/* * TC Applied Technologies Digital Interface Communications Engine driver * * Copyright (c) Clemens Ladisch * Licensed under the terms of the GNU General Public License, version 2. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "amdtp.h" #include "iso-resources.h" #include "lib.h" #include "dice-interface.h" struct dice { struct snd_card *card; struct fw_unit *unit; spinlock_t lock; struct mutex mutex; unsigned int global_offset; unsigned int rx_offset; unsigned int clock_caps; unsigned int rx_channels[3]; unsigned int rx_midi_ports[3]; struct fw_address_handler notification_handler; int owner_generation; int dev_lock_count; /* > 0 driver, < 0 userspace */ bool dev_lock_changed; bool global_enabled; struct completion clock_accepted; wait_queue_head_t hwdep_wait; u32 notification_bits; struct fw_iso_resources resources; struct amdtp_out_stream stream; }; MODULE_DESCRIPTION("DICE driver"); MODULE_AUTHOR("Clemens Ladisch "); MODULE_LICENSE("GPL v2"); static const unsigned int dice_rates[] = { /* mode 0 */ [0] = 32000, [1] = 44100, [2] = 48000, /* mode 1 */ [3] = 88200, [4] = 96000, /* mode 2 */ [5] = 176400, [6] = 192000, }; static unsigned int rate_to_index(unsigned int rate) { unsigned int i; for (i = 0; i < ARRAY_SIZE(dice_rates); ++i) if (dice_rates[i] == rate) return i; return 0; } static unsigned int rate_index_to_mode(unsigned int rate_index) { return ((int)rate_index - 1) / 2; } static void dice_lock_changed(struct dice *dice) { dice->dev_lock_changed = true; wake_up(&dice->hwdep_wait); } static int dice_try_lock(struct dice *dice) { int err; spin_lock_irq(&dice->lock); if (dice->dev_lock_count < 0) { err = -EBUSY; goto out; } if (dice->dev_lock_count++ == 0) dice_lock_changed(dice); err = 0; out: spin_unlock_irq(&dice->lock); return err; } static void dice_unlock(struct dice *dice) { spin_lock_irq(&dice->lock); if (WARN_ON(dice->dev_lock_count <= 0)) goto out; if (--dice->dev_lock_count == 0) dice_lock_changed(dice); out: spin_unlock_irq(&dice->lock); } static inline u64 global_address(struct dice *dice, unsigned int offset) { return DICE_PRIVATE_SPACE + dice->global_offset + offset; } // TODO: rx index static inline u64 rx_address(struct dice *dice, unsigned int offset) { return DICE_PRIVATE_SPACE + dice->rx_offset + offset; } static int dice_owner_set(struct dice *dice) { struct fw_device *device = fw_parent_device(dice->unit); __be64 *buffer; int err, errors = 0; buffer = kmalloc(2 * 8, GFP_KERNEL); if (!buffer) return -ENOMEM; for (;;) { buffer[0] = cpu_to_be64(OWNER_NO_OWNER); buffer[1] = cpu_to_be64( ((u64)device->card->node_id << OWNER_NODE_SHIFT) | dice->notification_handler.offset); dice->owner_generation = device->generation; smp_rmb(); /* node_id vs. generation */ err = snd_fw_transaction(dice->unit, TCODE_LOCK_COMPARE_SWAP, global_address(dice, GLOBAL_OWNER), buffer, 2 * 8, FW_FIXED_GENERATION | dice->owner_generation); if (err == 0) { if (buffer[0] != cpu_to_be64(OWNER_NO_OWNER)) { dev_err(&dice->unit->device, "device is already in use\n"); err = -EBUSY; } break; } if (err != -EAGAIN || ++errors >= 3) break; msleep(20); } kfree(buffer); return err; } static int dice_owner_update(struct dice *dice) { struct fw_device *device = fw_parent_device(dice->unit); __be64 *buffer; int err; if (dice->owner_generation == -1) return 0; buffer = kmalloc(2 * 8, GFP_KERNEL); if (!buffer) return -ENOMEM; buffer[0] = cpu_to_be64(OWNER_NO_OWNER); buffer[1] = cpu_to_be64( ((u64)device->card->node_id << OWNER_NODE_SHIFT) | dice->notification_handler.offset); dice->owner_generation = device->generation; smp_rmb(); /* node_id vs. generation */ err = snd_fw_transaction(dice->unit, TCODE_LOCK_COMPARE_SWAP, global_address(dice, GLOBAL_OWNER), buffer, 2 * 8, FW_FIXED_GENERATION | dice->owner_generation); if (err == 0) { if (buffer[0] != cpu_to_be64(OWNER_NO_OWNER)) { dev_err(&dice->unit->device, "device is already in use\n"); err = -EBUSY; } } else if (err == -EAGAIN) { err = 0; /* try again later */ } kfree(buffer); if (err < 0) dice->owner_generation = -1; return err; } static void dice_owner_clear(struct dice *dice) { struct fw_device *device = fw_parent_device(dice->unit); __be64 *buffer; buffer = kmalloc(2 * 8, GFP_KERNEL); if (!buffer) return; buffer[0] = cpu_to_be64( ((u64)device->card->node_id << OWNER_NODE_SHIFT) | dice->notification_handler.offset); buffer[1] = cpu_to_be64(OWNER_NO_OWNER); snd_fw_transaction(dice->unit, TCODE_LOCK_COMPARE_SWAP, global_address(dice, GLOBAL_OWNER), buffer, 2 * 8, FW_QUIET | FW_FIXED_GENERATION | dice->owner_generation); kfree(buffer); dice->owner_generation = -1; } static int dice_enable_set(struct dice *dice) { __be32 value; int err; value = cpu_to_be32(1); err = snd_fw_transaction(dice->unit, TCODE_WRITE_QUADLET_REQUEST, global_address(dice, GLOBAL_ENABLE), &value, 4, FW_FIXED_GENERATION | dice->owner_generation); if (err < 0) return err; dice->global_enabled = true; return 0; } static void dice_enable_clear(struct dice *dice) { __be32 value; if (!dice->global_enabled) return; value = 0; snd_fw_transaction(dice->unit, TCODE_WRITE_QUADLET_REQUEST, global_address(dice, GLOBAL_ENABLE), &value, 4, FW_QUIET | FW_FIXED_GENERATION | dice->owner_generation); dice->global_enabled = false; } static void dice_notification(struct fw_card *card, struct fw_request *request, int tcode, int destination, int source, int generation, unsigned long long offset, void *data, size_t length, void *callback_data) { struct dice *dice = callback_data; u32 bits; unsigned long flags; if (tcode != TCODE_WRITE_QUADLET_REQUEST) { fw_send_response(card, request, RCODE_TYPE_ERROR); return; } if ((offset & 3) != 0) { fw_send_response(card, request, RCODE_ADDRESS_ERROR); return; } bits = be32_to_cpup(data); spin_lock_irqsave(&dice->lock, flags); dice->notification_bits |= bits; spin_unlock_irqrestore(&dice->lock, flags); fw_send_response(card, request, RCODE_COMPLETE); if (bits & NOTIFY_CLOCK_ACCEPTED) complete(&dice->clock_accepted); wake_up(&dice->hwdep_wait); } static int dice_rate_constraint(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct dice *dice = rule->private; const struct snd_interval *channels = hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_interval *rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval allowed_rates = { .min = UINT_MAX, .max = 0, .integer = 1 }; unsigned int i, mode; for (i = 0; i < ARRAY_SIZE(dice_rates); ++i) { mode = rate_index_to_mode(i); if ((dice->clock_caps & (1 << i)) && snd_interval_test(channels, dice->rx_channels[mode])) { allowed_rates.min = min(allowed_rates.min, dice_rates[i]); allowed_rates.max = max(allowed_rates.max, dice_rates[i]); } } return snd_interval_refine(rate, &allowed_rates); } static int dice_channels_constraint(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct dice *dice = rule->private; const struct snd_interval *rate = hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *channels = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_interval allowed_channels = { .min = UINT_MAX, .max = 0, .integer = 1 }; unsigned int i, mode; for (i = 0; i < ARRAY_SIZE(dice_rates); ++i) if ((dice->clock_caps & (1 << i)) && snd_interval_test(rate, dice_rates[i])) { mode = rate_index_to_mode(i); allowed_channels.min = min(allowed_channels.min, dice->rx_channels[mode]); allowed_channels.max = max(allowed_channels.max, dice->rx_channels[mode]); } return snd_interval_refine(channels, &allowed_channels); } static int dice_open(struct snd_pcm_substream *substream) { static const struct snd_pcm_hardware hardware = { .info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BATCH | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER, .formats = AMDTP_OUT_PCM_FORMAT_BITS, .channels_min = UINT_MAX, .channels_max = 0, .buffer_bytes_max = 16 * 1024 * 1024, .period_bytes_min = 1, .period_bytes_max = UINT_MAX, .periods_min = 1, .periods_max = UINT_MAX, }; struct dice *dice = substream->private_data; struct snd_pcm_runtime *runtime = substream->runtime; unsigned int i; int err; err = dice_try_lock(dice); if (err < 0) goto error; runtime->hw = hardware; for (i = 0; i < ARRAY_SIZE(dice_rates); ++i) if (dice->clock_caps & (1 << i)) runtime->hw.rates |= snd_pcm_rate_to_rate_bit(dice_rates[i]); snd_pcm_limit_hw_rates(runtime); for (i = 0; i < 3; ++i) if (dice->rx_channels[i]) { runtime->hw.channels_min = min(runtime->hw.channels_min, dice->rx_channels[i]); runtime->hw.channels_max = max(runtime->hw.channels_max, dice->rx_channels[i]); } err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, dice_rate_constraint, dice, SNDRV_PCM_HW_PARAM_CHANNELS, -1); if (err < 0) goto err_lock; err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, dice_channels_constraint, dice, SNDRV_PCM_HW_PARAM_RATE, -1); if (err < 0) goto err_lock; err = snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32); if (err < 0) goto err_lock; err = snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32); if (err < 0) goto err_lock; err = snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5000, UINT_MAX); if (err < 0) goto err_lock; err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); if (err < 0) goto err_lock; return 0; err_lock: dice_unlock(dice); error: return err; } static int dice_close(struct snd_pcm_substream *substream) { struct dice *dice = substream->private_data; dice_unlock(dice); return 0; } static int dice_stream_start_packets(struct dice *dice) { int err; if (amdtp_out_stream_running(&dice->stream)) return 0; err = amdtp_out_stream_start(&dice->stream, dice->resources.channel, fw_parent_device(dice->unit)->max_speed); if (err < 0) return err; err = dice_enable_set(dice); if (err < 0) { amdtp_out_stream_stop(&dice->stream); return err; } return 0; } static int dice_stream_start(struct dice *dice) { __be32 channel; int err; if (!dice->resources.allocated) { err = fw_iso_resources_allocate(&dice->resources, amdtp_out_stream_get_max_payload(&dice->stream), fw_parent_device(dice->unit)->max_speed); if (err < 0) goto error; channel = cpu_to_be32(dice->resources.channel); err = snd_fw_transaction(dice->unit, TCODE_WRITE_QUADLET_REQUEST, rx_address(dice, RX_ISOCHRONOUS), &channel, 4, 0); if (err < 0) goto err_resources; } err = dice_stream_start_packets(dice); if (err < 0) goto err_rx_channel; return 0; err_rx_channel: channel = cpu_to_be32((u32)-1); snd_fw_transaction(dice->unit, TCODE_WRITE_QUADLET_REQUEST, rx_address(dice, RX_ISOCHRONOUS), &channel, 4, 0); err_resources: fw_iso_resources_free(&dice->resources); error: return err; } static void dice_stream_stop_packets(struct dice *dice) { if (amdtp_out_stream_running(&dice->stream)) { dice_enable_clear(dice); amdtp_out_stream_stop(&dice->stream); } } static void dice_stream_stop(struct dice *dice) { __be32 channel; dice_stream_stop_packets(dice); if (!dice->resources.allocated) return; channel = cpu_to_be32((u32)-1); snd_fw_transaction(dice->unit, TCODE_WRITE_QUADLET_REQUEST, rx_address(dice, RX_ISOCHRONOUS), &channel, 4, 0); fw_iso_resources_free(&dice->resources); } static int dice_change_rate(struct dice *dice, unsigned int clock_rate) { __be32 value; int err; INIT_COMPLETION(dice->clock_accepted); value = cpu_to_be32(clock_rate | CLOCK_SOURCE_ARX1); err = snd_fw_transaction(dice->unit, TCODE_WRITE_QUADLET_REQUEST, global_address(dice, GLOBAL_CLOCK_SELECT), &value, 4, 0); if (err < 0) return err; if (!wait_for_completion_timeout(&dice->clock_accepted, msecs_to_jiffies(100))) dev_warn(&dice->unit->device, "clock change timed out\n"); return 0; } static int dice_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct dice *dice = substream->private_data; unsigned int rate_index, mode; int err; mutex_lock(&dice->mutex); dice_stream_stop(dice); mutex_unlock(&dice->mutex); err = snd_pcm_lib_alloc_vmalloc_buffer(substream, params_buffer_bytes(hw_params)); if (err < 0) return err; rate_index = rate_to_index(params_rate(hw_params)); err = dice_change_rate(dice, rate_index << CLOCK_RATE_SHIFT); if (err < 0) return err; mode = rate_index_to_mode(rate_index); amdtp_out_stream_set_parameters(&dice->stream, params_rate(hw_params), params_channels(hw_params), dice->rx_midi_ports[mode]); amdtp_out_stream_set_pcm_format(&dice->stream, params_format(hw_params)); return 0; } static int dice_hw_free(struct snd_pcm_substream *substream) { struct dice *dice = substream->private_data; mutex_lock(&dice->mutex); dice_stream_stop(dice); mutex_unlock(&dice->mutex); return snd_pcm_lib_free_vmalloc_buffer(substream); } static int dice_prepare(struct snd_pcm_substream *substream) { struct dice *dice = substream->private_data; int err; mutex_lock(&dice->mutex); if (amdtp_out_streaming_error(&dice->stream)) dice_stream_stop_packets(dice); err = dice_stream_start(dice); if (err < 0) { mutex_unlock(&dice->mutex); return err; } mutex_unlock(&dice->mutex); amdtp_out_stream_pcm_prepare(&dice->stream); return 0; } static int dice_trigger(struct snd_pcm_substream *substream, int cmd) { struct dice *dice = substream->private_data; struct snd_pcm_substream *pcm; switch (cmd) { case SNDRV_PCM_TRIGGER_START: pcm = substream; break; case SNDRV_PCM_TRIGGER_STOP: pcm = NULL; break; default: return -EINVAL; } amdtp_out_stream_pcm_trigger(&dice->stream, pcm); return 0; } static snd_pcm_uframes_t dice_pointer(struct snd_pcm_substream *substream) { struct dice *dice = substream->private_data; return amdtp_out_stream_pcm_pointer(&dice->stream); } static int dice_create_pcm(struct dice *dice) { static struct snd_pcm_ops ops = { .open = dice_open, .close = dice_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = dice_hw_params, .hw_free = dice_hw_free, .prepare = dice_prepare, .trigger = dice_trigger, .pointer = dice_pointer, .page = snd_pcm_lib_get_vmalloc_page, .mmap = snd_pcm_lib_mmap_vmalloc, }; struct snd_pcm *pcm; int err; err = snd_pcm_new(dice->card, "DICE", 0, 1, 0, &pcm); if (err < 0) return err; pcm->private_data = dice; strcpy(pcm->name, dice->card->shortname); pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->ops = &ops; return 0; } static long dice_hwdep_read(struct snd_hwdep *hwdep, char __user *buf, long count, loff_t *offset) { struct dice *dice = hwdep->private_data; DEFINE_WAIT(wait); union snd_firewire_event event; spin_lock_irq(&dice->lock); while (!dice->dev_lock_changed && dice->notification_bits == 0) { prepare_to_wait(&dice->hwdep_wait, &wait, TASK_INTERRUPTIBLE); spin_unlock_irq(&dice->lock); schedule(); finish_wait(&dice->hwdep_wait, &wait); if (signal_pending(current)) return -ERESTARTSYS; spin_lock_irq(&dice->lock); } memset(&event, 0, sizeof(event)); if (dice->dev_lock_changed) { event.lock_status.type = SNDRV_FIREWIRE_EVENT_LOCK_STATUS; event.lock_status.status = dice->dev_lock_count > 0; dice->dev_lock_changed = false; count = min(count, (long)sizeof(event.lock_status)); } else { event.dice_notification.type = SNDRV_FIREWIRE_EVENT_DICE_NOTIFICATION; event.dice_notification.notification = dice->notification_bits; dice->notification_bits = 0; count = min(count, (long)sizeof(event.dice_notification)); } spin_unlock_irq(&dice->lock); if (copy_to_user(buf, &event, count)) return -EFAULT; return count; } static unsigned int dice_hwdep_poll(struct snd_hwdep *hwdep, struct file *file, poll_table *wait) { struct dice *dice = hwdep->private_data; unsigned int events; poll_wait(file, &dice->hwdep_wait, wait); spin_lock_irq(&dice->lock); if (dice->dev_lock_changed || dice->notification_bits != 0) events = POLLIN | POLLRDNORM; else events = 0; spin_unlock_irq(&dice->lock); return events; } static int dice_hwdep_get_info(struct dice *dice, void __user *arg) { struct fw_device *dev = fw_parent_device(dice->unit); struct snd_firewire_get_info info; memset(&info, 0, sizeof(info)); info.type = SNDRV_FIREWIRE_TYPE_DICE; info.card = dev->card->index; *(__be32 *)&info.guid[0] = cpu_to_be32(dev->config_rom[3]); *(__be32 *)&info.guid[4] = cpu_to_be32(dev->config_rom[4]); strlcpy(info.device_name, dev_name(&dev->device), sizeof(info.device_name)); if (copy_to_user(arg, &info, sizeof(info))) return -EFAULT; return 0; } static int dice_hwdep_lock(struct dice *dice) { int err; spin_lock_irq(&dice->lock); if (dice->dev_lock_count == 0) { dice->dev_lock_count = -1; err = 0; } else { err = -EBUSY; } spin_unlock_irq(&dice->lock); return err; } static int dice_hwdep_unlock(struct dice *dice) { int err; spin_lock_irq(&dice->lock); if (dice->dev_lock_count == -1) { dice->dev_lock_count = 0; err = 0; } else { err = -EBADFD; } spin_unlock_irq(&dice->lock); return err; } static int dice_hwdep_release(struct snd_hwdep *hwdep, struct file *file) { struct dice *dice = hwdep->private_data; spin_lock_irq(&dice->lock); if (dice->dev_lock_count == -1) dice->dev_lock_count = 0; spin_unlock_irq(&dice->lock); return 0; } static int dice_hwdep_ioctl(struct snd_hwdep *hwdep, struct file *file, unsigned int cmd, unsigned long arg) { struct dice *dice = hwdep->private_data; switch (cmd) { case SNDRV_FIREWIRE_IOCTL_GET_INFO: return dice_hwdep_get_info(dice, (void __user *)arg); case SNDRV_FIREWIRE_IOCTL_LOCK: return dice_hwdep_lock(dice); case SNDRV_FIREWIRE_IOCTL_UNLOCK: return dice_hwdep_unlock(dice); default: return -ENOIOCTLCMD; } } #ifdef CONFIG_COMPAT static int dice_hwdep_compat_ioctl(struct snd_hwdep *hwdep, struct file *file, unsigned int cmd, unsigned long arg) { return dice_hwdep_ioctl(hwdep, file, cmd, (unsigned long)compat_ptr(arg)); } #else #define dice_hwdep_compat_ioctl NULL #endif static int dice_create_hwdep(struct dice *dice) { static const struct snd_hwdep_ops ops = { .read = dice_hwdep_read, .release = dice_hwdep_release, .poll = dice_hwdep_poll, .ioctl = dice_hwdep_ioctl, .ioctl_compat = dice_hwdep_compat_ioctl, }; struct snd_hwdep *hwdep; int err; err = snd_hwdep_new(dice->card, "DICE", 0, &hwdep); if (err < 0) return err; strcpy(hwdep->name, "DICE"); hwdep->iface = SNDRV_HWDEP_IFACE_FW_DICE; hwdep->ops = ops; hwdep->private_data = dice; hwdep->exclusive = true; return 0; } static int dice_proc_read_mem(struct dice *dice, void *buffer, unsigned int offset_q, unsigned int quadlets) { unsigned int i; int err; err = snd_fw_transaction(dice->unit, TCODE_READ_BLOCK_REQUEST, DICE_PRIVATE_SPACE + 4 * offset_q, buffer, 4 * quadlets, 0); if (err < 0) return err; for (i = 0; i < quadlets; ++i) be32_to_cpus(&((u32 *)buffer)[i]); return 0; } static const char *str_from_array(const char *const strs[], unsigned int count, unsigned int i) { if (i < count) return strs[i]; else return "(unknown)"; } static void dice_proc_fixup_string(char *s, unsigned int size) { unsigned int i; for (i = 0; i < size; i += 4) cpu_to_le32s((u32 *)(s + i)); for (i = 0; i < size - 2; ++i) { if (s[i] == '\0') return; if (s[i] == '\\' && s[i + 1] == '\\') { s[i + 2] = '\0'; return; } } s[size - 1] = '\0'; } static void dice_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { static const char *const section_names[5] = { "global", "tx", "rx", "ext_sync", "unused2" }; static const char *const clock_sources[] = { "aes1", "aes2", "aes3", "aes4", "aes", "adat", "tdif", "wc", "arx1", "arx2", "arx3", "arx4", "internal" }; static const char *const rates[] = { "32000", "44100", "48000", "88200", "96000", "176400", "192000", "any low", "any mid", "any high", "none" }; struct dice *dice = entry->private_data; u32 sections[ARRAY_SIZE(section_names) * 2]; struct { u32 number; u32 size; } tx_rx_header; union { struct { u32 owner_hi, owner_lo; u32 notification; char nick_name[NICK_NAME_SIZE]; u32 clock_select; u32 enable; u32 status; u32 extended_status; u32 sample_rate; u32 version; u32 clock_caps; char clock_source_names[CLOCK_SOURCE_NAMES_SIZE]; } global; struct { u32 iso; u32 number_audio; u32 number_midi; u32 speed; char names[TX_NAMES_SIZE]; u32 ac3_caps; u32 ac3_enable; } tx; struct { u32 iso; u32 seq_start; u32 number_audio; u32 number_midi; char names[RX_NAMES_SIZE]; u32 ac3_caps; u32 ac3_enable; } rx; struct { u32 clock_source; u32 locked; u32 rate; u32 adat_user_data; } ext_sync; } buf; unsigned int quadlets, stream, i; if (dice_proc_read_mem(dice, sections, 0, ARRAY_SIZE(sections)) < 0) return; snd_iprintf(buffer, "sections:\n"); for (i = 0; i < ARRAY_SIZE(section_names); ++i) snd_iprintf(buffer, " %s: offset %u, size %u\n", section_names[i], sections[i * 2], sections[i * 2 + 1]); quadlets = min_t(u32, sections[1], sizeof(buf.global) / 4); if (dice_proc_read_mem(dice, &buf.global, sections[0], quadlets) < 0) return; snd_iprintf(buffer, "global:\n"); snd_iprintf(buffer, " owner: %04x:%04x%08x\n", buf.global.owner_hi >> 16, buf.global.owner_hi & 0xffff, buf.global.owner_lo); snd_iprintf(buffer, " notification: %08x\n", buf.global.notification); dice_proc_fixup_string(buf.global.nick_name, NICK_NAME_SIZE); snd_iprintf(buffer, " nick name: %s\n", buf.global.nick_name); snd_iprintf(buffer, " clock select: %s %s\n", str_from_array(clock_sources, ARRAY_SIZE(clock_sources), buf.global.clock_select & CLOCK_SOURCE_MASK), str_from_array(rates, ARRAY_SIZE(rates), (buf.global.clock_select & CLOCK_RATE_MASK) >> CLOCK_RATE_SHIFT)); snd_iprintf(buffer, " enable: %u\n", buf.global.enable); snd_iprintf(buffer, " status: %slocked %s\n", buf.global.status & STATUS_SOURCE_LOCKED ? "" : "un", str_from_array(rates, ARRAY_SIZE(rates), (buf.global.status & STATUS_NOMINAL_RATE_MASK) >> CLOCK_RATE_SHIFT)); snd_iprintf(buffer, " ext status: %08x\n", buf.global.extended_status); snd_iprintf(buffer, " sample rate: %u\n", buf.global.sample_rate); snd_iprintf(buffer, " version: %u.%u.%u.%u\n", (buf.global.version >> 24) & 0xff, (buf.global.version >> 16) & 0xff, (buf.global.version >> 8) & 0xff, (buf.global.version >> 0) & 0xff); if (quadlets >= 90) { snd_iprintf(buffer, " clock caps:"); for (i = 0; i <= 6; ++i) if (buf.global.clock_caps & (1 << i)) snd_iprintf(buffer, " %s", rates[i]); for (i = 0; i <= 12; ++i) if (buf.global.clock_caps & (1 << (16 + i))) snd_iprintf(buffer, " %s", clock_sources[i]); snd_iprintf(buffer, "\n"); dice_proc_fixup_string(buf.global.clock_source_names, CLOCK_SOURCE_NAMES_SIZE); snd_iprintf(buffer, " clock source names: %s\n", buf.global.clock_source_names); } if (dice_proc_read_mem(dice, &tx_rx_header, sections[2], 2) < 0) return; quadlets = min_t(u32, tx_rx_header.size, sizeof(buf.tx)); for (stream = 0; stream < tx_rx_header.number; ++stream) { if (dice_proc_read_mem(dice, &buf.tx, sections[2] + 2 + stream * tx_rx_header.size, quadlets) < 0) break; snd_iprintf(buffer, "tx %u:\n", stream); snd_iprintf(buffer, " iso channel: %d\n", (int)buf.tx.iso); snd_iprintf(buffer, " audio channels: %u\n", buf.tx.number_audio); snd_iprintf(buffer, " midi ports: %u\n", buf.tx.number_midi); snd_iprintf(buffer, " speed: S%u\n", 100u << buf.tx.speed); if (quadlets >= 68) { dice_proc_fixup_string(buf.tx.names, TX_NAMES_SIZE); snd_iprintf(buffer, " names: %s\n", buf.tx.names); } if (quadlets >= 70) { snd_iprintf(buffer, " ac3 caps: %08x\n", buf.tx.ac3_caps); snd_iprintf(buffer, " ac3 enable: %08x\n", buf.tx.ac3_enable); } } if (dice_proc_read_mem(dice, &tx_rx_header, sections[4], 2) < 0) return; quadlets = min_t(u32, tx_rx_header.size, sizeof(buf.rx)); for (stream = 0; stream < tx_rx_header.number; ++stream) { if (dice_proc_read_mem(dice, &buf.rx, sections[4] + 2 + stream * tx_rx_header.size, quadlets) < 0) break; snd_iprintf(buffer, "rx %u:\n", stream); snd_iprintf(buffer, " iso channel: %d\n", (int)buf.rx.iso); snd_iprintf(buffer, " sequence start: %u\n", (int)buf.rx.seq_start); snd_iprintf(buffer, " audio channels: %u\n", buf.rx.number_audio); snd_iprintf(buffer, " midi ports: %u\n", buf.rx.number_midi); if (quadlets >= 68) { dice_proc_fixup_string(buf.rx.names, RX_NAMES_SIZE); snd_iprintf(buffer, " names: %s\n", buf.rx.names); } if (quadlets >= 70) { snd_iprintf(buffer, " ac3 caps: %08x\n", buf.rx.ac3_caps); snd_iprintf(buffer, " ac3 enable: %08x\n", buf.rx.ac3_enable); } } quadlets = min_t(u32, sections[7], sizeof(buf.ext_sync) / 4); if (quadlets >= 4) { if (dice_proc_read_mem(dice, &buf.ext_sync, sections[6], 4) < 0) return; snd_iprintf(buffer, "ext status:\n"); snd_iprintf(buffer, " clock source: %s\n", str_from_array(clock_sources, ARRAY_SIZE(clock_sources), buf.ext_sync.clock_source)); snd_iprintf(buffer, " locked: %u\n", buf.ext_sync.locked); snd_iprintf(buffer, " rate: %s\n", str_from_array(rates, ARRAY_SIZE(rates), buf.ext_sync.rate)); snd_iprintf(buffer, " adat user data: "); if (buf.ext_sync.adat_user_data & ADAT_USER_DATA_NO_DATA) snd_iprintf(buffer, "-\n"); else snd_iprintf(buffer, "%x\n", buf.ext_sync.adat_user_data); } } static void dice_create_proc(struct dice *dice) { struct snd_info_entry *entry; if (!snd_card_proc_new(dice->card, "dice", &entry)) snd_info_set_text_ops(entry, dice, dice_proc_read); } static void dice_card_free(struct snd_card *card) { struct dice *dice = card->private_data; amdtp_out_stream_destroy(&dice->stream); fw_core_remove_address_handler(&dice->notification_handler); mutex_destroy(&dice->mutex); } #define DICE_CATEGORY_ID 0x04 static int dice_interface_check(struct fw_unit *unit) { static const int min_values[10] = { 10, 0x64 / 4, 10, 0x18 / 4, 10, 0x18 / 4, 0, 0, 0, 0, }; struct fw_device *device = fw_parent_device(unit); struct fw_csr_iterator it; int key, value, vendor = -1, model = -1, err; unsigned int i; __be32 pointers[ARRAY_SIZE(min_values)]; __be32 version; /* * Check that GUID and unit directory are constructed according to DICE * rules, i.e., that the specifier ID is the GUID's OUI, and that the * GUID chip ID consists of the 8-bit DICE category ID, the 10-bit * product ID, and a 22-bit serial number. */ fw_csr_iterator_init(&it, unit->directory); while (fw_csr_iterator_next(&it, &key, &value)) { switch (key) { case CSR_SPECIFIER_ID: vendor = value; break; case CSR_MODEL: model = value; break; } } if (device->config_rom[3] != ((vendor << 8) | DICE_CATEGORY_ID) || device->config_rom[4] >> 22 != model) return -ENODEV; /* * Check that the sub address spaces exist and are located inside the * private address space. The minimum values are chosen so that all * minimally required registers are included. */ err = snd_fw_transaction(unit, TCODE_READ_BLOCK_REQUEST, DICE_PRIVATE_SPACE, pointers, sizeof(pointers), 0); if (err < 0) return -ENODEV; for (i = 0; i < ARRAY_SIZE(pointers); ++i) { value = be32_to_cpu(pointers[i]); if (value < min_values[i] || value >= 0x40000) return -ENODEV; } /* * Check that the implemented DICE driver specification major version * number matches. */ err = snd_fw_transaction(unit, TCODE_READ_QUADLET_REQUEST, DICE_PRIVATE_SPACE + be32_to_cpu(pointers[0]) * 4 + GLOBAL_VERSION, &version, 4, 0); if (err < 0) return -ENODEV; if ((version & cpu_to_be32(0xff000000)) != cpu_to_be32(0x01000000)) { dev_err(&unit->device, "unknown DICE version: 0x%08x\n", be32_to_cpu(version)); return -ENODEV; } return 0; } static int highest_supported_mode_rate(struct dice *dice, unsigned int mode) { int i; for (i = ARRAY_SIZE(dice_rates) - 1; i >= 0; --i) if ((dice->clock_caps & (1 << i)) && rate_index_to_mode(i) == mode) return i; return -1; } static int dice_read_mode_params(struct dice *dice, unsigned int mode) { __be32 values[2]; int rate_index, err; rate_index = highest_supported_mode_rate(dice, mode); if (rate_index < 0) { dice->rx_channels[mode] = 0; dice->rx_midi_ports[mode] = 0; return 0; } err = dice_change_rate(dice, rate_index << CLOCK_RATE_SHIFT); if (err < 0) return err; err = snd_fw_transaction(dice->unit, TCODE_READ_BLOCK_REQUEST, rx_address(dice, RX_NUMBER_AUDIO), values, 2 * 4, 0); if (err < 0) return err; dice->rx_channels[mode] = be32_to_cpu(values[0]); dice->rx_midi_ports[mode] = be32_to_cpu(values[1]); return 0; } static int dice_read_params(struct dice *dice) { __be32 pointers[6]; __be32 value; int mode, err; err = snd_fw_transaction(dice->unit, TCODE_READ_BLOCK_REQUEST, DICE_PRIVATE_SPACE, pointers, sizeof(pointers), 0); if (err < 0) return err; dice->global_offset = be32_to_cpu(pointers[0]) * 4; dice->rx_offset = be32_to_cpu(pointers[4]) * 4; /* some very old firmwares don't tell about their clock support */ if (be32_to_cpu(pointers[1]) * 4 >= GLOBAL_CLOCK_CAPABILITIES + 4) { err = snd_fw_transaction( dice->unit, TCODE_READ_QUADLET_REQUEST, global_address(dice, GLOBAL_CLOCK_CAPABILITIES), &value, 4, 0); if (err < 0) return err; dice->clock_caps = be32_to_cpu(value); } else { /* this should be supported by any device */ dice->clock_caps = CLOCK_CAP_RATE_44100 | CLOCK_CAP_RATE_48000 | CLOCK_CAP_SOURCE_ARX1 | CLOCK_CAP_SOURCE_INTERNAL; } for (mode = 2; mode >= 0; --mode) { err = dice_read_mode_params(dice, mode); if (err < 0) return err; } return 0; } static void dice_card_strings(struct dice *dice) { struct snd_card *card = dice->card; struct fw_device *dev = fw_parent_device(dice->unit); char vendor[32], model[32]; unsigned int i; int err; strcpy(card->driver, "DICE"); strcpy(card->shortname, "DICE"); BUILD_BUG_ON(NICK_NAME_SIZE < sizeof(card->shortname)); err = snd_fw_transaction(dice->unit, TCODE_READ_BLOCK_REQUEST, global_address(dice, GLOBAL_NICK_NAME), card->shortname, sizeof(card->shortname), 0); if (err >= 0) { /* DICE strings are returned in "always-wrong" endianness */ BUILD_BUG_ON(sizeof(card->shortname) % 4 != 0); for (i = 0; i < sizeof(card->shortname); i += 4) swab32s((u32 *)&card->shortname[i]); card->shortname[sizeof(card->shortname) - 1] = '\0'; } strcpy(vendor, "?"); fw_csr_string(dev->config_rom + 5, CSR_VENDOR, vendor, sizeof(vendor)); strcpy(model, "?"); fw_csr_string(dice->unit->directory, CSR_MODEL, model, sizeof(model)); snprintf(card->longname, sizeof(card->longname), "%s %s (serial %u) at %s, S%d", vendor, model, dev->config_rom[4] & 0x3fffff, dev_name(&dice->unit->device), 100 << dev->max_speed); strcpy(card->mixername, "DICE"); } static int dice_probe(struct fw_unit *unit, const struct ieee1394_device_id *id) { struct snd_card *card; struct dice *dice; __be32 clock_sel; int err; err = dice_interface_check(unit); if (err < 0) return err; err = snd_card_create(-1, NULL, THIS_MODULE, sizeof(*dice), &card); if (err < 0) return err; snd_card_set_dev(card, &unit->device); dice = card->private_data; dice->card = card; spin_lock_init(&dice->lock); mutex_init(&dice->mutex); dice->unit = unit; init_completion(&dice->clock_accepted); init_waitqueue_head(&dice->hwdep_wait); dice->notification_handler.length = 4; dice->notification_handler.address_callback = dice_notification; dice->notification_handler.callback_data = dice; err = fw_core_add_address_handler(&dice->notification_handler, &fw_high_memory_region); if (err < 0) goto err_mutex; err = dice_owner_set(dice); if (err < 0) goto err_notification_handler; err = dice_read_params(dice); if (err < 0) goto err_owner; err = fw_iso_resources_init(&dice->resources, unit); if (err < 0) goto err_owner; dice->resources.channels_mask = 0x00000000ffffffffuLL; err = amdtp_out_stream_init(&dice->stream, unit, CIP_BLOCKING | CIP_HI_DUALWIRE); if (err < 0) goto err_resources; card->private_free = dice_card_free; dice_card_strings(dice); err = snd_fw_transaction(unit, TCODE_READ_QUADLET_REQUEST, global_address(dice, GLOBAL_CLOCK_SELECT), &clock_sel, 4, 0); if (err < 0) goto error; clock_sel &= cpu_to_be32(~CLOCK_SOURCE_MASK); clock_sel |= cpu_to_be32(CLOCK_SOURCE_ARX1); err = snd_fw_transaction(unit, TCODE_WRITE_QUADLET_REQUEST, global_address(dice, GLOBAL_CLOCK_SELECT), &clock_sel, 4, 0); if (err < 0) goto error; err = dice_create_pcm(dice); if (err < 0) goto error; err = dice_create_hwdep(dice); if (err < 0) goto error; dice_create_proc(dice); err = snd_card_register(card); if (err < 0) goto error; dev_set_drvdata(&unit->device, dice); return 0; err_resources: fw_iso_resources_destroy(&dice->resources); err_owner: dice_owner_clear(dice); err_notification_handler: fw_core_remove_address_handler(&dice->notification_handler); err_mutex: mutex_destroy(&dice->mutex); error: snd_card_free(card); return err; } static void dice_remove(struct fw_unit *unit) { struct dice *dice = dev_get_drvdata(&unit->device); amdtp_out_stream_pcm_abort(&dice->stream); snd_card_disconnect(dice->card); mutex_lock(&dice->mutex); dice_stream_stop(dice); dice_owner_clear(dice); mutex_unlock(&dice->mutex); snd_card_free_when_closed(dice->card); } static void dice_bus_reset(struct fw_unit *unit) { struct dice *dice = dev_get_drvdata(&unit->device); /* * On a bus reset, the DICE firmware disables streaming and then goes * off contemplating its own navel for hundreds of milliseconds before * it can react to any of our attempts to reenable streaming. This * means that we lose synchronization anyway, so we force our streams * to stop so that the application can restart them in an orderly * manner. */ amdtp_out_stream_pcm_abort(&dice->stream); mutex_lock(&dice->mutex); dice->global_enabled = false; dice_stream_stop_packets(dice); dice_owner_update(dice); fw_iso_resources_update(&dice->resources); mutex_unlock(&dice->mutex); } #define DICE_INTERFACE 0x000001 static const struct ieee1394_device_id dice_id_table[] = { { .match_flags = IEEE1394_MATCH_VERSION, .version = DICE_INTERFACE, }, { } }; MODULE_DEVICE_TABLE(ieee1394, dice_id_table); static struct fw_driver dice_driver = { .driver = { .owner = THIS_MODULE, .name = KBUILD_MODNAME, .bus = &fw_bus_type, }, .probe = dice_probe, .update = dice_bus_reset, .remove = dice_remove, .id_table = dice_id_table, }; static int __init alsa_dice_init(void) { return driver_register(&dice_driver.driver); } static void __exit alsa_dice_exit(void) { driver_unregister(&dice_driver.driver); } module_init(alsa_dice_init); module_exit(alsa_dice_exit);