, nfit_mem->memdev_bdw->interleave_ways); if (rc) { dev_dbg(dev, "%s failed to init bdw interleave\n", nvdimm_name(nvdimm)); return rc; } /* map block control memory */ nfit_blk->cmd_offset = nfit_mem->dcr->command_offset; nfit_blk->stat_offset = nfit_mem->dcr->status_offset; mmio = &nfit_blk->mmio[DCR]; mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address, nfit_mem->spa_dcr->length); if (!mmio->addr.base) { dev_dbg(dev, "%s failed to map dcr\n", nvdimm_name(nvdimm)); return -ENOMEM; } mmio->size = nfit_mem->dcr->window_size; mmio->base_offset = nfit_mem->memdev_dcr->region_offset; mmio->idt = nfit_mem->idt_dcr; mmio->spa = nfit_mem->spa_dcr; rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr, nfit_mem->memdev_dcr->interleave_ways); if (rc) { dev_dbg(dev, "%s failed to init dcr interleave\n", nvdimm_name(nvdimm)); return rc; } rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk); if (rc < 0) { dev_dbg(dev, "%s failed get DIMM flags\n", nvdimm_name(nvdimm)); return rc; } if (nvdimm_has_flush(nfit_blk->nd_region) < 0) dev_warn(dev, "unable to guarantee persistence of writes\n"); if (mmio->line_size == 0) return 0; if ((u32) nfit_blk->cmd_offset % mmio->line_size + 8 > mmio->line_size) { dev_dbg(dev, "cmd_offset crosses interleave boundary\n"); return -ENXIO; } else if ((u32) nfit_blk->stat_offset % mmio->line_size + 8 > mmio->line_size) { dev_dbg(dev, "stat_offset crosses interleave boundary\n"); return -ENXIO; } return 0; } static int ars_get_cap(struct acpi_nfit_desc *acpi_desc, struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa) { struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; struct acpi_nfit_system_address *spa = nfit_spa->spa; int cmd_rc, rc; cmd->address = spa->address; cmd->length = spa->length; rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd, sizeof(*cmd), &cmd_rc); if (rc < 0) return rc; return cmd_rc; } static int ars_start(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa, enum nfit_ars_state req_type) { int rc; int cmd_rc; struct nd_cmd_ars_start ars_start; struct acpi_nfit_system_address *spa = nfit_spa->spa; struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; memset(&ars_start, 0, sizeof(ars_start)); ars_start.address = spa->address; ars_start.length = spa->length; if (req_type == ARS_REQ_SHORT) ars_start.flags = ND_ARS_RETURN_PREV_DATA; if (nfit_spa_type(spa) == NFIT_SPA_PM) ars_start.type = ND_ARS_PERSISTENT; else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE) ars_start.type = ND_ARS_VOLATILE; else return -ENOTTY; rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, sizeof(ars_start), &cmd_rc); if (rc < 0) return rc; return cmd_rc; } static int ars_continue(struct acpi_nfit_desc *acpi_desc) { int rc, cmd_rc; struct nd_cmd_ars_start ars_start; struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; memset(&ars_start, 0, sizeof(ars_start)); ars_start.address = ars_status->restart_address; ars_start.length = ars_status->restart_length; ars_start.type = ars_status->type; ars_start.flags = acpi_desc->ars_start_flags; rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, sizeof(ars_start), &cmd_rc); if (rc < 0) return rc; return cmd_rc; } static int ars_get_status(struct acpi_nfit_desc *acpi_desc) { struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; int rc, cmd_rc; rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status, acpi_desc->max_ars, &cmd_rc); if (rc < 0) return rc; return cmd_rc; } static void ars_complete(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa) { struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; struct acpi_nfit_system_address *spa = nfit_spa->spa; struct nd_region *nd_region = nfit_spa->nd_region; struct device *dev; lockdep_assert_held(&acpi_desc->init_mutex); /* * Only advance the ARS state for ARS runs initiated by the * kernel, ignore ARS results from BIOS initiated runs for scrub * completion tracking. */ if (acpi_desc->scrub_spa != nfit_spa) return; if ((ars_status->address >= spa->address && ars_status->address < spa->address + spa->length) || (ars_status->address < spa->address)) { /* * Assume that if a scrub starts at an offset from the * start of nfit_spa that we are in the continuation * case. * * Otherwise, if the scrub covers the spa range, mark * any pending request complete. */ if (ars_status->address + ars_status->length >= spa->address + spa->length) /* complete */; else return; } else return; acpi_desc->scrub_spa = NULL; if (nd_region) { dev = nd_region_dev(nd_region); nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON); } else dev = acpi_desc->dev; dev_dbg(dev, "ARS: range %d complete\n", spa->range_index); } static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc) { struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus; struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; int rc; u32 i; /* * First record starts at 44 byte offset from the start of the * payload. */ if (ars_status->out_length < 44) return 0; for (i = 0; i < ars_status->num_records; i++) { /* only process full records */ if (ars_status->out_length < 44 + sizeof(struct nd_ars_record) * (i + 1)) break; rc = nvdimm_bus_add_badrange(nvdimm_bus, ars_status->records[i].err_address, ars_status->records[i].length); if (rc) return rc; } if (i < ars_status->num_records) dev_warn(acpi_desc->dev, "detected truncated ars results\n"); return 0; } static void acpi_nfit_remove_resource(void *data) { struct resource *res = data; remove_resource(res); } static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc, struct nd_region_desc *ndr_desc) { struct resource *res, *nd_res = ndr_desc->res; int is_pmem, ret; /* No operation if the region is already registered as PMEM */ is_pmem = region_intersects(nd_res->start, resource_size(nd_res), IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY); if (is_pmem == REGION_INTERSECTS) return 0; res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL); if (!res) return -ENOMEM; res->name = "Persistent Memory"; res->start = nd_res->start; res->end = nd_res->end; res->flags = IORESOURCE_MEM; res->desc = IORES_DESC_PERSISTENT_MEMORY; ret = insert_resource(&iomem_resource, res); if (ret) return ret; ret = devm_add_action_or_reset(acpi_desc->dev, acpi_nfit_remove_resource, res); if (ret) return ret; return 0; } static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc, struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc, struct acpi_nfit_memory_map *memdev, struct nfit_spa *nfit_spa) { struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, memdev->device_handle); struct acpi_nfit_system_address *spa = nfit_spa->spa; struct nd_blk_region_desc *ndbr_desc; struct nfit_mem *nfit_mem; int rc; if (!nvdimm) { dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n", spa->range_index, memdev->device_handle); return -ENODEV; } mapping->nvdimm = nvdimm; switch (nfit_spa_type(spa)) { case NFIT_SPA_PM: case NFIT_SPA_VOLATILE: mapping->start = memdev->address; mapping->size = memdev->region_size; break; case NFIT_SPA_DCR: nfit_mem = nvdimm_provider_data(nvdimm); if (!nfit_mem || !nfit_mem->bdw) { dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n", spa->range_index, nvdimm_name(nvdimm)); break; } mapping->size = nfit_mem->bdw->capacity; mapping->start = nfit_mem->bdw->start_address; ndr_desc->num_lanes = nfit_mem->bdw->windows; ndr_desc->mapping = mapping; ndr_desc->num_mappings = 1; ndbr_desc = to_blk_region_desc(ndr_desc); ndbr_desc->enable = acpi_nfit_blk_region_enable; ndbr_desc->do_io = acpi_desc->blk_do_io; rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa); if (rc) return rc; nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus, ndr_desc); if (!nfit_spa->nd_region) return -ENOMEM; break; } return 0; } static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa) { return (nfit_spa_type(spa) == NFIT_SPA_VDISK || nfit_spa_type(spa) == NFIT_SPA_VCD || nfit_spa_type(spa) == NFIT_SPA_PDISK || nfit_spa_type(spa) == NFIT_SPA_PCD); } static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa) { return (nfit_spa_type(spa) == NFIT_SPA_VDISK || nfit_spa_type(spa) == NFIT_SPA_VCD || nfit_spa_type(spa) == NFIT_SPA_VOLATILE); } static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa) { static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS]; struct acpi_nfit_system_address *spa = nfit_spa->spa; struct nd_blk_region_desc ndbr_desc; struct nd_region_desc *ndr_desc; struct nfit_memdev *nfit_memdev; struct nvdimm_bus *nvdimm_bus; struct resource res; int count = 0, rc; if (nfit_spa->nd_region) return 0; if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) { dev_dbg(acpi_desc->dev, "detected invalid spa index\n"); return 0; } memset(&res, 0, sizeof(res)); memset(&mappings, 0, sizeof(mappings)); memset(&ndbr_desc, 0, sizeof(ndbr_desc)); res.start = spa->address; res.end = res.start + spa->length - 1; ndr_desc = &ndbr_desc.ndr_desc; ndr_desc->res = &res; ndr_desc->provider_data = nfit_spa; ndr_desc->attr_groups = acpi_nfit_region_attribute_groups; if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) ndr_desc->numa_node = acpi_map_pxm_to_online_node( spa->proximity_domain); else ndr_desc->numa_node = NUMA_NO_NODE; /* * Persistence domain bits are hierarchical, if * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied. */ if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH) set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags); else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH) set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags); list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; struct nd_mapping_desc *mapping; if (memdev->range_index != spa->range_index) continue; if (count >= ND_MAX_MAPPINGS) { dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n", spa->range_index, ND_MAX_MAPPINGS); return -ENXIO; } mapping = &mappings[count++]; rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc, memdev, nfit_spa); if (rc) goto out; } ndr_desc->mapping = mappings; ndr_desc->num_mappings = count; rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa); if (rc) goto out; nvdimm_bus = acpi_desc->nvdimm_bus; if (nfit_spa_type(spa) == NFIT_SPA_PM) { rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc); if (rc) { dev_warn(acpi_desc->dev, "failed to insert pmem resource to iomem: %d\n", rc); goto out; } nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, ndr_desc); if (!nfit_spa->nd_region) rc = -ENOMEM; } else if (nfit_spa_is_volatile(spa)) { nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus, ndr_desc); if (!nfit_spa->nd_region) rc = -ENOMEM; } else if (nfit_spa_is_virtual(spa)) { nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, ndr_desc); if (!nfit_spa->nd_region) rc = -ENOMEM; } out: if (rc) dev_err(acpi_desc->dev, "failed to register spa range %d\n", nfit_spa->spa->range_index); return rc; } static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc) { struct device *dev = acpi_desc->dev; struct nd_cmd_ars_status *ars_status; if (acpi_desc->ars_status) { memset(acpi_desc->ars_status, 0, acpi_desc->max_ars); return 0; } ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL); if (!ars_status) return -ENOMEM; acpi_desc->ars_status = ars_status; return 0; } static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc) { int rc; if (ars_status_alloc(acpi_desc)) return -ENOMEM; rc = ars_get_status(acpi_desc); if (rc < 0 && rc != -ENOSPC) return rc; if (ars_status_process_records(acpi_desc)) dev_err(acpi_desc->dev, "Failed to process ARS records\n"); return rc; } static int ars_register(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa) { int rc; if (no_init_ars || test_bit(ARS_FAILED, &nfit_spa->ars_state)) return acpi_nfit_register_region(acpi_desc, nfit_spa); set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state); set_bit(ARS_REQ_LONG, &nfit_spa->ars_state); switch (acpi_nfit_query_poison(acpi_desc)) { case 0: case -ENOSPC: case -EAGAIN: rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT); /* shouldn't happen, try again later */ if (rc == -EBUSY) break; if (rc) { set_bit(ARS_FAILED, &nfit_spa->ars_state); break; } clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state); rc = acpi_nfit_query_poison(acpi_desc); if (rc) break; acpi_desc->scrub_spa = nfit_spa; ars_complete(acpi_desc, nfit_spa); /* * If ars_complete() says we didn't complete the * short scrub, we'll try again with a long * request. */ acpi_desc->scrub_spa = NULL; break; case -EBUSY: case -ENOMEM: /* * BIOS was using ARS, wait for it to complete (or * resources to become available) and then perform our * own scrubs. */ break; default: set_bit(ARS_FAILED, &nfit_spa->ars_state); break; } return acpi_nfit_register_region(acpi_desc, nfit_spa); } static void ars_complete_all(struct acpi_nfit_desc *acpi_desc) { struct nfit_spa *nfit_spa; list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) continue; ars_complete(acpi_desc, nfit_spa); } } static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc, int query_rc) { unsigned int tmo = acpi_desc->scrub_tmo; struct device *dev = acpi_desc->dev; struct nfit_spa *nfit_spa; lockdep_assert_held(&acpi_desc->init_mutex); if (acpi_desc->cancel) return 0; if (query_rc == -EBUSY) { dev_dbg(dev, "ARS: ARS busy\n"); return min(30U * 60U, tmo * 2); } if (query_rc == -ENOSPC) { dev_dbg(dev, "ARS: ARS continue\n"); ars_continue(acpi_desc); return 1; } if (query_rc && query_rc != -EAGAIN) { unsigned long long addr, end; addr = acpi_desc->ars_status->address; end = addr + acpi_desc->ars_status->length; dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end, query_rc); } ars_complete_all(acpi_desc); list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { enum nfit_ars_state req_type; int rc; if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) continue; /* prefer short ARS requests first */ if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state)) req_type = ARS_REQ_SHORT; else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state)) req_type = ARS_REQ_LONG; else continue; rc = ars_start(acpi_desc, nfit_spa, req_type); dev = nd_region_dev(nfit_spa->nd_region); dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n", nfit_spa->spa->range_index, req_type == ARS_REQ_SHORT ? "short" : "long", rc); /* * Hmm, we raced someone else starting ARS? Try again in * a bit. */ if (rc == -EBUSY) return 1; if (rc == 0) { dev_WARN_ONCE(dev, acpi_desc->scrub_spa, "scrub start while range %d active\n", acpi_desc->scrub_spa->spa->range_index); clear_bit(req_type, &nfit_spa->ars_state); acpi_desc->scrub_spa = nfit_spa; /* * Consider this spa last for future scrub * requests */ list_move_tail(&nfit_spa->list, &acpi_desc->spas); return 1; } dev_err(dev, "ARS: range %d ARS failed (%d)\n", nfit_spa->spa->range_index, rc); set_bit(ARS_FAILED, &nfit_spa->ars_state); } return 0; } static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo) { lockdep_assert_held(&acpi_desc->init_mutex); acpi_desc->scrub_busy = 1; /* note this should only be set from within the workqueue */ if (tmo) acpi_desc->scrub_tmo = tmo; queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ); } static void sched_ars(struct acpi_nfit_desc *acpi_desc) { __sched_ars(acpi_desc, 0); } static void notify_ars_done(struct acpi_nfit_desc *acpi_desc) { lockdep_assert_held(&acpi_desc->init_mutex); acpi_desc->scrub_busy = 0; acpi_desc->scrub_count++; if (acpi_desc->scrub_count_state) sysfs_notify_dirent(acpi_desc->scrub_count_state); } static void acpi_nfit_scrub(struct work_struct *work) { struct acpi_nfit_desc *acpi_desc; unsigned int tmo; int query_rc; acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work); mutex_lock(&acpi_desc->init_mutex); query_rc = acpi_nfit_query_poison(acpi_desc); tmo = __acpi_nfit_scrub(acpi_desc, query_rc); if (tmo) __sched_ars(acpi_desc, tmo); else notify_ars_done(acpi_desc); memset(acpi_desc->ars_status, 0, acpi_desc->max_ars); mutex_unlock(&acpi_desc->init_mutex); } static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa) { int type = nfit_spa_type(nfit_spa->spa); struct nd_cmd_ars_cap ars_cap; int rc; set_bit(ARS_FAILED, &nfit_spa->ars_state); memset(&ars_cap, 0, sizeof(ars_cap)); rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa); if (rc < 0) return; /* check that the supported scrub types match the spa type */ if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16) & ND_ARS_VOLATILE) == 0) return; if (type == NFIT_SPA_PM && ((ars_cap.status >> 16) & ND_ARS_PERSISTENT) == 0) return; nfit_spa->max_ars = ars_cap.max_ars_out; nfit_spa->clear_err_unit = ars_cap.clear_err_unit; acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars); clear_bit(ARS_FAILED, &nfit_spa->ars_state); } static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc) { struct nfit_spa *nfit_spa; int rc; list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { switch (nfit_spa_type(nfit_spa->spa)) { case NFIT_SPA_VOLATILE: case NFIT_SPA_PM: acpi_nfit_init_ars(acpi_desc, nfit_spa); break; } } list_for_each_entry(nfit_spa, &acpi_desc->spas, list) switch (nfit_spa_type(nfit_spa->spa)) { case NFIT_SPA_VOLATILE: case NFIT_SPA_PM: /* register regions and kick off initial ARS run */ rc = ars_register(acpi_desc, nfit_spa); if (rc) return rc; break; case NFIT_SPA_BDW: /* nothing to register */ break; case NFIT_SPA_DCR: case NFIT_SPA_VDISK: case NFIT_SPA_VCD: case NFIT_SPA_PDISK: case NFIT_SPA_PCD: /* register known regions that don't support ARS */ rc = acpi_nfit_register_region(acpi_desc, nfit_spa); if (rc) return rc; break; default: /* don't register unknown regions */ break; } sched_ars(acpi_desc); return 0; } static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev) { struct device *dev = acpi_desc->dev; if (!list_empty(&prev->spas) || !list_empty(&prev->memdevs) || !list_empty(&prev->dcrs) || !list_empty(&prev->bdws) || !list_empty(&prev->idts) || !list_empty(&prev->flushes)) { dev_err(dev, "new nfit deletes entries (unsupported)\n"); return -ENXIO; } return 0; } static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc) { struct device *dev = acpi_desc->dev; struct kernfs_node *nfit; struct device *bus_dev; if (!ars_supported(acpi_desc->nvdimm_bus)) return 0; bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit"); if (!nfit) { dev_err(dev, "sysfs_get_dirent 'nfit' failed\n"); return -ENODEV; } acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub"); sysfs_put(nfit); if (!acpi_desc->scrub_count_state) { dev_err(dev, "sysfs_get_dirent 'scrub' failed\n"); return -ENODEV; } return 0; } static void acpi_nfit_unregister(void *data) { struct acpi_nfit_desc *acpi_desc = data; nvdimm_bus_unregister(acpi_desc->nvdimm_bus); } int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz) { struct device *dev = acpi_desc->dev; struct nfit_table_prev prev; const void *end; int rc; if (!acpi_desc->nvdimm_bus) { acpi_nfit_init_dsms(acpi_desc); acpi_desc->nvdimm_bus = nvdimm_bus_register(dev, &acpi_desc->nd_desc); if (!acpi_desc->nvdimm_bus) return -ENOMEM; rc = devm_add_action_or_reset(dev, acpi_nfit_unregister, acpi_desc); if (rc) return rc; rc = acpi_nfit_desc_init_scrub_attr(acpi_desc); if (rc) return rc; /* register this acpi_desc for mce notifications */ mutex_lock(&acpi_desc_lock); list_add_tail(&acpi_desc->list, &acpi_descs); mutex_unlock(&acpi_desc_lock); } mutex_lock(&acpi_desc->init_mutex); INIT_LIST_HEAD(&prev.spas); INIT_LIST_HEAD(&prev.memdevs); INIT_LIST_HEAD(&prev.dcrs); INIT_LIST_HEAD(&prev.bdws); INIT_LIST_HEAD(&prev.idts); INIT_LIST_HEAD(&prev.flushes); list_cut_position(&prev.spas, &acpi_desc->spas, acpi_desc->spas.prev); list_cut_position(&prev.memdevs, &acpi_desc->memdevs, acpi_desc->memdevs.prev); list_cut_position(&prev.dcrs, &acpi_desc->dcrs, acpi_desc->dcrs.prev); list_cut_position(&prev.bdws, &acpi_desc->bdws, acpi_desc->bdws.prev); list_cut_position(&prev.idts, &acpi_desc->idts, acpi_desc->idts.prev); list_cut_position(&prev.flushes, &acpi_desc->flushes, acpi_desc->flushes.prev); end = data + sz; while (!IS_ERR_OR_NULL(data)) data = add_table(acpi_desc, &prev, data, end); if (IS_ERR(data)) { dev_dbg(dev, "nfit table parsing error: %ld\n", PTR_ERR(data)); rc = PTR_ERR(data); goto out_unlock; } rc = acpi_nfit_check_deletions(acpi_desc, &prev); if (rc) goto out_unlock; rc = nfit_mem_init(acpi_desc); if (rc) goto out_unlock; rc = acpi_nfit_register_dimms(acpi_desc); if (rc) goto out_unlock; rc = acpi_nfit_register_regions(acpi_desc); out_unlock: mutex_unlock(&acpi_desc->init_mutex); return rc; } EXPORT_SYMBOL_GPL(acpi_nfit_init); static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc) { struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); struct device *dev = acpi_desc->dev; /* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */ device_lock(dev); device_unlock(dev); /* Bounce the init_mutex to complete initial registration */ mutex_lock(&acpi_desc->init_mutex); mutex_unlock(&acpi_desc->init_mutex); return 0; } static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, unsigned int cmd) { struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); if (nvdimm) return 0; if (cmd != ND_CMD_ARS_START) return 0; /* * The kernel and userspace may race to initiate a scrub, but * the scrub thread is prepared to lose that initial race. It * just needs guarantees that any ARS it initiates are not * interrupted by any intervening start requests from userspace. */ if (work_busy(&acpi_desc->dwork.work)) return -EBUSY; return 0; } /* prevent security commands from being issued via ioctl */ static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, unsigned int cmd, void *buf) { struct nd_cmd_pkg *call_pkg = buf; unsigned int func; if (nvdimm && cmd == ND_CMD_CALL && call_pkg->nd_family == NVDIMM_FAMILY_INTEL) { func = call_pkg->nd_command; if ((1 << func) & NVDIMM_INTEL_SECURITY_CMDMASK) return -EOPNOTSUPP; } return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd); } int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc, enum nfit_ars_state req_type) { struct device *dev = acpi_desc->dev; int scheduled = 0, busy = 0; struct nfit_spa *nfit_spa; mutex_lock(&acpi_desc->init_mutex); if (acpi_desc->cancel) { mutex_unlock(&acpi_desc->init_mutex); return 0; } list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { int type = nfit_spa_type(nfit_spa->spa); if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE) continue; if (test_bit(ARS_FAILED, &nfit_spa->ars_state)) continue; if (test_and_set_bit(req_type, &nfit_spa->ars_state)) busy++; else scheduled++; } if (scheduled) { sched_ars(acpi_desc); dev_dbg(dev, "ars_scan triggered\n"); } mutex_unlock(&acpi_desc->init_mutex); if (scheduled) return 0; if (busy) return -EBUSY; return -ENOTTY; } void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev) { struct nvdimm_bus_descriptor *nd_desc; dev_set_drvdata(dev, acpi_desc); acpi_desc->dev = dev; acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io; nd_desc = &acpi_desc->nd_desc; nd_desc->provider_name = "ACPI.NFIT"; nd_desc->module = THIS_MODULE; nd_desc->ndctl = acpi_nfit_ctl; nd_desc->flush_probe = acpi_nfit_flush_probe; nd_desc->clear_to_send = acpi_nfit_clear_to_send; nd_desc->attr_groups = acpi_nfit_attribute_groups; INIT_LIST_HEAD(&acpi_desc->spas); INIT_LIST_HEAD(&acpi_desc->dcrs); INIT_LIST_HEAD(&acpi_desc->bdws); INIT_LIST_HEAD(&acpi_desc->idts); INIT_LIST_HEAD(&acpi_desc->flushes); INIT_LIST_HEAD(&acpi_desc->memdevs); INIT_LIST_HEAD(&acpi_desc->dimms); INIT_LIST_HEAD(&acpi_desc->list); mutex_init(&acpi_desc->init_mutex); acpi_desc->scrub_tmo = 1; INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub); } EXPORT_SYMBOL_GPL(acpi_nfit_desc_init); static void acpi_nfit_put_table(void *table) { acpi_put_table(table); } void acpi_nfit_shutdown(void *data) { struct acpi_nfit_desc *acpi_desc = data; struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); /* * Destruct under acpi_desc_lock so that nfit_handle_mce does not * race teardown */ mutex_lock(&acpi_desc_lock); list_del(&acpi_desc->list); mutex_unlock(&acpi_desc_lock); mutex_lock(&acpi_desc->init_mutex); acpi_desc->cancel = 1; cancel_delayed_work_sync(&acpi_desc->dwork); mutex_unlock(&acpi_desc->init_mutex); /* * Bounce the nvdimm bus lock to make sure any in-flight * acpi_nfit_ars_rescan() submissions have had a chance to * either submit or see ->cancel set. */ device_lock(bus_dev); device_unlock(bus_dev); flush_workqueue(nfit_wq); } EXPORT_SYMBOL_GPL(acpi_nfit_shutdown); static int acpi_nfit_add(struct acpi_device *adev) { struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; struct acpi_nfit_desc *acpi_desc; struct device *dev = &adev->dev; struct acpi_table_header *tbl; acpi_status status = AE_OK; acpi_size sz; int rc = 0; status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl); if (ACPI_FAILURE(status)) { /* The NVDIMM root device allows OS to trigger enumeration of * NVDIMMs through NFIT at boot time and re-enumeration at * root level via the _FIT method during runtime. * This is ok to return 0 here, we could have an nvdimm * hotplugged later and evaluate _FIT method which returns * data in the format of a series of NFIT Structures. */ dev_dbg(dev, "failed to find NFIT at startup\n"); return 0; } rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl); if (rc) return rc; sz = tbl->length; acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); if (!acpi_desc) return -ENOMEM; acpi_nfit_desc_init(acpi_desc, &adev->dev); /* Save the acpi header for exporting the revision via sysfs */ acpi_desc->acpi_header = *tbl; /* Evaluate _FIT and override with that if present */ status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf); if (ACPI_SUCCESS(status) && buf.length > 0) { union acpi_object *obj = buf.pointer; if (obj->type == ACPI_TYPE_BUFFER) rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer, obj->buffer.length); else dev_dbg(dev, "invalid type %d, ignoring _FIT\n", (int) obj->type); kfree(buf.pointer); } else /* skip over the lead-in header table */ rc = acpi_nfit_init(acpi_desc, (void *) tbl + sizeof(struct acpi_table_nfit), sz - sizeof(struct acpi_table_nfit)); if (rc) return rc; return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc); } static int acpi_nfit_remove(struct acpi_device *adev) { /* see acpi_nfit_unregister */ return 0; } static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle) { struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev); struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *obj; acpi_status status; int ret; if (!dev->driver) { /* dev->driver may be null if we're being removed */ dev_dbg(dev, "no driver found for dev\n"); return; } if (!acpi_desc) { acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); if (!acpi_desc) return; acpi_nfit_desc_init(acpi_desc, dev); } else { /* * Finish previous registration before considering new * regions. */ flush_workqueue(nfit_wq); } /* Evaluate _FIT */ status = acpi_evaluate_object(handle, "_FIT", NULL, &buf); if (ACPI_FAILURE(status)) { dev_err(dev, "failed to evaluate _FIT\n"); return; } obj = buf.pointer; if (obj->type == ACPI_TYPE_BUFFER) { ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer, obj->buffer.length); if (ret) dev_err(dev, "failed to merge updated NFIT\n"); } else dev_err(dev, "Invalid _FIT\n"); kfree(buf.pointer); } static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle) { struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev); if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON) acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG); else acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT); } void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event) { dev_dbg(dev, "event: 0x%x\n", event); switch (event) { case NFIT_NOTIFY_UPDATE: return acpi_nfit_update_notify(dev, handle); case NFIT_NOTIFY_UC_MEMORY_ERROR: return acpi_nfit_uc_error_notify(dev, handle); default: return; } } EXPORT_SYMBOL_GPL(__acpi_nfit_notify); static void acpi_nfit_notify(struct acpi_device *adev, u32 event) { device_lock(&adev->dev); __acpi_nfit_notify(&adev->dev, adev->handle, event); device_unlock(&adev->dev); } static const struct acpi_device_id acpi_nfit_ids[] = { { "ACPI0012", 0 }, { "", 0 }, }; MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids); static struct acpi_driver acpi_nfit_driver = { .name = KBUILD_MODNAME, .ids = acpi_nfit_ids, .ops = { .add = acpi_nfit_add, .remove = acpi_nfit_remove, .notify = acpi_nfit_notify, }, }; static __init int nfit_init(void) { int ret; BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40); BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56); BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48); BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20); BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9); BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80); BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40); BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16); guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]); guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]); guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]); guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]); guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]); guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]); guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]); guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]); guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]); guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]); guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]); guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]); guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]); nfit_wq = create_singlethread_workqueue("nfit"); if (!nfit_wq) return -ENOMEM; nfit_mce_register(); ret = acpi_bus_register_driver(&acpi_nfit_driver); if (ret) { nfit_mce_unregister(); destroy_workqueue(nfit_wq); } return ret; } static __exit void nfit_exit(void) { nfit_mce_unregister(); acpi_bus_unregister_driver(&acpi_nfit_driver); destroy_workqueue(nfit_wq); WARN_ON(!list_empty(&acpi_descs)); } module_init(nfit_init); module_exit(nfit_exit); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Intel Corporation");