// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015 HGST, a Western Digital Company. */ #include #include #include #include #include "core_priv.h" #include /* Max size for shared CQ, may require tuning */ #define IB_MAX_SHARED_CQ_SZ 4096U /* # of WCs to poll for with a single call to ib_poll_cq */ #define IB_POLL_BATCH 16 #define IB_POLL_BATCH_DIRECT 8 /* # of WCs to iterate over before yielding */ #define IB_POLL_BUDGET_IRQ 256 #define IB_POLL_BUDGET_WORKQUEUE 65536 #define IB_POLL_FLAGS \ (IB_CQ_NEXT_COMP | IB_CQ_REPORT_MISSED_EVENTS) static const struct dim_cq_moder rdma_dim_prof[RDMA_DIM_PARAMS_NUM_PROFILES] = { {1, 0, 1, 0}, {1, 0, 4, 0}, {2, 0, 4, 0}, {2, 0, 8, 0}, {4, 0, 8, 0}, {16, 0, 8, 0}, {16, 0, 16, 0}, {32, 0, 16, 0}, {32, 0, 32, 0}, }; static void ib_cq_rdma_dim_work(struct work_struct *w) { struct dim *dim = container_of(w, struct dim, work); struct ib_cq *cq = dim->priv; u16 usec = rdma_dim_prof[dim->profile_ix].usec; u16 comps = rdma_dim_prof[dim->profile_ix].comps; dim->state = DIM_START_MEASURE; trace_cq_modify(cq, comps, usec); cq->device->ops.modify_cq(cq, comps, usec); } static void rdma_dim_init(struct ib_cq *cq) { struct dim *dim; if (!cq->device->ops.modify_cq || !cq->device->use_cq_dim || cq->poll_ctx == IB_POLL_DIRECT) return; dim = kzalloc(sizeof(struct dim), GFP_KERNEL); if (!dim) return; dim->state = DIM_START_MEASURE; dim->tune_state = DIM_GOING_RIGHT; dim->profile_ix = RDMA_DIM_START_PROFILE; dim->priv = cq; cq->dim = dim; INIT_WORK(&dim->work, ib_cq_rdma_dim_work); } static void rdma_dim_destroy(struct ib_cq *cq) { if (!cq->dim) return; cancel_work_sync(&cq->dim->work); kfree(cq->dim); } static int __poll_cq(struct ib_cq *cq, int num_entries, struct ib_wc *wc) { int rc; rc = ib_poll_cq(cq, num_entries, wc); trace_cq_poll(cq, num_entries, rc); return rc; } static int __ib_process_cq(struct ib_cq *cq, int budget, struct ib_wc *wcs, int batch) { int i, n, completed = 0; trace_cq_process(cq); /* * budget might be (-1) if the caller does not * want to bound this call, thus we need unsigned * minimum here. */ while ((n = __poll_cq(cq, min_t(u32, batch, budget - completed), wcs)) > 0) { for (i = 0; i < n; i++) { struct ib_wc *wc = &wcs[i]; if (wc->wr_cqe) wc->wr_cqe->done(cq, wc); else WARN_ON_ONCE(wc->status == IB_WC_SUCCESS); } completed += n; if (n != batch || (budget != -1 && completed >= budget)) break; } return completed; } /** * ib_process_direct_cq - process a CQ in caller context * @cq: CQ to process * @budget: number of CQEs to poll for * * This function is used to process all outstanding CQ entries. * It does not offload CQ processing to a different context and does * not ask for completion interrupts from the HCA. * Using direct processing on CQ with non IB_POLL_DIRECT type may trigger * concurrent processing. * * Note: do not pass -1 as %budget unless it is guaranteed that the number * of completions that will be processed is small. */ int ib_process_cq_direct(struct ib_cq *cq, int budget) { struct ib_wc wcs[IB_POLL_BATCH_DIRECT]; return __ib_process_cq(cq, budget, wcs, IB_POLL_BATCH_DIRECT); } EXPORT_SYMBOL(ib_process_cq_direct); static void ib_cq_completion_direct(struct ib_cq *cq, void *private) { WARN_ONCE(1, "got unsolicited completion for CQ 0x%p\n", cq); } static int ib_poll_handler(struct irq_poll *iop, int budget) { struct ib_cq *cq = container_of(iop, struct ib_cq, iop); struct dim *dim = cq->dim; int completed; completed = __ib_process_cq(cq, budget, cq->wc, IB_POLL_BATCH); if (completed < budget) { irq_poll_complete(&cq->iop); if (ib_req_notify_cq(cq, IB_POLL_FLAGS) > 0) { trace_cq_reschedule(cq); irq_poll_sched(&cq->iop); } } if (dim) rdma_dim(dim, completed); return completed; } static void ib_cq_completion_softirq(struct ib_cq *cq, void *private) { trace_cq_schedule(cq); irq_poll_sched(&cq->iop); } static void ib_cq_poll_work(struct work_struct *work) { struct ib_cq *cq = container_of(work, struct ib_cq, work); int completed; completed = __ib_process_cq(cq, IB_POLL_BUDGET_WORKQUEUE, cq->wc, IB_POLL_BATCH); if (completed >= IB_POLL_BUDGET_WORKQUEUE || ib_req_notify_cq(cq, IB_POLL_FLAGS) > 0) queue_work(cq->comp_wq, &cq->work); else if (cq->dim) rdma_dim(cq->dim, completed); } static void ib_cq_completion_workqueue(struct ib_cq *cq, void *private) { trace_cq_schedule(cq); queue_work(cq->comp_wq, &cq->work); } /** * __ib_alloc_cq allocate a completion queue * @dev: device to allocate the CQ for * @private: driver private data, accessible from cq->cq_context * @nr_cqe: number of CQEs to allocate * @comp_vector: HCA completion vectors for this CQ * @poll_ctx: context to poll the CQ from. * @caller: module owner name. * * This is the proper interface to allocate a CQ for in-kernel users. A * CQ allocated with this interface will automatically be polled from the * specified context. The ULP must use wr->wr_cqe instead of wr->wr_id * to use this CQ abstraction. */ struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx, const char *caller) { struct ib_cq_init_attr cq_attr = { .cqe = nr_cqe, .comp_vector = comp_vector, }; struct ib_cq *cq; int ret = -ENOMEM; cq = rdma_zalloc_drv_obj(dev, ib_cq); if (!cq) return ERR_PTR(ret); cq->device = dev; cq->cq_context = private; cq->poll_ctx = poll_ctx; atomic_set(&cq->usecnt, 0); cq->comp_vector = comp_vector; cq->wc = kmalloc_array(IB_POLL_BATCH, sizeof(*cq->wc), GFP_KERNEL); if (!cq->wc) goto out_free_cq; rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ); rdma_restrack_set_task(&cq->res, caller); ret = dev->ops.create_cq(cq, &cq_attr, NULL); if (ret) goto out_free_wc; rdma_dim_init(cq); switch (cq->poll_ctx) { case IB_POLL_DIRECT: cq->comp_handler = ib_cq_completion_direct; break; case IB_POLL_SOFTIRQ: cq->comp_handler = ib_cq_completion_softirq; irq_poll_init(&cq->iop, IB_POLL_BUDGET_IRQ, ib_poll_handler); ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); break; case IB_POLL_WORKQUEUE: case IB_POLL_UNBOUND_WORKQUEUE: cq->comp_handler = ib_cq_completion_workqueue; INIT_WORK(&cq->work, ib_cq_poll_work); ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); cq->comp_wq = (cq->poll_ctx == IB_POLL_WORKQUEUE) ? ib_comp_wq : ib_comp_unbound_wq; break; default: ret = -EINVAL; goto out_destroy_cq; } rdma_restrack_add(&cq->res); trace_cq_alloc(cq, nr_cqe, comp_vector, poll_ctx); return cq; out_destroy_cq: rdma_dim_destroy(cq); cq->device->ops.destroy_cq(cq, NULL); out_free_wc: rdma_restrack_put(&cq->res); kfree(cq->wc); out_free_cq: kfree(cq); trace_cq_alloc_error(nr_cqe, comp_vector, poll_ctx, ret); return ERR_PTR(ret); } EXPORT_SYMBOL(__ib_alloc_cq); /** * __ib_alloc_cq_any - allocate a completion queue * @dev: device to allocate the CQ for * @private: driver private data, accessible from cq->cq_context * @nr_cqe: number of CQEs to allocate * @poll_ctx: context to poll the CQ from * @caller: module owner name * * Attempt to spread ULP Completion Queues over each device's interrupt * vectors. A simple best-effort mechanism is used. */ struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private, int nr_cqe, enum ib_poll_context poll_ctx, const char *caller) { static atomic_t counter; int comp_vector = 0; if (dev->num_comp_vectors > 1) comp_vector = atomic_inc_return(&counter) % min_t(int, dev->num_comp_vectors, num_online_cpus()); return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx, caller); } EXPORT_SYMBOL(__ib_alloc_cq_any); /** * ib_free_cq - free a completion queue * @cq: completion queue to free. */ void ib_free_cq(struct ib_cq *cq) { int ret; if (WARN_ON_ONCE(atomic_read(&cq->usecnt))) return; if (WARN_ON_ONCE(cq->cqe_used)) return; switch (cq->poll_ctx) { case IB_POLL_DIRECT: break; case IB_POLL_SOFTIRQ: irq_poll_disable(&cq->iop); break; case IB_POLL_WORKQUEUE: case IB_POLL_UNBOUND_WORKQUEUE: cancel_work_sync(&cq->work); break; default: WARN_ON_ONCE(1); } rdma_dim_destroy(cq); trace_cq_free(cq); ret = cq->device->ops.destroy_cq(cq, NULL); WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail"); rdma_restrack_del(&cq->res); kfree(cq->wc); kfree(cq); } EXPORT_SYMBOL(ib_free_cq); void ib_cq_pool_init(struct ib_device *dev) { unsigned int i; spin_lock_init(&dev->cq_pools_lock); for (i = 0; i < ARRAY_SIZE(dev->cq_pools); i++) INIT_LIST_HEAD(&dev->cq_pools[i]); } void ib_cq_pool_destroy(struct ib_device *dev) { struct ib_cq *cq, *n; unsigned int i; for (i = 0; i < ARRAY_SIZE(dev->cq_pools); i++) { list_for_each_entry_safe(cq, n, &dev->cq_pools[i], pool_entry) { WARN_ON(cq->cqe_used); cq->shared = false; ib_free_cq(cq); } } } static int ib_alloc_cqs(struct ib_device *dev, unsigned int nr_cqes, enum ib_poll_context poll_ctx) { LIST_HEAD(tmp_list); unsigned int nr_cqs, i; struct ib_cq *cq, *n; int ret; if (poll_ctx > IB_POLL_LAST_POOL_TYPE) { WARN_ON_ONCE(poll_ctx > IB_POLL_LAST_POOL_TYPE); return -EINVAL; } /* * Allocate at least as many CQEs as requested, and otherwise * a reasonable batch size so that we can share CQs between * multiple users instead of allocating a larger number of CQs. */ nr_cqes = min_t(unsigned int, dev->attrs.max_cqe, max(nr_cqes, IB_MAX_SHARED_CQ_SZ)); nr_cqs = min_t(unsigned int, dev->num_comp_vectors, num_online_cpus()); for (i = 0; i < nr_cqs; i++) { cq = ib_alloc_cq(dev, NULL, nr_cqes, i, poll_ctx); if (IS_ERR(cq)) { ret = PTR_ERR(cq); goto out_free_cqs; } cq->shared = true; list_add_tail(&cq->pool_entry, &tmp_list); } spin_lock_irq(&dev->cq_pools_lock); list_splice(&tmp_list, &dev->cq_pools[poll_ctx]); spin_unlock_irq(&dev->cq_pools_lock); return 0; out_free_cqs: list_for_each_entry_safe(cq, n, &tmp_list, pool_entry) { cq->shared = false; ib_free_cq(cq); } return ret; } /** * ib_cq_pool_get() - Find the least used completion queue that matches * a given cpu hint (or least used for wild card affinity) and fits * nr_cqe. * @dev: rdma device * @nr_cqe: number of needed cqe entries * @comp_vector_hint: completion vector hint (-1) for the driver to assign * a comp vector based on internal counter * @poll_ctx: cq polling context * * Finds a cq that satisfies @comp_vector_hint and @nr_cqe requirements and * claim entries in it for us. In case there is no available cq, allocate * a new cq with the requirements and add it to the device pool. * IB_POLL_DIRECT cannot be used for shared cqs so it is not a valid value * for @poll_ctx. */ struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe, int comp_vector_hint, enum ib_poll_context poll_ctx) { static unsigned int default_comp_vector; unsigned int vector, num_comp_vectors; struct ib_cq *cq, *found = NULL; int ret; if (poll_ctx > IB_POLL_LAST_POOL_TYPE) { WARN_ON_ONCE(poll_ctx > IB_POLL_LAST_POOL_TYPE); return ERR_PTR(-EINVAL); } num_comp_vectors = min_t(unsigned int, dev->num_comp_vectors, num_online_cpus()); /* Project the affinty to the device completion vector range */ if (comp_vector_hint < 0) { comp_vector_hint = (READ_ONCE(default_comp_vector) + 1) % num_comp_vectors; WRITE_ONCE(default_comp_vector, comp_vector_hint); } vector = comp_vector_hint % num_comp_vectors; /* * Find the least used CQ with correct affinity and * enough free CQ entries */ while (!found) { spin_lock_irq(&dev->cq_pools_lock); list_for_each_entry(cq, &dev->cq_pools[poll_ctx], pool_entry) { /* * Check to see if we have found a CQ with the * correct completion vector */ if (vector != cq->comp_vector) continue; if (cq->cqe_used + nr_cqe > cq->cqe) continue; found = cq; break; } if (found) { found->cqe_used += nr_cqe; spin_unlock_irq(&dev->cq_pools_lock); return found; } spin_unlock_irq(&dev->cq_pools_lock); /* * Didn't find a match or ran out of CQs in the device * pool, allocate a new array of CQs. */ ret = ib_alloc_cqs(dev, nr_cqe, poll_ctx); if (ret) return ERR_PTR(ret); } return found; } EXPORT_SYMBOL(ib_cq_pool_get); /** * ib_cq_pool_put - Return a CQ taken from a shared pool. * @cq: The CQ to return. * @nr_cqe: The max number of cqes that the user had requested. */ void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe) { if (WARN_ON_ONCE(nr_cqe > cq->cqe_used)) return; spin_lock_irq(&cq->device->cq_pools_lock); cq->cqe_used -= nr_cqe; spin_unlock_irq(&cq->device->cq_pools_lock); } EXPORT_SYMBOL(ib_cq_pool_put);