/* * handling privileged instructions * * Copyright IBM Corp. 2008, 2013 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License (version 2 only) * as published by the Free Software Foundation. * * Author(s): Carsten Otte * Christian Borntraeger */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "gaccess.h" #include "kvm-s390.h" #include "trace.h" static int handle_ri(struct kvm_vcpu *vcpu) { if (test_kvm_facility(vcpu->kvm, 64)) { VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (lazy)"); vcpu->arch.sie_block->ecb3 |= 0x01; kvm_s390_retry_instr(vcpu); return 0; } else return kvm_s390_inject_program_int(vcpu, PGM_OPERATION); } int kvm_s390_handle_aa(struct kvm_vcpu *vcpu) { if ((vcpu->arch.sie_block->ipa & 0xf) <= 4) return handle_ri(vcpu); else return -EOPNOTSUPP; } /* Handle SCK (SET CLOCK) interception */ static int handle_set_clock(struct kvm_vcpu *vcpu) { int rc; u8 ar; u64 op2, val; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); op2 = kvm_s390_get_base_disp_s(vcpu, &ar); if (op2 & 7) /* Operand must be on a doubleword boundary */ return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); rc = read_guest(vcpu, op2, ar, &val, sizeof(val)); if (rc) return kvm_s390_inject_prog_cond(vcpu, rc); VCPU_EVENT(vcpu, 3, "SCK: setting guest TOD to 0x%llx", val); kvm_s390_set_tod_clock(vcpu->kvm, val); kvm_s390_set_psw_cc(vcpu, 0); return 0; } static int handle_set_prefix(struct kvm_vcpu *vcpu) { u64 operand2; u32 address; int rc; u8 ar; vcpu->stat.instruction_spx++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); operand2 = kvm_s390_get_base_disp_s(vcpu, &ar); /* must be word boundary */ if (operand2 & 3) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); /* get the value */ rc = read_guest(vcpu, operand2, ar, &address, sizeof(address)); if (rc) return kvm_s390_inject_prog_cond(vcpu, rc); address &= 0x7fffe000u; /* * Make sure the new value is valid memory. We only need to check the * first page, since address is 8k aligned and memory pieces are always * at least 1MB aligned and have at least a size of 1MB. */ if (kvm_is_error_gpa(vcpu->kvm, address)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); kvm_s390_set_prefix(vcpu, address); trace_kvm_s390_handle_prefix(vcpu, 1, address); return 0; } static int handle_store_prefix(struct kvm_vcpu *vcpu) { u64 operand2; u32 address; int rc; u8 ar; vcpu->stat.instruction_stpx++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); operand2 = kvm_s390_get_base_disp_s(vcpu, &ar); /* must be word boundary */ if (operand2 & 3) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); address = kvm_s390_get_prefix(vcpu); /* get the value */ rc = write_guest(vcpu, operand2, ar, &address, sizeof(address)); if (rc) return kvm_s390_inject_prog_cond(vcpu, rc); VCPU_EVENT(vcpu, 3, "STPX: storing prefix 0x%x into 0x%llx", address, operand2); trace_kvm_s390_handle_prefix(vcpu, 0, address); return 0; } static int handle_store_cpu_address(struct kvm_vcpu *vcpu) { u16 vcpu_id = vcpu->vcpu_id; u64 ga; int rc; u8 ar; vcpu->stat.instruction_stap++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); ga = kvm_s390_get_base_disp_s(vcpu, &ar); if (ga & 1) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); rc = write_guest(vcpu, ga, ar, &vcpu_id, sizeof(vcpu_id)); if (rc) return kvm_s390_inject_prog_cond(vcpu, rc); VCPU_EVENT(vcpu, 3, "STAP: storing cpu address (%u) to 0x%llx", vcpu_id, ga); trace_kvm_s390_handle_stap(vcpu, ga); return 0; } static int __skey_check_enable(struct kvm_vcpu *vcpu) { int rc = 0; trace_kvm_s390_skey_related_inst(vcpu); if (!(vcpu->arch.sie_block->ictl & (ICTL_ISKE | ICTL_SSKE | ICTL_RRBE))) return rc; rc = s390_enable_skey(); VCPU_EVENT(vcpu, 3, "enabling storage keys for guest: %d", rc); if (!rc) vcpu->arch.sie_block->ictl &= ~(ICTL_ISKE | ICTL_SSKE | ICTL_RRBE); return rc; } static int try_handle_skey(struct kvm_vcpu *vcpu) { int rc; vcpu->stat.instruction_storage_key++; rc = __skey_check_enable(vcpu); if (rc) return rc; if (sclp.has_skey) { /* with storage-key facility, SIE interprets it for us */ kvm_s390_retry_instr(vcpu); VCPU_EVENT(vcpu, 4, "%s", "retrying storage key operation"); return -EAGAIN; } if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); return 0; } static int handle_iske(struct kvm_vcpu *vcpu) { unsigned long addr; unsigned char key; int reg1, reg2; int rc; rc = try_handle_skey(vcpu); if (rc) return rc != -EAGAIN ? rc : 0; kvm_s390_get_regs_rre(vcpu, ®1, ®2); addr = vcpu->run->s.regs.gprs[reg2] & PAGE_MASK; addr = kvm_s390_logical_to_effective(vcpu, addr); addr = kvm_s390_real_to_abs(vcpu, addr); addr = gfn_to_hva(vcpu->kvm, gpa_to_gfn(addr)); if (kvm_is_error_hva(addr)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); down_read(¤t->mm->mmap_sem); rc = get_guest_storage_key(current->mm, addr, &key); up_read(¤t->mm->mmap_sem); if (rc) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); vcpu->run->s.regs.gprs[reg1] &= ~0xff; vcpu->run->s.regs.gprs[reg1] |= key; return 0; } static int handle_rrbe(struct kvm_vcpu *vcpu) { unsigned long addr; int reg1, reg2; int rc; rc = try_handle_skey(vcpu); if (rc) return rc != -EAGAIN ? rc : 0; kvm_s390_get_regs_rre(vcpu, ®1, ®2); addr = vcpu->run->s.regs.gprs[reg2] & PAGE_MASK; addr = kvm_s390_logical_to_effective(vcpu, addr); addr = kvm_s390_real_to_abs(vcpu, addr); addr = gfn_to_hva(vcpu->kvm, gpa_to_gfn(addr)); if (kvm_is_error_hva(addr)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); down_read(¤t->mm->mmap_sem); rc = reset_guest_reference_bit(current->mm, addr); up_read(¤t->mm->mmap_sem); if (rc < 0) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); kvm_s390_set_psw_cc(vcpu, rc); return 0; } #define SSKE_NQ 0x8 #define SSKE_MR 0x4 #define SSKE_MC 0x2 #define SSKE_MB 0x1 static int handle_sske(struct kvm_vcpu *vcpu) { unsigned char m3 = vcpu->arch.sie_block->ipb >> 28; unsigned long start, end; unsigned char key, oldkey; int reg1, reg2; int rc; rc = try_handle_skey(vcpu); if (rc) return rc != -EAGAIN ? rc : 0; if (!test_kvm_facility(vcpu->kvm, 8)) m3 &= ~SSKE_MB; if (!test_kvm_facility(vcpu->kvm, 10)) m3 &= ~(SSKE_MC | SSKE_MR); if (!test_kvm_facility(vcpu->kvm, 14)) m3 &= ~SSKE_NQ; kvm_s390_get_regs_rre(vcpu, ®1, ®2); key = vcpu->run->s.regs.gprs[reg1] & 0xfe; start = vcpu->run->s.regs.gprs[reg2] & PAGE_MASK; start = kvm_s390_logical_to_effective(vcpu, start); if (m3 & SSKE_MB) { /* start already designates an absolute address */ end = (start + (1UL << 20)) & ~((1UL << 20) - 1); } else { start = kvm_s390_real_to_abs(vcpu, start); end = start + PAGE_SIZE; } while (start != end) { unsigned long addr = gfn_to_hva(vcpu->kvm, gpa_to_gfn(start)); if (kvm_is_error_hva(addr)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); down_read(¤t->mm->mmap_sem); rc = cond_set_guest_storage_key(current->mm, addr, key, &oldkey, m3 & SSKE_NQ, m3 & SSKE_MR, m3 & SSKE_MC); up_read(¤t->mm->mmap_sem); if (rc < 0) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); start += PAGE_SIZE; } if (m3 & (SSKE_MC | SSKE_MR)) { if (m3 & SSKE_MB) { /* skey in reg1 is unpredictable */ kvm_s390_set_psw_cc(vcpu, 3); } else { kvm_s390_set_psw_cc(vcpu, rc); vcpu->run->s.regs.gprs[reg1] &= ~0xff00UL; vcpu->run->s.regs.gprs[reg1] |= (u64) oldkey << 8; } } if (m3 & SSKE_MB) { if (psw_bits(vcpu->arch.sie_block->gpsw).eaba == PSW_AMODE_64BIT) vcpu->run->s.regs.gprs[reg2] &= ~PAGE_MASK; else vcpu->run->s.regs.gprs[reg2] &= ~0xfffff000UL; end = kvm_s390_logical_to_effective(vcpu, end); vcpu->run->s.regs.gprs[reg2] |= end; } return 0; } static int handle_ipte_interlock(struct kvm_vcpu *vcpu) { vcpu->stat.instruction_ipte_interlock++; if (psw_bits(vcpu->arch.sie_block->gpsw).p) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); wait_event(vcpu->kvm->arch.ipte_wq, !ipte_lock_held(vcpu)); kvm_s390_retry_instr(vcpu); VCPU_EVENT(vcpu, 4, "%s", "retrying ipte interlock operation"); return 0; } static int handle_test_block(struct kvm_vcpu *vcpu) { gpa_t addr; int reg2; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); kvm_s390_get_regs_rre(vcpu, NULL, ®2); addr = vcpu->run->s.regs.gprs[reg2] & PAGE_MASK; addr = kvm_s390_logical_to_effective(vcpu, addr); if (kvm_s390_check_low_addr_prot_real(vcpu, addr)) return kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); addr = kvm_s390_real_to_abs(vcpu, addr); if (kvm_is_error_gpa(vcpu->kvm, addr)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); /* * We don't expect errors on modern systems, and do not care * about storage keys (yet), so let's just clear the page. */ if (kvm_clear_guest(vcpu->kvm, addr, PAGE_SIZE)) return -EFAULT; kvm_s390_set_psw_cc(vcpu, 0); vcpu->run->s.regs.gprs[0] = 0; return 0; } static int handle_tpi(struct kvm_vcpu *vcpu) { struct kvm_s390_interrupt_info *inti; unsigned long len; u32 tpi_data[3]; int rc; u64 addr; u8 ar; addr = kvm_s390_get_base_disp_s(vcpu, &ar); if (addr & 3) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); inti = kvm_s390_get_io_int(vcpu->kvm, vcpu->arch.sie_block->gcr[6], 0); if (!inti) { kvm_s390_set_psw_cc(vcpu, 0); return 0; } tpi_data[0] = inti->io.subchannel_id << 16 | inti->io.subchannel_nr; tpi_data[1] = inti->io.io_int_parm; tpi_data[2] = inti->io.io_int_word; if (addr) { /* * Store the two-word I/O interruption code into the * provided area. */ len = sizeof(tpi_data) - 4; rc = write_guest(vcpu, addr, ar, &tpi_data, len); if (rc) { rc = kvm_s390_inject_prog_cond(vcpu, rc); goto reinject_interrupt; } } else { /* * Store the three-word I/O interruption code into * the appropriate lowcore area. */ len = sizeof(tpi_data); if (write_guest_lc(vcpu, __LC_SUBCHANNEL_ID, &tpi_data, len)) { /* failed writes to the low core are not recoverable */ rc = -EFAULT; goto reinject_interrupt; } } /* irq was successfully handed to the guest */ kfree(inti); kvm_s390_set_psw_cc(vcpu, 1); return 0; reinject_interrupt: /* * If we encounter a problem storing the interruption code, the * instruction is suppressed from the guest's view: reinject the * interrupt. */ if (kvm_s390_reinject_io_int(vcpu->kvm, inti)) { kfree(inti); rc = -EFAULT; } /* don't set the cc, a pgm irq was injected or we drop to user space */ return rc ? -EFAULT : 0; } static int handle_tsch(struct kvm_vcpu *vcpu) { struct kvm_s390_interrupt_info *inti = NULL; const u64 isc_mask = 0xffUL << 24; /* all iscs set */ /* a valid schid has at least one bit set */ if (vcpu->run->s.regs.gprs[1]) inti = kvm_s390_get_io_int(vcpu->kvm, isc_mask, vcpu->run->s.regs.gprs[1]); /* * Prepare exit to userspace. * We indicate whether we dequeued a pending I/O interrupt * so that userspace can re-inject it if the instruction gets * a program check. While this may re-order the pending I/O * interrupts, this is no problem since the priority is kept * intact. */ vcpu->run->exit_reason = KVM_EXIT_S390_TSCH; vcpu->run->s390_tsch.dequeued = !!inti; if (inti) { vcpu->run->s390_tsch.subchannel_id = inti->io.subchannel_id; vcpu->run->s390_tsch.subchannel_nr = inti->io.subchannel_nr; vcpu->run->s390_tsch.io_int_parm = inti->io.io_int_parm; vcpu->run->s390_tsch.io_int_word = inti->io.io_int_word; } vcpu->run->s390_tsch.ipb = vcpu->arch.sie_block->ipb; kfree(inti); return -EREMOTE; } static int handle_io_inst(struct kvm_vcpu *vcpu) { VCPU_EVENT(vcpu, 4, "%s", "I/O instruction"); if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); if (vcpu->kvm->arch.css_support) { /* * Most I/O instructions will be handled by userspace. * Exceptions are tpi and the interrupt portion of tsch. */ if (vcpu->arch.sie_block->ipa == 0xb236) return handle_tpi(vcpu); if (vcpu->arch.sie_block->ipa == 0xb235) return handle_tsch(vcpu); /* Handle in userspace. */ return -EOPNOTSUPP; } else { /* * Set condition code 3 to stop the guest from issuing channel * I/O instructions. */ kvm_s390_set_psw_cc(vcpu, 3); return 0; } } static int handle_stfl(struct kvm_vcpu *vcpu) { int rc; unsigned int fac; vcpu->stat.instruction_stfl++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); /* * We need to shift the lower 32 facility bits (bit 0-31) from a u64 * into a u32 memory representation. They will remain bits 0-31. */ fac = *vcpu->kvm->arch.model.fac_list >> 32; rc = write_guest_lc(vcpu, offsetof(struct lowcore, stfl_fac_list), &fac, sizeof(fac)); if (rc) return rc; VCPU_EVENT(vcpu, 3, "STFL: store facility list 0x%x", fac); trace_kvm_s390_handle_stfl(vcpu, fac); return 0; } #define PSW_MASK_ADDR_MODE (PSW_MASK_EA | PSW_MASK_BA) #define PSW_MASK_UNASSIGNED 0xb80800fe7fffffffUL #define PSW_ADDR_24 0x0000000000ffffffUL #define PSW_ADDR_31 0x000000007fffffffUL int is_valid_psw(psw_t *psw) { if (psw->mask & PSW_MASK_UNASSIGNED) return 0; if ((psw->mask & PSW_MASK_ADDR_MODE) == PSW_MASK_BA) { if (psw->addr & ~PSW_ADDR_31) return 0; } if (!(psw->mask & PSW_MASK_ADDR_MODE) && (psw->addr & ~PSW_ADDR_24)) return 0; if ((psw->mask & PSW_MASK_ADDR_MODE) == PSW_MASK_EA) return 0; if (psw->addr & 1) return 0; return 1; } int kvm_s390_handle_lpsw(struct kvm_vcpu *vcpu) { psw_t *gpsw = &vcpu->arch.sie_block->gpsw; psw_compat_t new_psw; u64 addr; int rc; u8 ar; if (gpsw->mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); addr = kvm_s390_get_base_disp_s(vcpu, &ar); if (addr & 7) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); rc = read_guest(vcpu, addr, ar, &new_psw, sizeof(new_psw)); if (rc) return kvm_s390_inject_prog_cond(vcpu, rc); if (!(new_psw.mask & PSW32_MASK_BASE)) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); gpsw->mask = (new_psw.mask & ~PSW32_MASK_BASE) << 32; gpsw->mask |= new_psw.addr & PSW32_ADDR_AMODE; gpsw->addr = new_psw.addr & ~PSW32_ADDR_AMODE; if (!is_valid_psw(gpsw)) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); return 0; } static int handle_lpswe(struct kvm_vcpu *vcpu) { psw_t new_psw; u64 addr; int rc; u8 ar; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); addr = kvm_s390_get_base_disp_s(vcpu, &ar); if (addr & 7) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); rc = read_guest(vcpu, addr, ar, &new_psw, sizeof(new_psw)); if (rc) return kvm_s390_inject_prog_cond(vcpu, rc); vcpu->arch.sie_block->gpsw = new_psw; if (!is_valid_psw(&vcpu->arch.sie_block->gpsw)) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); return 0; } static int handle_stidp(struct kvm_vcpu *vcpu) { u64 stidp_data = vcpu->kvm->arch.model.cpuid; u64 operand2; int rc; u8 ar; vcpu->stat.instruction_stidp++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); operand2 = kvm_s390_get_base_disp_s(vcpu, &ar); if (operand2 & 7) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); rc = write_guest(vcpu, operand2, ar, &stidp_data, sizeof(stidp_data)); if (rc) return kvm_s390_inject_prog_cond(vcpu, rc); VCPU_EVENT(vcpu, 3, "STIDP: store cpu id 0x%llx", stidp_data); return 0; } static void handle_stsi_3_2_2(struct kvm_vcpu *vcpu, struct sysinfo_3_2_2 *mem) { int cpus = 0; int n; cpus = atomic_read(&vcpu->kvm->online_vcpus); /* deal with other level 3 hypervisors */ if (stsi(mem, 3, 2, 2)) mem->count = 0; if (mem->count < 8) mem->count++; for (n = mem->count - 1; n > 0 ; n--) memcpy(&mem->vm[n], &mem->vm[n - 1], sizeof(mem->vm[0])); memset(&mem->vm[0], 0, sizeof(mem->vm[0])); mem->vm[0].cpus_total = cpus; mem->vm[0].cpus_configured = cpus; mem->vm[0].cpus_standby = 0; mem->vm[0].cpus_reserved = 0; mem->vm[0].caf = 1000; memcpy(mem->vm[0].name, "KVMguest", 8); ASCEBC(mem->vm[0].name, 8); memcpy(mem->vm[0].cpi, "KVM/Linux ", 16); ASCEBC(mem->vm[0].cpi, 16); } static void insert_stsi_usr_data(struct kvm_vcpu *vcpu, u64 addr, u8 ar, u8 fc, u8 sel1, u16 sel2) { vcpu->run->exit_reason = KVM_EXIT_S390_STSI; vcpu->run->s390_stsi.addr = addr; vcpu->run->s390_stsi.ar = ar; vcpu->run->s390_stsi.fc = fc; vcpu->run->s390_stsi.sel1 = sel1; vcpu->run->s390_stsi.sel2 = sel2; } static int handle_stsi(struct kvm_vcpu *vcpu) { int fc = (vcpu->run->s.regs.gprs[0] & 0xf0000000) >> 28; int sel1 = vcpu->run->s.regs.gprs[0] & 0xff; int sel2 = vcpu->run->s.regs.gprs[1] & 0xffff; unsigned long mem = 0; u64 operand2; int rc = 0; u8 ar; vcpu->stat.instruction_stsi++; VCPU_EVENT(vcpu, 3, "STSI: fc: %u sel1: %u sel2: %u", fc, sel1, sel2); if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); if (fc > 3) { kvm_s390_set_psw_cc(vcpu, 3); return 0; } if (vcpu->run->s.regs.gprs[0] & 0x0fffff00 || vcpu->run->s.regs.gprs[1] & 0xffff0000) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); if (fc == 0) { vcpu->run->s.regs.gprs[0] = 3 << 28; kvm_s390_set_psw_cc(vcpu, 0); return 0; } operand2 = kvm_s390_get_base_disp_s(vcpu, &ar); if (operand2 & 0xfff) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); switch (fc) { case 1: /* same handling for 1 and 2 */ case 2: mem = get_zeroed_page(GFP_KERNEL); if (!mem) goto out_no_data; if (stsi((void *) mem, fc, sel1, sel2)) goto out_no_data; break; case 3: if (sel1 != 2 || sel2 != 2) goto out_no_data; mem = get_zeroed_page(GFP_KERNEL); if (!mem) goto out_no_data; handle_stsi_3_2_2(vcpu, (void *) mem); break; } rc = write_guest(vcpu, operand2, ar, (void *)mem, PAGE_SIZE); if (rc) { rc = kvm_s390_inject_prog_cond(vcpu, rc); goto out; } if (vcpu->kvm->arch.user_stsi) { insert_stsi_usr_data(vcpu, operand2, ar, fc, sel1, sel2); rc = -EREMOTE; } trace_kvm_s390_handle_stsi(vcpu, fc, sel1, sel2, operand2); free_page(mem); kvm_s390_set_psw_cc(vcpu, 0); vcpu->run->s.regs.gprs[0] = 0; return rc; out_no_data: kvm_s390_set_psw_cc(vcpu, 3); out: free_page(mem); return rc; } static const intercept_handler_t b2_handlers[256] = { [0x02] = handle_stidp, [0x04] = handle_set_clock, [0x10] = handle_set_prefix, [0x11] = handle_store_prefix, [0x12] = handle_store_cpu_address, [0x14] = kvm_s390_handle_vsie, [0x21] = handle_ipte_interlock, [0x29] = handle_iske, [0x2a] = handle_rrbe, [0x2b] = handle_sske, [0x2c] = handle_test_block, [0x30] = handle_io_inst, [0x31] = handle_io_inst, [0x32] = handle_io_inst, [0x33] = handle_io_inst, [0x34] = handle_io_inst, [0x35] = handle_io_inst, [0x36] = handle_io_inst, [0x37] = handle_io_inst, [0x38] = handle_io_inst, [0x39] = handle_io_inst, [0x3a] = handle_io_inst, [0x3b] = handle_io_inst, [0x3c] = handle_io_inst, [0x50] = handle_ipte_interlock, [0x56] = handle_sthyi, [0x5f] = handle_io_inst, [0x74] = handle_io_inst, [0x76] = handle_io_inst, [0x7d] = handle_stsi, [0xb1] = handle_stfl, [0xb2] = handle_lpswe, }; int kvm_s390_handle_b2(struct kvm_vcpu *vcpu) { intercept_handler_t handler; /* * A lot of B2 instructions are priviledged. Here we check for * the privileged ones, that we can handle in the kernel. * Anything else goes to userspace. */ handler = b2_handlers[vcpu->arch.sie_block->ipa & 0x00ff]; if (handler) return handler(vcpu); return -EOPNOTSUPP; } static int handle_epsw(struct kvm_vcpu *vcpu) { int reg1, reg2; kvm_s390_get_regs_rre(vcpu, ®1, ®2); /* This basically extracts the mask half of the psw. */ vcpu->run->s.regs.gprs[reg1] &= 0xffffffff00000000UL; vcpu->run->s.regs.gprs[reg1] |= vcpu->arch.sie_block->gpsw.mask >> 32; if (reg2) { vcpu->run->s.regs.gprs[reg2] &= 0xffffffff00000000UL; vcpu->run->s.regs.gprs[reg2] |= vcpu->arch.sie_block->gpsw.mask & 0x00000000ffffffffUL; } return 0; } #define PFMF_RESERVED 0xfffc0101UL #define PFMF_SK 0x00020000UL #define PFMF_CF 0x00010000UL #define PFMF_UI 0x00008000UL #define PFMF_FSC 0x00007000UL #define PFMF_NQ 0x00000800UL #define PFMF_MR 0x00000400UL #define PFMF_MC 0x00000200UL #define PFMF_KEY 0x000000feUL static int handle_pfmf(struct kvm_vcpu *vcpu) { bool mr = false, mc = false, nq; int reg1, reg2; unsigned long start, end; unsigned char key; vcpu->stat.instruction_pfmf++; kvm_s390_get_regs_rre(vcpu, ®1, ®2); if (!test_kvm_facility(vcpu->kvm, 8)) return kvm_s390_inject_program_int(vcpu, PGM_OPERATION); if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); if (vcpu->run->s.regs.gprs[reg1] & PFMF_RESERVED) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); /* Only provide non-quiescing support if enabled for the guest */ if (vcpu->run->s.regs.gprs[reg1] & PFMF_NQ && !test_kvm_facility(vcpu->kvm, 14)) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); /* Only provide conditional-SSKE support if enabled for the guest */ if (vcpu->run->s.regs.gprs[reg1] & PFMF_SK && test_kvm_facility(vcpu->kvm, 10)) { mr = vcpu->run->s.regs.gprs[reg1] & PFMF_MR; mc = vcpu->run->s.regs.gprs[reg1] & PFMF_MC; } nq = vcpu->run->s.regs.gprs[reg1] & PFMF_NQ; key = vcpu->run->s.regs.gprs[reg1] & PFMF_KEY; start = vcpu->run->s.regs.gprs[reg2] & PAGE_MASK; start = kvm_s390_logical_to_effective(vcpu, start); if (vcpu->run->s.regs.gprs[reg1] & PFMF_CF) { if (kvm_s390_check_low_addr_prot_real(vcpu, start)) return kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); } switch (vcpu->run->s.regs.gprs[reg1] & PFMF_FSC) { case 0x00000000: /* only 4k frames specify a real address */ start = kvm_s390_real_to_abs(vcpu, start); end = (start + (1UL << 12)) & ~((1UL << 12) - 1); break; case 0x00001000: end = (start + (1UL << 20)) & ~((1UL << 20) - 1); break; case 0x00002000: /* only support 2G frame size if EDAT2 is available and we are not in 24-bit addressing mode */ if (!test_kvm_facility(vcpu->kvm, 78) || psw_bits(vcpu->arch.sie_block->gpsw).eaba == PSW_AMODE_24BIT) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); end = (start + (1UL << 31)) & ~((1UL << 31) - 1); break; default: return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); } while (start != end) { unsigned long useraddr; /* Translate guest address to host address */ useraddr = gfn_to_hva(vcpu->kvm, gpa_to_gfn(start)); if (kvm_is_error_hva(useraddr)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); if (vcpu->run->s.regs.gprs[reg1] & PFMF_CF) { if (clear_user((void __user *)useraddr, PAGE_SIZE)) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); } if (vcpu->run->s.regs.gprs[reg1] & PFMF_SK) { int rc = __skey_check_enable(vcpu); if (rc) return rc; down_read(¤t->mm->mmap_sem); rc = cond_set_guest_storage_key(current->mm, useraddr, key, NULL, nq, mr, mc); up_read(¤t->mm->mmap_sem); if (rc < 0) return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); } start += PAGE_SIZE; } if (vcpu->run->s.regs.gprs[reg1] & PFMF_FSC) { if (psw_bits(vcpu->arch.sie_block->gpsw).eaba == PSW_AMODE_64BIT) { vcpu->run->s.regs.gprs[reg2] = end; } else { vcpu->run->s.regs.gprs[reg2] &= ~0xffffffffUL; end = kvm_s390_logical_to_effective(vcpu, end); vcpu->run->s.regs.gprs[reg2] |= end; } } return 0; } static int handle_essa(struct kvm_vcpu *vcpu) { /* entries expected to be 1FF */ int entries = (vcpu->arch.sie_block->cbrlo & ~PAGE_MASK) >> 3; unsigned long *cbrlo; struct gmap *gmap; int i; VCPU_EVENT(vcpu, 4, "ESSA: release %d pages", entries); gmap = vcpu->arch.gmap; vcpu->stat.instruction_essa++; if (!vcpu->kvm->arch.use_cmma) return kvm_s390_inject_program_int(vcpu, PGM_OPERATION); if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); if (((vcpu->arch.sie_block->ipb & 0xf0000000) >> 28) > 6) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); /* Retry the ESSA instruction */ kvm_s390_retry_instr(vcpu); vcpu->arch.sie_block->cbrlo &= PAGE_MASK; /* reset nceo */ cbrlo = phys_to_virt(vcpu->arch.sie_block->cbrlo); down_read(&gmap->mm->mmap_sem); for (i = 0; i < entries; ++i) __gmap_zap(gmap, cbrlo[i]); up_read(&gmap->mm->mmap_sem); return 0; } static const intercept_handler_t b9_handlers[256] = { [0x8a] = handle_ipte_interlock, [0x8d] = handle_epsw, [0x8e] = handle_ipte_interlock, [0x8f] = handle_ipte_interlock, [0xab] = handle_essa, [0xaf] = handle_pfmf, }; int kvm_s390_handle_b9(struct kvm_vcpu *vcpu) { intercept_handler_t handler; /* This is handled just as for the B2 instructions. */ handler = b9_handlers[vcpu->arch.sie_block->ipa & 0x00ff]; if (handler) return handler(vcpu); return -EOPNOTSUPP; } int kvm_s390_handle_lctl(struct kvm_vcpu *vcpu) { int reg1 = (vcpu->arch.sie_block->ipa & 0x00f0) >> 4; int reg3 = vcpu->arch.sie_block->ipa & 0x000f; int reg, rc, nr_regs; u32 ctl_array[16]; u64 ga; u8 ar; vcpu->stat.instruction_lctl++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); ga = kvm_s390_get_base_disp_rs(vcpu, &ar); if (ga & 3) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); VCPU_EVENT(vcpu, 4, "LCTL: r1:%d, r3:%d, addr: 0x%llx", reg1, reg3, ga); trace_kvm_s390_handle_lctl(vcpu, 0, reg1, reg3, ga); nr_regs = ((reg3 - reg1) & 0xf) + 1; rc = read_guest(vcpu, ga, ar, ctl_array, nr_regs * sizeof(u32)); if (rc) return kvm_s390_inject_prog_cond(vcpu, rc); reg = reg1; nr_regs = 0; do { vcpu->arch.sie_block->gcr[reg] &= 0xffffffff00000000ul; vcpu->arch.sie_block->gcr[reg] |= ctl_array[nr_regs++]; if (reg == reg3) break; reg = (reg + 1) % 16; } while (1); kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); return 0; } int kvm_s390_handle_stctl(struct kvm_vcpu *vcpu) { int reg1 = (vcpu->arch.sie_block->ipa & 0x00f0) >> 4; int reg3 = vcpu->arch.sie_block->ipa & 0x000f; int reg, rc, nr_regs; u32 ctl_array[16]; u64 ga; u8 ar; vcpu->stat.instruction_stctl++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); ga = kvm_s390_get_base_disp_rs(vcpu, &ar); if (ga & 3) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); VCPU_EVENT(vcpu, 4, "STCTL r1:%d, r3:%d, addr: 0x%llx", reg1, reg3, ga); trace_kvm_s390_handle_stctl(vcpu, 0, reg1, reg3, ga); reg = reg1; nr_regs = 0; do { ctl_array[nr_regs++] = vcpu->arch.sie_block->gcr[reg]; if (reg == reg3) break; reg = (reg + 1) % 16; } while (1); rc = write_guest(vcpu, ga, ar, ctl_array, nr_regs * sizeof(u32)); return rc ? kvm_s390_inject_prog_cond(vcpu, rc) : 0; } static int handle_lctlg(struct kvm_vcpu *vcpu) { int reg1 = (vcpu->arch.sie_block->ipa & 0x00f0) >> 4; int reg3 = vcpu->arch.sie_block->ipa & 0x000f; int reg, rc, nr_regs; u64 ctl_array[16]; u64 ga; u8 ar; vcpu->stat.instruction_lctlg++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); ga = kvm_s390_get_base_disp_rsy(vcpu, &ar); if (ga & 7) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); VCPU_EVENT(vcpu, 4, "LCTLG: r1:%d, r3:%d, addr: 0x%llx", reg1, reg3, ga); trace_kvm_s390_handle_lctl(vcpu, 1, reg1, reg3, ga); nr_regs = ((reg3 - reg1) & 0xf) + 1; rc = read_guest(vcpu, ga, ar, ctl_array, nr_regs * sizeof(u64)); if (rc) return kvm_s390_inject_prog_cond(vcpu, rc); reg = reg1; nr_regs = 0; do { vcpu->arch.sie_block->gcr[reg] = ctl_array[nr_regs++]; if (reg == reg3) break; reg = (reg + 1) % 16; } while (1); kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); return 0; } static int handle_stctg(struct kvm_vcpu *vcpu) { int reg1 = (vcpu->arch.sie_block->ipa & 0x00f0) >> 4; int reg3 = vcpu->arch.sie_block->ipa & 0x000f; int reg, rc, nr_regs; u64 ctl_array[16]; u64 ga; u8 ar; vcpu->stat.instruction_stctg++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); ga = kvm_s390_get_base_disp_rsy(vcpu, &ar); if (ga & 7) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); VCPU_EVENT(vcpu, 4, "STCTG r1:%d, r3:%d, addr: 0x%llx", reg1, reg3, ga); trace_kvm_s390_handle_stctl(vcpu, 1, reg1, reg3, ga); reg = reg1; nr_regs = 0; do { ctl_array[nr_regs++] = vcpu->arch.sie_block->gcr[reg]; if (reg == reg3) break; reg = (reg + 1) % 16; } while (1); rc = write_guest(vcpu, ga, ar, ctl_array, nr_regs * sizeof(u64)); return rc ? kvm_s390_inject_prog_cond(vcpu, rc) : 0; } static const intercept_handler_t eb_handlers[256] = { [0x2f] = handle_lctlg, [0x25] = handle_stctg, [0x60] = handle_ri, [0x61] = handle_ri, [0x62] = handle_ri, }; int kvm_s390_handle_eb(struct kvm_vcpu *vcpu) { intercept_handler_t handler; handler = eb_handlers[vcpu->arch.sie_block->ipb & 0xff]; if (handler) return handler(vcpu); return -EOPNOTSUPP; } static int handle_tprot(struct kvm_vcpu *vcpu) { u64 address1, address2; unsigned long hva, gpa; int ret = 0, cc = 0; bool writable; u8 ar; vcpu->stat.instruction_tprot++; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); kvm_s390_get_base_disp_sse(vcpu, &address1, &address2, &ar, NULL); /* we only handle the Linux memory detection case: * access key == 0 * everything else goes to userspace. */ if (address2 & 0xf0) return -EOPNOTSUPP; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_DAT) ipte_lock(vcpu); ret = guest_translate_address(vcpu, address1, ar, &gpa, GACC_STORE); if (ret == PGM_PROTECTION) { /* Write protected? Try again with read-only... */ cc = 1; ret = guest_translate_address(vcpu, address1, ar, &gpa, GACC_FETCH); } if (ret) { if (ret == PGM_ADDRESSING || ret == PGM_TRANSLATION_SPEC) { ret = kvm_s390_inject_program_int(vcpu, ret); } else if (ret > 0) { /* Translation not available */ kvm_s390_set_psw_cc(vcpu, 3); ret = 0; } goto out_unlock; } hva = gfn_to_hva_prot(vcpu->kvm, gpa_to_gfn(gpa), &writable); if (kvm_is_error_hva(hva)) { ret = kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); } else { if (!writable) cc = 1; /* Write not permitted ==> read-only */ kvm_s390_set_psw_cc(vcpu, cc); /* Note: CC2 only occurs for storage keys (not supported yet) */ } out_unlock: if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_DAT) ipte_unlock(vcpu); return ret; } int kvm_s390_handle_e5(struct kvm_vcpu *vcpu) { /* For e5xx... instructions we only handle TPROT */ if ((vcpu->arch.sie_block->ipa & 0x00ff) == 0x01) return handle_tprot(vcpu); return -EOPNOTSUPP; } static int handle_sckpf(struct kvm_vcpu *vcpu) { u32 value; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); if (vcpu->run->s.regs.gprs[0] & 0x00000000ffff0000) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); value = vcpu->run->s.regs.gprs[0] & 0x000000000000ffff; vcpu->arch.sie_block->todpr = value; return 0; } static int handle_ptff(struct kvm_vcpu *vcpu) { /* we don't emulate any control instructions yet */ kvm_s390_set_psw_cc(vcpu, 3); return 0; } static const intercept_handler_t x01_handlers[256] = { [0x04] = handle_ptff, [0x07] = handle_sckpf, }; int kvm_s390_handle_01(struct kvm_vcpu *vcpu) { intercept_handler_t handler; handler = x01_handlers[vcpu->arch.sie_block->ipa & 0x00ff]; if (handler) return handler(vcpu); return -EOPNOTSUPP; }