/* * Copyright (c) 2008-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include "hw.h" #include "ar9002_phy.h" static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah) { return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF); } static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah) { return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF); } #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16)) static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); u16 *eep_data = (u16 *)&ah->eeprom.map4k; int addr, eep_start_loc = 64; for (addr = 0; addr < SIZE_EEPROM_4K; addr++) { if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) { ath_dbg(common, ATH_DBG_EEPROM, "Unable to read eeprom region\n"); return false; } eep_data++; } return true; } static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah) { u16 *eep_data = (u16 *)&ah->eeprom.map4k; ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K); return true; } static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); if (!ath9k_hw_use_flash(ah)) { ath_dbg(common, ATH_DBG_EEPROM, "Reading from EEPROM, not flash\n"); } if (common->bus_ops->ath_bus_type == ATH_USB) return __ath9k_hw_usb_4k_fill_eeprom(ah); else return __ath9k_hw_4k_fill_eeprom(ah); } #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS) static u32 ath9k_dump_4k_modal_eeprom(char *buf, u32 len, u32 size, struct modal_eep_4k_header *modal_hdr) { PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]); PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon); PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]); PR_EEP("Switch Settle", modal_hdr->switchSettling); PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]); PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]); PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize); PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize); PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]); PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff); PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn); PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn); PR_EEP("CCA Threshold)", modal_hdr->thresh62); PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]); PR_EEP("xpdGain", modal_hdr->xpdGain); PR_EEP("External PD", modal_hdr->xpd); PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]); PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]); PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap); PR_EEP("O/D Bias Version", modal_hdr->version); PR_EEP("CCK OutputBias", modal_hdr->ob_0); PR_EEP("BPSK OutputBias", modal_hdr->ob_1); PR_EEP("QPSK OutputBias", modal_hdr->ob_2); PR_EEP("16QAM OutputBias", modal_hdr->ob_3); PR_EEP("64QAM OutputBias", modal_hdr->ob_4); PR_EEP("CCK Driver1_Bias", modal_hdr->db1_0); PR_EEP("BPSK Driver1_Bias", modal_hdr->db1_1); PR_EEP("QPSK Driver1_Bias", modal_hdr->db1_2); PR_EEP("16QAM Driver1_Bias", modal_hdr->db1_3); PR_EEP("64QAM Driver1_Bias", modal_hdr->db1_4); PR_EEP("CCK Driver2_Bias", modal_hdr->db2_0); PR_EEP("BPSK Driver2_Bias", modal_hdr->db2_1); PR_EEP("QPSK Driver2_Bias", modal_hdr->db2_2); PR_EEP("16QAM Driver2_Bias", modal_hdr->db2_3); PR_EEP("64QAM Driver2_Bias", modal_hdr->db2_4); PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl); PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart); PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn); PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc); PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]); PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]); PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40); PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]); PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]); PR_EEP("Ant. Diversity ctl1", modal_hdr->antdiv_ctl1); PR_EEP("Ant. Diversity ctl2", modal_hdr->antdiv_ctl2); PR_EEP("TX Diversity", modal_hdr->tx_diversity); return len; } static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr, u8 *buf, u32 len, u32 size) { struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k; struct base_eep_header_4k *pBase = &eep->baseEepHeader; if (!dump_base_hdr) { len += snprintf(buf + len, size - len, "%20s :\n", "2GHz modal Header"); len += ath9k_dump_4k_modal_eeprom(buf, len, size, &eep->modalHeader); goto out; } PR_EEP("Major Version", pBase->version >> 12); PR_EEP("Minor Version", pBase->version & 0xFFF); PR_EEP("Checksum", pBase->checksum); PR_EEP("Length", pBase->length); PR_EEP("RegDomain1", pBase->regDmn[0]); PR_EEP("RegDomain2", pBase->regDmn[1]); PR_EEP("TX Mask", pBase->txMask); PR_EEP("RX Mask", pBase->rxMask); PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A)); PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G)); PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags & AR5416_OPFLAGS_N_2G_HT20)); PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags & AR5416_OPFLAGS_N_2G_HT40)); PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags & AR5416_OPFLAGS_N_5G_HT20)); PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags & AR5416_OPFLAGS_N_5G_HT40)); PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01)); PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF); PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF); PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF); PR_EEP("TX Gain type", pBase->txGainType); len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress", pBase->macAddr); out: if (len > size) len = size; return len; } #else static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr, u8 *buf, u32 len, u32 size) { return 0; } #endif #undef SIZE_EEPROM_4K static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah) { #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16)) struct ath_common *common = ath9k_hw_common(ah); struct ar5416_eeprom_4k *eep = (struct ar5416_eeprom_4k *) &ah->eeprom.map4k; u16 *eepdata, temp, magic, magic2; u32 sum = 0, el; bool need_swap = false; int i, addr; if (!ath9k_hw_use_flash(ah)) { if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET, &magic)) { ath_err(common, "Reading Magic # failed\n"); return false; } ath_dbg(common, ATH_DBG_EEPROM, "Read Magic = 0x%04X\n", magic); if (magic != AR5416_EEPROM_MAGIC) { magic2 = swab16(magic); if (magic2 == AR5416_EEPROM_MAGIC) { need_swap = true; eepdata = (u16 *) (&ah->eeprom); for (addr = 0; addr < EEPROM_4K_SIZE; addr++) { temp = swab16(*eepdata); *eepdata = temp; eepdata++; } } else { ath_err(common, "Invalid EEPROM Magic. Endianness mismatch.\n"); return -EINVAL; } } } ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n", need_swap ? "True" : "False"); if (need_swap) el = swab16(ah->eeprom.map4k.baseEepHeader.length); else el = ah->eeprom.map4k.baseEepHeader.length; if (el > sizeof(struct ar5416_eeprom_4k)) el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16); else el = el / sizeof(u16); eepdata = (u16 *)(&ah->eeprom); for (i = 0; i < el; i++) sum ^= *eepdata++; if (need_swap) { u32 integer; u16 word; ath_dbg(common, ATH_DBG_EEPROM, "EEPROM Endianness is not native.. Changing\n"); word = swab16(eep->baseEepHeader.length); eep->baseEepHeader.length = word; word = swab16(eep->baseEepHeader.checksum); eep->baseEepHeader.checksum = word; word = swab16(eep->baseEepHeader.version); eep->baseEepHeader.version = word; word = swab16(eep->baseEepHeader.regDmn[0]); eep->baseEepHeader.regDmn[0] = word; word = swab16(eep->baseEepHeader.regDmn[1]); eep->baseEepHeader.regDmn[1] = word; word = swab16(eep->baseEepHeader.rfSilent); eep->baseEepHeader.rfSilent = word; word = swab16(eep->baseEepHeader.blueToothOptions); eep->baseEepHeader.blueToothOptions = word; word = swab16(eep->baseEepHeader.deviceCap); eep->baseEepHeader.deviceCap = word; integer = swab32(eep->modalHeader.antCtrlCommon); eep->modalHeader.antCtrlCommon = integer; for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) { integer = swab32(eep->modalHeader.antCtrlChain[i]); eep->modalHeader.antCtrlChain[i] = integer; } for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { word = swab16(eep->modalHeader.spurChans[i].spurChan); eep->modalHeader.spurChans[i].spurChan = word; } } if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) { ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n", sum, ah->eep_ops->get_eeprom_ver(ah)); return -EINVAL; } return 0; #undef EEPROM_4K_SIZE } static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah, enum eeprom_param param) { struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k; struct modal_eep_4k_header *pModal = &eep->modalHeader; struct base_eep_header_4k *pBase = &eep->baseEepHeader; u16 ver_minor; ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK; switch (param) { case EEP_NFTHRESH_2: return pModal->noiseFloorThreshCh[0]; case EEP_MAC_LSW: return get_unaligned_be16(pBase->macAddr); case EEP_MAC_MID: return get_unaligned_be16(pBase->macAddr + 2); case EEP_MAC_MSW: return get_unaligned_be16(pBase->macAddr + 4); case EEP_REG_0: return pBase->regDmn[0]; case EEP_REG_1: return pBase->regDmn[1]; case EEP_OP_CAP: return pBase->deviceCap; case EEP_OP_MODE: return pBase->opCapFlags; case EEP_RF_SILENT: return pBase->rfSilent; case EEP_OB_2: return pModal->ob_0; case EEP_DB_2: return pModal->db1_1; case EEP_MINOR_REV: return ver_minor; case EEP_TX_MASK: return pBase->txMask; case EEP_RX_MASK: return pBase->rxMask; case EEP_FRAC_N_5G: return 0; case EEP_PWR_TABLE_OFFSET: return AR5416_PWR_TABLE_OFFSET_DB; case EEP_MODAL_VER: return pModal->version; case EEP_ANT_DIV_CTL1: return pModal->antdiv_ctl1; case EEP_TXGAIN_TYPE: return pBase->txGainType; default: return 0; } } static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah, struct ath9k_channel *chan) { struct ath_common *common = ath9k_hw_common(ah); struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k; struct cal_data_per_freq_4k *pRawDataset; u8 *pCalBChans = NULL; u16 pdGainOverlap_t2; static u8 pdadcValues[AR5416_NUM_PDADC_VALUES]; u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK]; u16 numPiers, i, j; u16 numXpdGain, xpdMask; u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 }; u32 reg32, regOffset, regChainOffset; xpdMask = pEepData->modalHeader.xpdGain; if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_2) { pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap; } else { pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); } pCalBChans = pEepData->calFreqPier2G; numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS; numXpdGain = 0; for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS) break; xpdGainValues[numXpdGain] = (u16)(AR5416_PD_GAINS_IN_MASK - i); numXpdGain++; } } REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, (numXpdGain - 1) & 0x3); REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1, xpdGainValues[0]); REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2, xpdGainValues[1]); REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0); for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) { if (AR_SREV_5416_20_OR_LATER(ah) && (ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0)) { regChainOffset = (i == 1) ? 0x2000 : 0x1000; } else regChainOffset = i * 0x1000; if (pEepData->baseEepHeader.txMask & (1 << i)) { pRawDataset = pEepData->calPierData2G[i]; ath9k_hw_get_gain_boundaries_pdadcs(ah, chan, pRawDataset, pCalBChans, numPiers, pdGainOverlap_t2, gainBoundaries, pdadcValues, numXpdGain); ENABLE_REGWRITE_BUFFER(ah); if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) { REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset, SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); } regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset; for (j = 0; j < 32; j++) { reg32 = get_unaligned_le32(&pdadcValues[4 * j]); REG_WRITE(ah, regOffset, reg32); ath_dbg(common, ATH_DBG_EEPROM, "PDADC (%d,%4x): %4.4x %8.8x\n", i, regChainOffset, regOffset, reg32); ath_dbg(common, ATH_DBG_EEPROM, "PDADC: Chain %d | " "PDADC %3d Value %3d | " "PDADC %3d Value %3d | " "PDADC %3d Value %3d | " "PDADC %3d Value %3d |\n", i, 4 * j, pdadcValues[4 * j], 4 * j + 1, pdadcValues[4 * j + 1], 4 * j + 2, pdadcValues[4 * j + 2], 4 * j + 3, pdadcValues[4 * j + 3]); regOffset += 4; } REGWRITE_BUFFER_FLUSH(ah); } } } static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah, struct ath9k_channel *chan, int16_t *ratesArray, u16 cfgCtl, u16 AntennaReduction, u16 twiceMaxRegulatoryPower, u16 powerLimit) { #define CMP_TEST_GRP \ (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \ pEepData->ctlIndex[i]) \ || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \ ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL)) struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); int i; int16_t twiceLargestAntenna; u16 twiceMinEdgePower; u16 twiceMaxEdgePower = MAX_RATE_POWER; u16 scaledPower = 0, minCtlPower, maxRegAllowedPower; u16 numCtlModes; const u16 *pCtlMode; u16 ctlMode, freq; struct chan_centers centers; struct cal_ctl_data_4k *rep; struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k; static const u16 tpScaleReductionTable[5] = { 0, 3, 6, 9, MAX_RATE_POWER }; struct cal_target_power_leg targetPowerOfdm, targetPowerCck = { 0, { 0, 0, 0, 0} }; struct cal_target_power_leg targetPowerOfdmExt = { 0, { 0, 0, 0, 0} }, targetPowerCckExt = { 0, { 0, 0, 0, 0 } }; struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = { 0, {0, 0, 0, 0} }; static const u16 ctlModesFor11g[] = { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40 }; ath9k_hw_get_channel_centers(ah, chan, ¢ers); twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0]; twiceLargestAntenna = (int16_t)min(AntennaReduction - twiceLargestAntenna, 0); maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna; if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) { maxRegAllowedPower -= (tpScaleReductionTable[(regulatory->tp_scale)] * 2); } scaledPower = min(powerLimit, maxRegAllowedPower); scaledPower = max((u16)0, scaledPower); numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; pCtlMode = ctlModesFor11g; ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPowerCck, AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, false); ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPower2G, AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, false); ath9k_hw_get_target_powers(ah, chan, pEepData->calTargetPower2GHT20, AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, false); if (IS_CHAN_HT40(chan)) { numCtlModes = ARRAY_SIZE(ctlModesFor11g); ath9k_hw_get_target_powers(ah, chan, pEepData->calTargetPower2GHT40, AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, true); ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPowerCck, AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, true); ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPower2G, AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, true); } for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) || (pCtlMode[ctlMode] == CTL_2GHT40); if (isHt40CtlMode) freq = centers.synth_center; else if (pCtlMode[ctlMode] & EXT_ADDITIVE) freq = centers.ext_center; else freq = centers.ctl_center; if (ah->eep_ops->get_eeprom_ver(ah) == 14 && ah->eep_ops->get_eeprom_rev(ah) <= 2) twiceMaxEdgePower = MAX_RATE_POWER; for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) && pEepData->ctlIndex[i]; i++) { if (CMP_TEST_GRP) { rep = &(pEepData->ctlData[i]); twiceMinEdgePower = ath9k_hw_get_max_edge_power( freq, rep->ctlEdges[ ar5416_get_ntxchains(ah->txchainmask) - 1], IS_CHAN_2GHZ(chan), AR5416_EEP4K_NUM_BAND_EDGES); if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { twiceMaxEdgePower = min(twiceMaxEdgePower, twiceMinEdgePower); } else { twiceMaxEdgePower = twiceMinEdgePower; break; } } } minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower); switch (pCtlMode[ctlMode]) { case CTL_11B: for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) { targetPowerCck.tPow2x[i] = min((u16)targetPowerCck.tPow2x[i], minCtlPower); } break; case CTL_11G: for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) { targetPowerOfdm.tPow2x[i] = min((u16)targetPowerOfdm.tPow2x[i], minCtlPower); } break; case CTL_2GHT20: for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) { targetPowerHt20.tPow2x[i] = min((u16)targetPowerHt20.tPow2x[i], minCtlPower); } break; case CTL_11B_EXT: targetPowerCckExt.tPow2x[0] = min((u16)targetPowerCckExt.tPow2x[0], minCtlPower); break; case CTL_11G_EXT: targetPowerOfdmExt.tPow2x[0] = min((u16)targetPowerOfdmExt.tPow2x[0], minCtlPower); break; case CTL_2GHT40: for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { targetPowerHt40.tPow2x[i] = min((u16)targetPowerHt40.tPow2x[i], minCtlPower); } break; default: break; } } ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0]; ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1]; ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2]; ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3]; ratesArray[rateXr] = targetPowerOfdm.tPow2x[0]; for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i]; ratesArray[rate1l] = targetPowerCck.tPow2x[0]; ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1]; ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2]; ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3]; if (IS_CHAN_HT40(chan)) { for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i]; } ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0]; ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0]; ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0]; ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0]; } #undef CMP_TEST_GRP } static void ath9k_hw_4k_set_txpower(struct ath_hw *ah, struct ath9k_channel *chan, u16 cfgCtl, u8 twiceAntennaReduction, u8 twiceMaxRegulatoryPower, u8 powerLimit, bool test) { struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k; struct modal_eep_4k_header *pModal = &pEepData->modalHeader; int16_t ratesArray[Ar5416RateSize]; u8 ht40PowerIncForPdadc = 2; int i; memset(ratesArray, 0, sizeof(ratesArray)); if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_2) { ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; } ath9k_hw_set_4k_power_per_rate_table(ah, chan, &ratesArray[0], cfgCtl, twiceAntennaReduction, twiceMaxRegulatoryPower, powerLimit); ath9k_hw_set_4k_power_cal_table(ah, chan); regulatory->max_power_level = 0; for (i = 0; i < ARRAY_SIZE(ratesArray); i++) { if (ratesArray[i] > MAX_RATE_POWER) ratesArray[i] = MAX_RATE_POWER; if (ratesArray[i] > regulatory->max_power_level) regulatory->max_power_level = ratesArray[i]; } if (test) return; if (AR_SREV_9280_20_OR_LATER(ah)) { for (i = 0; i < Ar5416RateSize; i++) ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2; } ENABLE_REGWRITE_BUFFER(ah); /* OFDM power per rate */ REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, ATH9K_POW_SM(ratesArray[rate18mb], 24) | ATH9K_POW_SM(ratesArray[rate12mb], 16) | ATH9K_POW_SM(ratesArray[rate9mb], 8) | ATH9K_POW_SM(ratesArray[rate6mb], 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, ATH9K_POW_SM(ratesArray[rate54mb], 24) | ATH9K_POW_SM(ratesArray[rate48mb], 16) | ATH9K_POW_SM(ratesArray[rate36mb], 8) | ATH9K_POW_SM(ratesArray[rate24mb], 0)); /* CCK power per rate */ REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, ATH9K_POW_SM(ratesArray[rate2s], 24) | ATH9K_POW_SM(ratesArray[rate2l], 16) | ATH9K_POW_SM(ratesArray[rateXr], 8) | ATH9K_POW_SM(ratesArray[rate1l], 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, ATH9K_POW_SM(ratesArray[rate11s], 24) | ATH9K_POW_SM(ratesArray[rate11l], 16) | ATH9K_POW_SM(ratesArray[rate5_5s], 8) | ATH9K_POW_SM(ratesArray[rate5_5l], 0)); /* HT20 power per rate */ REG_WRITE(ah, AR_PHY_POWER_TX_RATE5, ATH9K_POW_SM(ratesArray[rateHt20_3], 24) | ATH9K_POW_SM(ratesArray[rateHt20_2], 16) | ATH9K_POW_SM(ratesArray[rateHt20_1], 8) | ATH9K_POW_SM(ratesArray[rateHt20_0], 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE6, ATH9K_POW_SM(ratesArray[rateHt20_7], 24) | ATH9K_POW_SM(ratesArray[rateHt20_6], 16) | ATH9K_POW_SM(ratesArray[rateHt20_5], 8) | ATH9K_POW_SM(ratesArray[rateHt20_4], 0)); /* HT40 power per rate */ if (IS_CHAN_HT40(chan)) { REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, ATH9K_POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24) | ATH9K_POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16) | ATH9K_POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8) | ATH9K_POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, ATH9K_POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24) | ATH9K_POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16) | ATH9K_POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8) | ATH9K_POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, ATH9K_POW_SM(ratesArray[rateExtOfdm], 24) | ATH9K_POW_SM(ratesArray[rateExtCck], 16) | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8) | ATH9K_POW_SM(ratesArray[rateDupCck], 0)); } REGWRITE_BUFFER_FLUSH(ah); } static void ath9k_hw_4k_set_addac(struct ath_hw *ah, struct ath9k_channel *chan) { struct modal_eep_4k_header *pModal; struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k; u8 biaslevel; if (ah->hw_version.macVersion != AR_SREV_VERSION_9160) return; if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7) return; pModal = &eep->modalHeader; if (pModal->xpaBiasLvl != 0xff) { biaslevel = pModal->xpaBiasLvl; INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3; } } static void ath9k_hw_4k_set_gain(struct ath_hw *ah, struct modal_eep_4k_header *pModal, struct ar5416_eeprom_4k *eep, u8 txRxAttenLocal) { REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0, pModal->antCtrlChain[0]); REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_3) { txRxAttenLocal = pModal->txRxAttenCh[0]; REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]); REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]); REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[0]); REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]); /* Set the block 1 value to block 0 value */ REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]); REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000, AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]); REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[0]); REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000, AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]); } REG_RMW_FIELD(ah, AR_PHY_RXGAIN, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); REG_RMW_FIELD(ah, AR_PHY_RXGAIN, AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]); REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000, AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]); } /* * Read EEPROM header info and program the device for correct operation * given the channel value. */ static void ath9k_hw_4k_set_board_values(struct ath_hw *ah, struct ath9k_channel *chan) { struct modal_eep_4k_header *pModal; struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k; struct base_eep_header_4k *pBase = &eep->baseEepHeader; u8 txRxAttenLocal; u8 ob[5], db1[5], db2[5]; u8 ant_div_control1, ant_div_control2; u32 regVal; pModal = &eep->modalHeader; txRxAttenLocal = 23; REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon); /* Single chain for 4K EEPROM*/ ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal); /* Initialize Ant Diversity settings from EEPROM */ if (pModal->version >= 3) { ant_div_control1 = pModal->antdiv_ctl1; ant_div_control2 = pModal->antdiv_ctl2; regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL); regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL)); regVal |= SM(ant_div_control1, AR_PHY_9285_ANT_DIV_CTL); regVal |= SM(ant_div_control2, AR_PHY_9285_ANT_DIV_ALT_LNACONF); regVal |= SM((ant_div_control2 >> 2), AR_PHY_9285_ANT_DIV_MAIN_LNACONF); regVal |= SM((ant_div_control1 >> 1), AR_PHY_9285_ANT_DIV_ALT_GAINTB); regVal |= SM((ant_div_control1 >> 2), AR_PHY_9285_ANT_DIV_MAIN_GAINTB); REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal); regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL); regVal = REG_READ(ah, AR_PHY_CCK_DETECT); regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV); regVal |= SM((ant_div_control1 >> 3), AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV); REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal); regVal = REG_READ(ah, AR_PHY_CCK_DETECT); } if (pModal->version >= 2) { ob[0] = pModal->ob_0; ob[1] = pModal->ob_1; ob[2] = pModal->ob_2; ob[3] = pModal->ob_3; ob[4] = pModal->ob_4; db1[0] = pModal->db1_0; db1[1] = pModal->db1_1; db1[2] = pModal->db1_2; db1[3] = pModal->db1_3; db1[4] = pModal->db1_4; db2[0] = pModal->db2_0; db2[1] = pModal->db2_1; db2[2] = pModal->db2_2; db2[3] = pModal->db2_3; db2[4] = pModal->db2_4; } else if (pModal->version == 1) { ob[0] = pModal->ob_0; ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1; db1[0] = pModal->db1_0; db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1; db2[0] = pModal->db2_0; db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1; } else { int i; for (i = 0; i < 5; i++) { ob[i] = pModal->ob_0; db1[i] = pModal->db1_0; db2[i] = pModal->db1_0; } } if (AR_SREV_9271(ah)) { ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, AR9271_AN_RF2G3_OB_cck, AR9271_AN_RF2G3_OB_cck_S, ob[0]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, AR9271_AN_RF2G3_OB_psk, AR9271_AN_RF2G3_OB_psk_S, ob[1]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, AR9271_AN_RF2G3_OB_qam, AR9271_AN_RF2G3_OB_qam_S, ob[2]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, AR9271_AN_RF2G3_DB_1, AR9271_AN_RF2G3_DB_1_S, db1[0]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, AR9271_AN_RF2G4_DB_2, AR9271_AN_RF2G4_DB_2_S, db2[0]); } else { ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_0, AR9285_AN_RF2G3_OB_0_S, ob[0]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_1, AR9285_AN_RF2G3_OB_1_S, ob[1]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_2, AR9285_AN_RF2G3_OB_2_S, ob[2]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_3, AR9285_AN_RF2G3_OB_3_S, ob[3]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_4, AR9285_AN_RF2G3_OB_4_S, ob[4]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_0, AR9285_AN_RF2G3_DB1_0_S, db1[0]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_1, AR9285_AN_RF2G3_DB1_1_S, db1[1]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_2, AR9285_AN_RF2G3_DB1_2_S, db1[2]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_3, AR9285_AN_RF2G4_DB1_3_S, db1[3]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_4, AR9285_AN_RF2G4_DB1_4_S, db1[4]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_0, AR9285_AN_RF2G4_DB2_0_S, db2[0]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_1, AR9285_AN_RF2G4_DB2_1_S, db2[1]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_2, AR9285_AN_RF2G4_DB2_2_S, db2[2]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_3, AR9285_AN_RF2G4_DB2_3_S, db2[3]); ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_4, AR9285_AN_RF2G4_DB2_4_S, db2[4]); } REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling); REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize); REG_WRITE(ah, AR_PHY_RF_CTL4, SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON)); REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn); if (AR_SREV_9271_10(ah)) REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn); REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62, pModal->thresh62); REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62); if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_2) { REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart); REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn); } if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >= AR5416_EEP_MINOR_VER_3) { if (IS_CHAN_HT40(chan)) REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40); } if (AR_SREV_9271(ah) || AR_SREV_9285(ah)) { u8 bb_desired_scale = (pModal->bb_scale_smrt_antenna & EEP_4K_BB_DESIRED_SCALE_MASK); if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) { u32 pwrctrl, mask, clr; mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25); pwrctrl = mask * bb_desired_scale; clr = mask * 0x1f; REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr); REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr); REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr); mask = BIT(0)|BIT(5)|BIT(15); pwrctrl = mask * bb_desired_scale; clr = mask * 0x1f; REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr); mask = BIT(0)|BIT(5); pwrctrl = mask * bb_desired_scale; clr = mask * 0x1f; REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr); REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr); } } } static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz) { #define EEP_MAP4K_SPURCHAN \ (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan) struct ath_common *common = ath9k_hw_common(ah); u16 spur_val = AR_NO_SPUR; ath_dbg(common, ATH_DBG_ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n", i, is2GHz, ah->config.spurchans[i][is2GHz]); switch (ah->config.spurmode) { case SPUR_DISABLE: break; case SPUR_ENABLE_IOCTL: spur_val = ah->config.spurchans[i][is2GHz]; ath_dbg(common, ATH_DBG_ANI, "Getting spur val from new loc. %d\n", spur_val); break; case SPUR_ENABLE_EEPROM: spur_val = EEP_MAP4K_SPURCHAN; break; } return spur_val; #undef EEP_MAP4K_SPURCHAN } const struct eeprom_ops eep_4k_ops = { .check_eeprom = ath9k_hw_4k_check_eeprom, .get_eeprom = ath9k_hw_4k_get_eeprom, .fill_eeprom = ath9k_hw_4k_fill_eeprom, .dump_eeprom = ath9k_hw_4k_dump_eeprom, .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver, .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev, .set_board_values = ath9k_hw_4k_set_board_values, .set_addac = ath9k_hw_4k_set_addac, .set_txpower = ath9k_hw_4k_set_txpower, .get_spur_channel = ath9k_hw_4k_get_spur_channel };