/* * driver/dma/ste_dma40.c * * Copyright (C) ST-Ericsson 2007-2010 * License terms: GNU General Public License (GPL) version 2 * Author: Per Friden * Author: Jonas Aaberg * */ #include #include #include #include #include #include #include #include "ste_dma40_ll.h" #define D40_NAME "dma40" #define D40_PHY_CHAN -1 /* For masking out/in 2 bit channel positions */ #define D40_CHAN_POS(chan) (2 * (chan / 2)) #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan)) /* Maximum iterations taken before giving up suspending a channel */ #define D40_SUSPEND_MAX_IT 500 /* Hardware requirement on LCLA alignment */ #define LCLA_ALIGNMENT 0x40000 /* Attempts before giving up to trying to get pages that are aligned */ #define MAX_LCLA_ALLOC_ATTEMPTS 256 /* Bit markings for allocation map */ #define D40_ALLOC_FREE (1 << 31) #define D40_ALLOC_PHY (1 << 30) #define D40_ALLOC_LOG_FREE 0 /* Hardware designer of the block */ #define D40_PERIPHID2_DESIGNER 0x8 /** * enum 40_command - The different commands and/or statuses. * * @D40_DMA_STOP: DMA channel command STOP or status STOPPED, * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED. */ enum d40_command { D40_DMA_STOP = 0, D40_DMA_RUN = 1, D40_DMA_SUSPEND_REQ = 2, D40_DMA_SUSPENDED = 3 }; /** * struct d40_lli_pool - Structure for keeping LLIs in memory * * @base: Pointer to memory area when the pre_alloc_lli's are not large * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if * pre_alloc_lli is used. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli. * @pre_alloc_lli: Pre allocated area for the most common case of transfers, * one buffer to one buffer. */ struct d40_lli_pool { void *base; int size; /* Space for dst and src, plus an extra for padding */ u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)]; }; /** * struct d40_desc - A descriptor is one DMA job. * * @lli_phy: LLI settings for physical channel. Both src and dst= * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if * lli_len equals one. * @lli_log: Same as above but for logical channels. * @lli_pool: The pool with two entries pre-allocated. * @lli_len: Number of llis of current descriptor. * @lli_count: Number of transfered llis. * @lli_tx_len: Max number of LLIs per transfer, there can be * many transfer for one descriptor. * @txd: DMA engine struct. Used for among other things for communication * during a transfer. * @node: List entry. * @dir: The transfer direction of this job. * @is_in_client_list: true if the client owns this descriptor. * * This descriptor is used for both logical and physical transfers. */ struct d40_desc { /* LLI physical */ struct d40_phy_lli_bidir lli_phy; /* LLI logical */ struct d40_log_lli_bidir lli_log; struct d40_lli_pool lli_pool; int lli_len; int lli_count; u32 lli_tx_len; struct dma_async_tx_descriptor txd; struct list_head node; enum dma_data_direction dir; bool is_in_client_list; }; /** * struct d40_lcla_pool - LCLA pool settings and data. * * @base: The virtual address of LCLA. 18 bit aligned. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used. * This pointer is only there for clean-up on error. * @pages: The number of pages needed for all physical channels. * Only used later for clean-up on error * @lock: Lock to protect the content in this struct. * @alloc_map: Bitmap mapping between physical channel and LCLA entries. * @num_blocks: The number of entries of alloc_map. Equals to the * number of physical channels. */ struct d40_lcla_pool { void *base; void *base_unaligned; int pages; spinlock_t lock; u32 *alloc_map; int num_blocks; }; /** * struct d40_phy_res - struct for handling eventlines mapped to physical * channels. * * @lock: A lock protection this entity. * @num: The physical channel number of this entity. * @allocated_src: Bit mapped to show which src event line's are mapped to * this physical channel. Can also be free or physically allocated. * @allocated_dst: Same as for src but is dst. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as * event line number. Both allocated_src and allocated_dst can not be * allocated to a physical channel, since the interrupt handler has then * no way of figure out which one the interrupt belongs to. */ struct d40_phy_res { spinlock_t lock; int num; u32 allocated_src; u32 allocated_dst; }; struct d40_base; /** * struct d40_chan - Struct that describes a channel. * * @lock: A spinlock to protect this struct. * @log_num: The logical number, if any of this channel. * @completed: Starts with 1, after first interrupt it is set to dma engine's * current cookie. * @pending_tx: The number of pending transfers. Used between interrupt handler * and tasklet. * @busy: Set to true when transfer is ongoing on this channel. * @phy_chan: Pointer to physical channel which this instance runs on. If this * point is NULL, then the channel is not allocated. * @chan: DMA engine handle. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a * transfer and call client callback. * @client: Cliented owned descriptor list. * @active: Active descriptor. * @queue: Queued jobs. * @dma_cfg: The client configuration of this dma channel. * @base: Pointer to the device instance struct. * @src_def_cfg: Default cfg register setting for src. * @dst_def_cfg: Default cfg register setting for dst. * @log_def: Default logical channel settings. * @lcla: Space for one dst src pair for logical channel transfers. * @lcpa: Pointer to dst and src lcpa settings. * * This struct can either "be" a logical or a physical channel. */ struct d40_chan { spinlock_t lock; int log_num; /* ID of the most recent completed transfer */ int completed; int pending_tx; bool busy; struct d40_phy_res *phy_chan; struct dma_chan chan; struct tasklet_struct tasklet; struct list_head client; struct list_head active; struct list_head queue; struct stedma40_chan_cfg dma_cfg; struct d40_base *base; /* Default register configurations */ u32 src_def_cfg; u32 dst_def_cfg; struct d40_def_lcsp log_def; struct d40_lcla_elem lcla; struct d40_log_lli_full *lcpa; /* Runtime reconfiguration */ dma_addr_t runtime_addr; enum dma_data_direction runtime_direction; }; /** * struct d40_base - The big global struct, one for each probe'd instance. * * @interrupt_lock: Lock used to make sure one interrupt is handle a time. * @execmd_lock: Lock for execute command usage since several channels share * the same physical register. * @dev: The device structure. * @virtbase: The virtual base address of the DMA's register. * @rev: silicon revision detected. * @clk: Pointer to the DMA clock structure. * @phy_start: Physical memory start of the DMA registers. * @phy_size: Size of the DMA register map. * @irq: The IRQ number. * @num_phy_chans: The number of physical channels. Read from HW. This * is the number of available channels for this driver, not counting "Secure * mode" allocated physical channels. * @num_log_chans: The number of logical channels. Calculated from * num_phy_chans. * @dma_both: dma_device channels that can do both memcpy and slave transfers. * @dma_slave: dma_device channels that can do only do slave transfers. * @dma_memcpy: dma_device channels that can do only do memcpy transfers. * @phy_chans: Room for all possible physical channels in system. * @log_chans: Room for all possible logical channels in system. * @lookup_log_chans: Used to map interrupt number to logical channel. Points * to log_chans entries. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points * to phy_chans entries. * @plat_data: Pointer to provided platform_data which is the driver * configuration. * @phy_res: Vector containing all physical channels. * @lcla_pool: lcla pool settings and data. * @lcpa_base: The virtual mapped address of LCPA. * @phy_lcpa: The physical address of the LCPA. * @lcpa_size: The size of the LCPA area. * @desc_slab: cache for descriptors. */ struct d40_base { spinlock_t interrupt_lock; spinlock_t execmd_lock; struct device *dev; void __iomem *virtbase; u8 rev:4; struct clk *clk; phys_addr_t phy_start; resource_size_t phy_size; int irq; int num_phy_chans; int num_log_chans; struct dma_device dma_both; struct dma_device dma_slave; struct dma_device dma_memcpy; struct d40_chan *phy_chans; struct d40_chan *log_chans; struct d40_chan **lookup_log_chans; struct d40_chan **lookup_phy_chans; struct stedma40_platform_data *plat_data; /* Physical half channels */ struct d40_phy_res *phy_res; struct d40_lcla_pool lcla_pool; void *lcpa_base; dma_addr_t phy_lcpa; resource_size_t lcpa_size; struct kmem_cache *desc_slab; }; /** * struct d40_interrupt_lookup - lookup table for interrupt handler * * @src: Interrupt mask register. * @clr: Interrupt clear register. * @is_error: true if this is an error interrupt. * @offset: start delta in the lookup_log_chans in d40_base. If equals to * D40_PHY_CHAN, the lookup_phy_chans shall be used instead. */ struct d40_interrupt_lookup { u32 src; u32 clr; bool is_error; int offset; }; /** * struct d40_reg_val - simple lookup struct * * @reg: The register. * @val: The value that belongs to the register in reg. */ struct d40_reg_val { unsigned int reg; unsigned int val; }; static int d40_pool_lli_alloc(struct d40_desc *d40d, int lli_len, bool is_log) { u32 align; void *base; if (is_log) align = sizeof(struct d40_log_lli); else align = sizeof(struct d40_phy_lli); if (lli_len == 1) { base = d40d->lli_pool.pre_alloc_lli; d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli); d40d->lli_pool.base = NULL; } else { d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align); base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT); d40d->lli_pool.base = base; if (d40d->lli_pool.base == NULL) return -ENOMEM; } if (is_log) { d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base, align); d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len, align); } else { d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base, align); d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len, align); d40d->lli_phy.src_addr = virt_to_phys(d40d->lli_phy.src); d40d->lli_phy.dst_addr = virt_to_phys(d40d->lli_phy.dst); } return 0; } static void d40_pool_lli_free(struct d40_desc *d40d) { kfree(d40d->lli_pool.base); d40d->lli_pool.base = NULL; d40d->lli_pool.size = 0; d40d->lli_log.src = NULL; d40d->lli_log.dst = NULL; d40d->lli_phy.src = NULL; d40d->lli_phy.dst = NULL; d40d->lli_phy.src_addr = 0; d40d->lli_phy.dst_addr = 0; } static dma_cookie_t d40_assign_cookie(struct d40_chan *d40c, struct d40_desc *desc) { dma_cookie_t cookie = d40c->chan.cookie; if (++cookie < 0) cookie = 1; d40c->chan.cookie = cookie; desc->txd.cookie = cookie; return cookie; } static void d40_desc_remove(struct d40_desc *d40d) { list_del(&d40d->node); } static struct d40_desc *d40_desc_get(struct d40_chan *d40c) { struct d40_desc *d; struct d40_desc *_d; if (!list_empty(&d40c->client)) { list_for_each_entry_safe(d, _d, &d40c->client, node) if (async_tx_test_ack(&d->txd)) { d40_pool_lli_free(d); d40_desc_remove(d); break; } } else { d = kmem_cache_alloc(d40c->base->desc_slab, GFP_NOWAIT); if (d != NULL) { memset(d, 0, sizeof(struct d40_desc)); INIT_LIST_HEAD(&d->node); } } return d; } static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d) { kmem_cache_free(d40c->base->desc_slab, d40d); } static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc) { list_add_tail(&desc->node, &d40c->active); } static struct d40_desc *d40_first_active_get(struct d40_chan *d40c) { struct d40_desc *d; if (list_empty(&d40c->active)) return NULL; d = list_first_entry(&d40c->active, struct d40_desc, node); return d; } static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc) { list_add_tail(&desc->node, &d40c->queue); } static struct d40_desc *d40_first_queued(struct d40_chan *d40c) { struct d40_desc *d; if (list_empty(&d40c->queue)) return NULL; d = list_first_entry(&d40c->queue, struct d40_desc, node); return d; } /* Support functions for logical channels */ static int d40_lcla_id_get(struct d40_chan *d40c) { int src_id = 0; int dst_id = 0; struct d40_log_lli *lcla_lidx_base = d40c->base->lcla_pool.base + d40c->phy_chan->num * 1024; int i; int lli_per_log = d40c->base->plat_data->llis_per_log; unsigned long flags; if (d40c->lcla.src_id >= 0 && d40c->lcla.dst_id >= 0) return 0; if (d40c->base->lcla_pool.num_blocks > 32) return -EINVAL; spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); for (i = 0; i < d40c->base->lcla_pool.num_blocks; i++) { if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] & (0x1 << i))) { d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |= (0x1 << i); break; } } src_id = i; if (src_id >= d40c->base->lcla_pool.num_blocks) goto err; for (; i < d40c->base->lcla_pool.num_blocks; i++) { if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] & (0x1 << i))) { d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |= (0x1 << i); break; } } dst_id = i; if (dst_id == src_id) goto err; d40c->lcla.src_id = src_id; d40c->lcla.dst_id = dst_id; d40c->lcla.dst = lcla_lidx_base + dst_id * lli_per_log + 1; d40c->lcla.src = lcla_lidx_base + src_id * lli_per_log + 1; spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); return 0; err: spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); return -EINVAL; } static int d40_channel_execute_command(struct d40_chan *d40c, enum d40_command command) { int status, i; void __iomem *active_reg; int ret = 0; unsigned long flags; u32 wmask; spin_lock_irqsave(&d40c->base->execmd_lock, flags); if (d40c->phy_chan->num % 2 == 0) active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; else active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; if (command == D40_DMA_SUSPEND_REQ) { status = (readl(active_reg) & D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> D40_CHAN_POS(d40c->phy_chan->num); if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) goto done; } wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num)); writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)), active_reg); if (command == D40_DMA_SUSPEND_REQ) { for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) { status = (readl(active_reg) & D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> D40_CHAN_POS(d40c->phy_chan->num); cpu_relax(); /* * Reduce the number of bus accesses while * waiting for the DMA to suspend. */ udelay(3); if (status == D40_DMA_STOP || status == D40_DMA_SUSPENDED) break; } if (i == D40_SUSPEND_MAX_IT) { dev_err(&d40c->chan.dev->device, "[%s]: unable to suspend the chl %d (log: %d) status %x\n", __func__, d40c->phy_chan->num, d40c->log_num, status); dump_stack(); ret = -EBUSY; } } done: spin_unlock_irqrestore(&d40c->base->execmd_lock, flags); return ret; } static void d40_term_all(struct d40_chan *d40c) { struct d40_desc *d40d; unsigned long flags; /* Release active descriptors */ while ((d40d = d40_first_active_get(d40c))) { d40_desc_remove(d40d); /* Return desc to free-list */ d40_desc_free(d40c, d40d); } /* Release queued descriptors waiting for transfer */ while ((d40d = d40_first_queued(d40c))) { d40_desc_remove(d40d); /* Return desc to free-list */ d40_desc_free(d40c, d40d); } spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &= (~(0x1 << d40c->lcla.dst_id)); d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &= (~(0x1 << d40c->lcla.src_id)); d40c->lcla.src_id = -1; d40c->lcla.dst_id = -1; spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); d40c->pending_tx = 0; d40c->busy = false; } static void d40_config_set_event(struct d40_chan *d40c, bool do_enable) { u32 val; unsigned long flags; /* Notice, that disable requires the physical channel to be stopped */ if (do_enable) val = D40_ACTIVATE_EVENTLINE; else val = D40_DEACTIVATE_EVENTLINE; spin_lock_irqsave(&d40c->phy_chan->lock, flags); /* Enable event line connected to device (or memcpy) */ if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) || (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) { u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type); writel((val << D40_EVENTLINE_POS(event)) | ~D40_EVENTLINE_MASK(event), d40c->base->virtbase + D40_DREG_PCBASE + d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SSLNK); } if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) { u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); writel((val << D40_EVENTLINE_POS(event)) | ~D40_EVENTLINE_MASK(event), d40c->base->virtbase + D40_DREG_PCBASE + d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SDLNK); } spin_unlock_irqrestore(&d40c->phy_chan->lock, flags); } static u32 d40_chan_has_events(struct d40_chan *d40c) { u32 val; val = readl(d40c->base->virtbase + D40_DREG_PCBASE + d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SSLNK); val |= readl(d40c->base->virtbase + D40_DREG_PCBASE + d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SDLNK); return val; } static void d40_config_enable_lidx(struct d40_chan *d40c) { /* Set LIDX for lcla */ writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) & D40_SREG_ELEM_LOG_LIDX_MASK, d40c->base->virtbase + D40_DREG_PCBASE + d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT); writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) & D40_SREG_ELEM_LOG_LIDX_MASK, d40c->base->virtbase + D40_DREG_PCBASE + d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT); } static int d40_config_write(struct d40_chan *d40c) { u32 addr_base; u32 var; int res; res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); if (res) return res; /* Odd addresses are even addresses + 4 */ addr_base = (d40c->phy_chan->num % 2) * 4; /* Setup channel mode to logical or physical */ var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) << D40_CHAN_POS(d40c->phy_chan->num); writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base); /* Setup operational mode option register */ var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) & 0x3) << D40_CHAN_POS(d40c->phy_chan->num); writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base); if (d40c->log_num != D40_PHY_CHAN) { /* Set default config for CFG reg */ writel(d40c->src_def_cfg, d40c->base->virtbase + D40_DREG_PCBASE + d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SSCFG); writel(d40c->dst_def_cfg, d40c->base->virtbase + D40_DREG_PCBASE + d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SDCFG); d40_config_enable_lidx(d40c); } return res; } static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d) { if (d40d->lli_phy.dst && d40d->lli_phy.src) { d40_phy_lli_write(d40c->base->virtbase, d40c->phy_chan->num, d40d->lli_phy.dst, d40d->lli_phy.src); } else if (d40d->lli_log.dst && d40d->lli_log.src) { struct d40_log_lli *src = d40d->lli_log.src; struct d40_log_lli *dst = d40d->lli_log.dst; int s; src += d40d->lli_count; dst += d40d->lli_count; s = d40_log_lli_write(d40c->lcpa, d40c->lcla.src, d40c->lcla.dst, dst, src, d40c->base->plat_data->llis_per_log); /* If s equals to zero, the job is not linked */ if (s > 0) { (void) dma_map_single(d40c->base->dev, d40c->lcla.src, s * sizeof(struct d40_log_lli), DMA_TO_DEVICE); (void) dma_map_single(d40c->base->dev, d40c->lcla.dst, s * sizeof(struct d40_log_lli), DMA_TO_DEVICE); } } d40d->lli_count += d40d->lli_tx_len; } static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx) { struct d40_chan *d40c = container_of(tx->chan, struct d40_chan, chan); struct d40_desc *d40d = container_of(tx, struct d40_desc, txd); unsigned long flags; spin_lock_irqsave(&d40c->lock, flags); tx->cookie = d40_assign_cookie(d40c, d40d); d40_desc_queue(d40c, d40d); spin_unlock_irqrestore(&d40c->lock, flags); return tx->cookie; } static int d40_start(struct d40_chan *d40c) { if (d40c->base->rev == 0) { int err; if (d40c->log_num != D40_PHY_CHAN) { err = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); if (err) return err; } } if (d40c->log_num != D40_PHY_CHAN) d40_config_set_event(d40c, true); return d40_channel_execute_command(d40c, D40_DMA_RUN); } static struct d40_desc *d40_queue_start(struct d40_chan *d40c) { struct d40_desc *d40d; int err; /* Start queued jobs, if any */ d40d = d40_first_queued(d40c); if (d40d != NULL) { d40c->busy = true; /* Remove from queue */ d40_desc_remove(d40d); /* Add to active queue */ d40_desc_submit(d40c, d40d); /* Initiate DMA job */ d40_desc_load(d40c, d40d); /* Start dma job */ err = d40_start(d40c); if (err) return NULL; } return d40d; } /* called from interrupt context */ static void dma_tc_handle(struct d40_chan *d40c) { struct d40_desc *d40d; if (!d40c->phy_chan) return; /* Get first active entry from list */ d40d = d40_first_active_get(d40c); if (d40d == NULL) return; if (d40d->lli_count < d40d->lli_len) { d40_desc_load(d40c, d40d); /* Start dma job */ (void) d40_start(d40c); return; } if (d40_queue_start(d40c) == NULL) d40c->busy = false; d40c->pending_tx++; tasklet_schedule(&d40c->tasklet); } static void dma_tasklet(unsigned long data) { struct d40_chan *d40c = (struct d40_chan *) data; struct d40_desc *d40d_fin; unsigned long flags; dma_async_tx_callback callback; void *callback_param; spin_lock_irqsave(&d40c->lock, flags); /* Get first active entry from list */ d40d_fin = d40_first_active_get(d40c); if (d40d_fin == NULL) goto err; d40c->completed = d40d_fin->txd.cookie; /* * If terminating a channel pending_tx is set to zero. * This prevents any finished active jobs to return to the client. */ if (d40c->pending_tx == 0) { spin_unlock_irqrestore(&d40c->lock, flags); return; } /* Callback to client */ callback = d40d_fin->txd.callback; callback_param = d40d_fin->txd.callback_param; if (async_tx_test_ack(&d40d_fin->txd)) { d40_pool_lli_free(d40d_fin); d40_desc_remove(d40d_fin); /* Return desc to free-list */ d40_desc_free(d40c, d40d_fin); } else { if (!d40d_fin->is_in_client_list) { d40_desc_remove(d40d_fin); list_add_tail(&d40d_fin->node, &d40c->client); d40d_fin->is_in_client_list = true; } } d40c->pending_tx--; if (d40c->pending_tx) tasklet_schedule(&d40c->tasklet); spin_unlock_irqrestore(&d40c->lock, flags); if (callback) callback(callback_param); return; err: /* Rescue manouver if receiving double interrupts */ if (d40c->pending_tx > 0) d40c->pending_tx--; spin_unlock_irqrestore(&d40c->lock, flags); } static irqreturn_t d40_handle_interrupt(int irq, void *data) { static const struct d40_interrupt_lookup il[] = { {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0}, {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32}, {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64}, {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96}, {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0}, {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32}, {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64}, {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96}, {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN}, {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN}, }; int i; u32 regs[ARRAY_SIZE(il)]; u32 tmp; u32 idx; u32 row; long chan = -1; struct d40_chan *d40c; unsigned long flags; struct d40_base *base = data; spin_lock_irqsave(&base->interrupt_lock, flags); /* Read interrupt status of both logical and physical channels */ for (i = 0; i < ARRAY_SIZE(il); i++) regs[i] = readl(base->virtbase + il[i].src); for (;;) { chan = find_next_bit((unsigned long *)regs, BITS_PER_LONG * ARRAY_SIZE(il), chan + 1); /* No more set bits found? */ if (chan == BITS_PER_LONG * ARRAY_SIZE(il)) break; row = chan / BITS_PER_LONG; idx = chan & (BITS_PER_LONG - 1); /* ACK interrupt */ tmp = readl(base->virtbase + il[row].clr); tmp |= 1 << idx; writel(tmp, base->virtbase + il[row].clr); if (il[row].offset == D40_PHY_CHAN) d40c = base->lookup_phy_chans[idx]; else d40c = base->lookup_log_chans[il[row].offset + idx]; spin_lock(&d40c->lock); if (!il[row].is_error) dma_tc_handle(d40c); else dev_err(base->dev, "[%s] IRQ chan: %ld offset %d idx %d\n", __func__, chan, il[row].offset, idx); spin_unlock(&d40c->lock); } spin_unlock_irqrestore(&base->interrupt_lock, flags); return IRQ_HANDLED; } static int d40_validate_conf(struct d40_chan *d40c, struct stedma40_chan_cfg *conf) { int res = 0; u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type); u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type); bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE) == STEDMA40_CHANNEL_IN_LOG_MODE; if (!conf->dir) { dev_err(&d40c->chan.dev->device, "[%s] Invalid direction.\n", __func__); res = -EINVAL; } if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY && d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 && d40c->runtime_addr == 0) { dev_err(&d40c->chan.dev->device, "[%s] Invalid TX channel address (%d)\n", __func__, conf->dst_dev_type); res = -EINVAL; } if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY && d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 && d40c->runtime_addr == 0) { dev_err(&d40c->chan.dev->device, "[%s] Invalid RX channel address (%d)\n", __func__, conf->src_dev_type); res = -EINVAL; } if (conf->dir == STEDMA40_MEM_TO_PERIPH && dst_event_group == STEDMA40_DEV_DST_MEMORY) { dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n", __func__); res = -EINVAL; } if (conf->dir == STEDMA40_PERIPH_TO_MEM && src_event_group == STEDMA40_DEV_SRC_MEMORY) { dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n", __func__); res = -EINVAL; } if (src_event_group == STEDMA40_DEV_SRC_MEMORY && dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) { dev_err(&d40c->chan.dev->device, "[%s] No event line\n", __func__); res = -EINVAL; } if (conf->dir == STEDMA40_PERIPH_TO_PERIPH && (src_event_group != dst_event_group)) { dev_err(&d40c->chan.dev->device, "[%s] Invalid event group\n", __func__); res = -EINVAL; } if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) { /* * DMAC HW supports it. Will be added to this driver, * in case any dma client requires it. */ dev_err(&d40c->chan.dev->device, "[%s] periph to periph not supported\n", __func__); res = -EINVAL; } return res; } static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src, int log_event_line, bool is_log) { unsigned long flags; spin_lock_irqsave(&phy->lock, flags); if (!is_log) { /* Physical interrupts are masked per physical full channel */ if (phy->allocated_src == D40_ALLOC_FREE && phy->allocated_dst == D40_ALLOC_FREE) { phy->allocated_dst = D40_ALLOC_PHY; phy->allocated_src = D40_ALLOC_PHY; goto found; } else goto not_found; } /* Logical channel */ if (is_src) { if (phy->allocated_src == D40_ALLOC_PHY) goto not_found; if (phy->allocated_src == D40_ALLOC_FREE) phy->allocated_src = D40_ALLOC_LOG_FREE; if (!(phy->allocated_src & (1 << log_event_line))) { phy->allocated_src |= 1 << log_event_line; goto found; } else goto not_found; } else { if (phy->allocated_dst == D40_ALLOC_PHY) goto not_found; if (phy->allocated_dst == D40_ALLOC_FREE) phy->allocated_dst = D40_ALLOC_LOG_FREE; if (!(phy->allocated_dst & (1 << log_event_line))) { phy->allocated_dst |= 1 << log_event_line; goto found; } else goto not_found; } not_found: spin_unlock_irqrestore(&phy->lock, flags); return false; found: spin_unlock_irqrestore(&phy->lock, flags); return true; } static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src, int log_event_line) { unsigned long flags; bool is_free = false; spin_lock_irqsave(&phy->lock, flags); if (!log_event_line) { /* Physical interrupts are masked per physical full channel */ phy->allocated_dst = D40_ALLOC_FREE; phy->allocated_src = D40_ALLOC_FREE; is_free = true; goto out; } /* Logical channel */ if (is_src) { phy->allocated_src &= ~(1 << log_event_line); if (phy->allocated_src == D40_ALLOC_LOG_FREE) phy->allocated_src = D40_ALLOC_FREE; } else { phy->allocated_dst &= ~(1 << log_event_line); if (phy->allocated_dst == D40_ALLOC_LOG_FREE) phy->allocated_dst = D40_ALLOC_FREE; } is_free = ((phy->allocated_src | phy->allocated_dst) == D40_ALLOC_FREE); out: spin_unlock_irqrestore(&phy->lock, flags); return is_free; } static int d40_allocate_channel(struct d40_chan *d40c) { int dev_type; int event_group; int event_line; struct d40_phy_res *phys; int i; int j; int log_num; bool is_src; bool is_log = (d40c->dma_cfg.channel_type & STEDMA40_CHANNEL_IN_OPER_MODE) == STEDMA40_CHANNEL_IN_LOG_MODE; phys = d40c->base->phy_res; if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) { dev_type = d40c->dma_cfg.src_dev_type; log_num = 2 * dev_type; is_src = true; } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { /* dst event lines are used for logical memcpy */ dev_type = d40c->dma_cfg.dst_dev_type; log_num = 2 * dev_type + 1; is_src = false; } else return -EINVAL; event_group = D40_TYPE_TO_GROUP(dev_type); event_line = D40_TYPE_TO_EVENT(dev_type); if (!is_log) { if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { /* Find physical half channel */ for (i = 0; i < d40c->base->num_phy_chans; i++) { if (d40_alloc_mask_set(&phys[i], is_src, 0, is_log)) goto found_phy; } } else for (j = 0; j < d40c->base->num_phy_chans; j += 8) { int phy_num = j + event_group * 2; for (i = phy_num; i < phy_num + 2; i++) { if (d40_alloc_mask_set(&phys[i], is_src, 0, is_log)) goto found_phy; } } return -EINVAL; found_phy: d40c->phy_chan = &phys[i]; d40c->log_num = D40_PHY_CHAN; goto out; } if (dev_type == -1) return -EINVAL; /* Find logical channel */ for (j = 0; j < d40c->base->num_phy_chans; j += 8) { int phy_num = j + event_group * 2; /* * Spread logical channels across all available physical rather * than pack every logical channel at the first available phy * channels. */ if (is_src) { for (i = phy_num; i < phy_num + 2; i++) { if (d40_alloc_mask_set(&phys[i], is_src, event_line, is_log)) goto found_log; } } else { for (i = phy_num + 1; i >= phy_num; i--) { if (d40_alloc_mask_set(&phys[i], is_src, event_line, is_log)) goto found_log; } } } return -EINVAL; found_log: d40c->phy_chan = &phys[i]; d40c->log_num = log_num; out: if (is_log) d40c->base->lookup_log_chans[d40c->log_num] = d40c; else d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c; return 0; } static int d40_config_memcpy(struct d40_chan *d40c) { dma_cap_mask_t cap = d40c->chan.device->cap_mask; if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) { d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log; d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY; d40c->dma_cfg.dst_dev_type = d40c->base->plat_data-> memcpy[d40c->chan.chan_id]; } else if (dma_has_cap(DMA_MEMCPY, cap) && dma_has_cap(DMA_SLAVE, cap)) { d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy; } else { dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n", __func__); return -EINVAL; } return 0; } static int d40_free_dma(struct d40_chan *d40c) { int res = 0; u32 event; struct d40_phy_res *phy = d40c->phy_chan; bool is_src; struct d40_desc *d; struct d40_desc *_d; /* Terminate all queued and active transfers */ d40_term_all(d40c); /* Release client owned descriptors */ if (!list_empty(&d40c->client)) list_for_each_entry_safe(d, _d, &d40c->client, node) { d40_pool_lli_free(d); d40_desc_remove(d); /* Return desc to free-list */ d40_desc_free(d40c, d); } if (phy == NULL) { dev_err(&d40c->chan.dev->device, "[%s] phy == null\n", __func__); return -EINVAL; } if (phy->allocated_src == D40_ALLOC_FREE && phy->allocated_dst == D40_ALLOC_FREE) { dev_err(&d40c->chan.dev->device, "[%s] channel already free\n", __func__); return -EINVAL; } if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); is_src = false; } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) { event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type); is_src = true; } else { dev_err(&d40c->chan.dev->device, "[%s] Unknown direction\n", __func__); return -EINVAL; } res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); if (res) { dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n", __func__); return res; } if (d40c->log_num != D40_PHY_CHAN) { /* Release logical channel, deactivate the event line */ d40_config_set_event(d40c, false); d40c->base->lookup_log_chans[d40c->log_num] = NULL; /* * Check if there are more logical allocation * on this phy channel. */ if (!d40_alloc_mask_free(phy, is_src, event)) { /* Resume the other logical channels if any */ if (d40_chan_has_events(d40c)) { res = d40_channel_execute_command(d40c, D40_DMA_RUN); if (res) { dev_err(&d40c->chan.dev->device, "[%s] Executing RUN command\n", __func__); return res; } } return 0; } } else { (void) d40_alloc_mask_free(phy, is_src, 0); } /* Release physical channel */ res = d40_channel_execute_command(d40c, D40_DMA_STOP); if (res) { dev_err(&d40c->chan.dev->device, "[%s] Failed to stop channel\n", __func__); return res; } d40c->phy_chan = NULL; /* Invalidate channel type */ d40c->dma_cfg.channel_type = 0; d40c->base->lookup_phy_chans[phy->num] = NULL; return 0; } static int d40_pause(struct dma_chan *chan) { struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); int res; unsigned long flags; spin_lock_irqsave(&d40c->lock, flags); res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); if (res == 0) { if (d40c->log_num != D40_PHY_CHAN) { d40_config_set_event(d40c, false); /* Resume the other logical channels if any */ if (d40_chan_has_events(d40c)) res = d40_channel_execute_command(d40c, D40_DMA_RUN); } } spin_unlock_irqrestore(&d40c->lock, flags); return res; } static bool d40_is_paused(struct d40_chan *d40c) { bool is_paused = false; unsigned long flags; void __iomem *active_reg; u32 status; u32 event; spin_lock_irqsave(&d40c->lock, flags); if (d40c->log_num == D40_PHY_CHAN) { if (d40c->phy_chan->num % 2 == 0) active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; else active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; status = (readl(active_reg) & D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> D40_CHAN_POS(d40c->phy_chan->num); if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) is_paused = true; goto _exit; } if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type); else { dev_err(&d40c->chan.dev->device, "[%s] Unknown direction\n", __func__); goto _exit; } status = d40_chan_has_events(d40c); status = (status & D40_EVENTLINE_MASK(event)) >> D40_EVENTLINE_POS(event); if (status != D40_DMA_RUN) is_paused = true; _exit: spin_unlock_irqrestore(&d40c->lock, flags); return is_paused; } static bool d40_tx_is_linked(struct d40_chan *d40c) { bool is_link; if (d40c->log_num != D40_PHY_CHAN) is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK; else is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE + d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SDLNK) & D40_SREG_LNK_PHYS_LNK_MASK; return is_link; } static u32 d40_residue(struct d40_chan *d40c) { u32 num_elt; if (d40c->log_num != D40_PHY_CHAN) num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK) >> D40_MEM_LCSP2_ECNT_POS; else num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE + d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT) & D40_SREG_ELEM_PHY_ECNT_MASK) >> D40_SREG_ELEM_PHY_ECNT_POS; return num_elt * (1 << d40c->dma_cfg.dst_info.data_width); } static int d40_resume(struct dma_chan *chan) { struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); int res = 0; unsigned long flags; spin_lock_irqsave(&d40c->lock, flags); if (d40c->base->rev == 0) if (d40c->log_num != D40_PHY_CHAN) { res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); goto no_suspend; } /* If bytes left to transfer or linked tx resume job */ if (d40_residue(d40c) || d40_tx_is_linked(d40c)) { if (d40c->log_num != D40_PHY_CHAN) d40_config_set_event(d40c, true); res = d40_channel_execute_command(d40c, D40_DMA_RUN); } no_suspend: spin_unlock_irqrestore(&d40c->lock, flags); return res; } static u32 stedma40_residue(struct dma_chan *chan) { struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); u32 bytes_left; unsigned long flags; spin_lock_irqsave(&d40c->lock, flags); bytes_left = d40_residue(d40c); spin_unlock_irqrestore(&d40c->lock, flags); return bytes_left; } /* Public DMA functions in addition to the DMA engine framework */ int stedma40_set_psize(struct dma_chan *chan, int src_psize, int dst_psize) { struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); unsigned long flags; spin_lock_irqsave(&d40c->lock, flags); if (d40c->log_num != D40_PHY_CHAN) { d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK; d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK; d40c->log_def.lcsp1 |= src_psize << D40_MEM_LCSP1_SCFG_PSIZE_POS; d40c->log_def.lcsp3 |= dst_psize << D40_MEM_LCSP1_SCFG_PSIZE_POS; goto out; } if (src_psize == STEDMA40_PSIZE_PHY_1) d40c->src_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS); else { d40c->src_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS; d40c->src_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 << D40_SREG_CFG_PSIZE_POS); d40c->src_def_cfg |= src_psize << D40_SREG_CFG_PSIZE_POS; } if (dst_psize == STEDMA40_PSIZE_PHY_1) d40c->dst_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS); else { d40c->dst_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS; d40c->dst_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 << D40_SREG_CFG_PSIZE_POS); d40c->dst_def_cfg |= dst_psize << D40_SREG_CFG_PSIZE_POS; } out: spin_unlock_irqrestore(&d40c->lock, flags); return 0; } EXPORT_SYMBOL(stedma40_set_psize); struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan, struct scatterlist *sgl_dst, struct scatterlist *sgl_src, unsigned int sgl_len, unsigned long dma_flags) { int res; struct d40_desc *d40d; struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); unsigned long flags; if (d40c->phy_chan == NULL) { dev_err(&d40c->chan.dev->device, "[%s] Unallocated channel.\n", __func__); return ERR_PTR(-EINVAL); } spin_lock_irqsave(&d40c->lock, flags); d40d = d40_desc_get(d40c); if (d40d == NULL) goto err; d40d->lli_len = sgl_len; d40d->lli_tx_len = d40d->lli_len; d40d->txd.flags = dma_flags; if (d40c->log_num != D40_PHY_CHAN) { if (d40d->lli_len > d40c->base->plat_data->llis_per_log) d40d->lli_tx_len = d40c->base->plat_data->llis_per_log; if (sgl_len > 1) /* * Check if there is space available in lcla. If not, * split list into 1-length and run only in lcpa * space. */ if (d40_lcla_id_get(d40c) != 0) d40d->lli_tx_len = 1; if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) { dev_err(&d40c->chan.dev->device, "[%s] Out of memory\n", __func__); goto err; } (void) d40_log_sg_to_lli(d40c->lcla.src_id, sgl_src, sgl_len, d40d->lli_log.src, d40c->log_def.lcsp1, d40c->dma_cfg.src_info.data_width, dma_flags & DMA_PREP_INTERRUPT, d40d->lli_tx_len, d40c->base->plat_data->llis_per_log); (void) d40_log_sg_to_lli(d40c->lcla.dst_id, sgl_dst, sgl_len, d40d->lli_log.dst, d40c->log_def.lcsp3, d40c->dma_cfg.dst_info.data_width, dma_flags & DMA_PREP_INTERRUPT, d40d->lli_tx_len, d40c->base->plat_data->llis_per_log); } else { if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) { dev_err(&d40c->chan.dev->device, "[%s] Out of memory\n", __func__); goto err; } res = d40_phy_sg_to_lli(sgl_src, sgl_len, 0, d40d->lli_phy.src, d40d->lli_phy.src_addr, d40c->src_def_cfg, d40c->dma_cfg.src_info.data_width, d40c->dma_cfg.src_info.psize, true); if (res < 0) goto err; res = d40_phy_sg_to_lli(sgl_dst, sgl_len, 0, d40d->lli_phy.dst, d40d->lli_phy.dst_addr, d40c->dst_def_cfg, d40c->dma_cfg.dst_info.data_width, d40c->dma_cfg.dst_info.psize, true); if (res < 0) goto err; (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src, d40d->lli_pool.size, DMA_TO_DEVICE); } dma_async_tx_descriptor_init(&d40d->txd, chan); d40d->txd.tx_submit = d40_tx_submit; spin_unlock_irqrestore(&d40c->lock, flags); return &d40d->txd; err: spin_unlock_irqrestore(&d40c->lock, flags); return NULL; } EXPORT_SYMBOL(stedma40_memcpy_sg); bool stedma40_filter(struct dma_chan *chan, void *data) { struct stedma40_chan_cfg *info = data; struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); int err; if (data) { err = d40_validate_conf(d40c, info); if (!err) d40c->dma_cfg = *info; } else err = d40_config_memcpy(d40c); return err == 0; } EXPORT_SYMBOL(stedma40_filter); /* DMA ENGINE functions */ static int d40_alloc_chan_resources(struct dma_chan *chan) { int err; unsigned long flags; struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); bool is_free_phy; spin_lock_irqsave(&d40c->lock, flags); d40c->completed = chan->cookie = 1; /* * If no dma configuration is set (channel_type == 0) * use default configuration (memcpy) */ if (d40c->dma_cfg.channel_type == 0) { err = d40_config_memcpy(d40c); if (err) { dev_err(&d40c->chan.dev->device, "[%s] Failed to configure memcpy channel\n", __func__); goto fail; } } is_free_phy = (d40c->phy_chan == NULL); err = d40_allocate_channel(d40c); if (err) { dev_err(&d40c->chan.dev->device, "[%s] Failed to allocate channel\n", __func__); goto fail; } /* Fill in basic CFG register values */ d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN); if (d40c->log_num != D40_PHY_CHAN) { d40_log_cfg(&d40c->dma_cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3); if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) d40c->lcpa = d40c->base->lcpa_base + d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE; else d40c->lcpa = d40c->base->lcpa_base + d40c->dma_cfg.dst_dev_type * D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA; } /* * Only write channel configuration to the DMA if the physical * resource is free. In case of multiple logical channels * on the same physical resource, only the first write is necessary. */ if (is_free_phy) { err = d40_config_write(d40c); if (err) { dev_err(&d40c->chan.dev->device, "[%s] Failed to configure channel\n", __func__); } } fail: spin_unlock_irqrestore(&d40c->lock, flags); return err; } static void d40_free_chan_resources(struct dma_chan *chan) { struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); int err; unsigned long flags; if (d40c->phy_chan == NULL) { dev_err(&d40c->chan.dev->device, "[%s] Cannot free unallocated channel\n", __func__); return; } spin_lock_irqsave(&d40c->lock, flags); err = d40_free_dma(d40c); if (err) dev_err(&d40c->chan.dev->device, "[%s] Failed to free channel\n", __func__); spin_unlock_irqrestore(&d40c->lock, flags); } static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, size_t size, unsigned long dma_flags) { struct d40_desc *d40d; struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); unsigned long flags; int err = 0; if (d40c->phy_chan == NULL) { dev_err(&d40c->chan.dev->device, "[%s] Channel is not allocated.\n", __func__); return ERR_PTR(-EINVAL); } spin_lock_irqsave(&d40c->lock, flags); d40d = d40_desc_get(d40c); if (d40d == NULL) { dev_err(&d40c->chan.dev->device, "[%s] Descriptor is NULL\n", __func__); goto err; } d40d->txd.flags = dma_flags; dma_async_tx_descriptor_init(&d40d->txd, chan); d40d->txd.tx_submit = d40_tx_submit; if (d40c->log_num != D40_PHY_CHAN) { if (d40_pool_lli_alloc(d40d, 1, true) < 0) { dev_err(&d40c->chan.dev->device, "[%s] Out of memory\n", __func__); goto err; } d40d->lli_len = 1; d40d->lli_tx_len = 1; d40_log_fill_lli(d40d->lli_log.src, src, size, 0, d40c->log_def.lcsp1, d40c->dma_cfg.src_info.data_width, false, true); d40_log_fill_lli(d40d->lli_log.dst, dst, size, 0, d40c->log_def.lcsp3, d40c->dma_cfg.dst_info.data_width, true, true); } else { if (d40_pool_lli_alloc(d40d, 1, false) < 0) { dev_err(&d40c->chan.dev->device, "[%s] Out of memory\n", __func__); goto err; } err = d40_phy_fill_lli(d40d->lli_phy.src, src, size, d40c->dma_cfg.src_info.psize, 0, d40c->src_def_cfg, true, d40c->dma_cfg.src_info.data_width, false); if (err) goto err_fill_lli; err = d40_phy_fill_lli(d40d->lli_phy.dst, dst, size, d40c->dma_cfg.dst_info.psize, 0, d40c->dst_def_cfg, true, d40c->dma_cfg.dst_info.data_width, false); if (err) goto err_fill_lli; (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src, d40d->lli_pool.size, DMA_TO_DEVICE); } spin_unlock_irqrestore(&d40c->lock, flags); return &d40d->txd; err_fill_lli: dev_err(&d40c->chan.dev->device, "[%s] Failed filling in PHY LLI\n", __func__); d40_pool_lli_free(d40d); err: spin_unlock_irqrestore(&d40c->lock, flags); return NULL; } static int d40_prep_slave_sg_log(struct d40_desc *d40d, struct d40_chan *d40c, struct scatterlist *sgl, unsigned int sg_len, enum dma_data_direction direction, unsigned long dma_flags) { dma_addr_t dev_addr = 0; int total_size; if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) { dev_err(&d40c->chan.dev->device, "[%s] Out of memory\n", __func__); return -ENOMEM; } d40d->lli_len = sg_len; if (d40d->lli_len <= d40c->base->plat_data->llis_per_log) d40d->lli_tx_len = d40d->lli_len; else d40d->lli_tx_len = d40c->base->plat_data->llis_per_log; if (sg_len > 1) /* * Check if there is space available in lcla. * If not, split list into 1-length and run only * in lcpa space. */ if (d40_lcla_id_get(d40c) != 0) d40d->lli_tx_len = 1; if (direction == DMA_FROM_DEVICE) if (d40c->runtime_addr) dev_addr = d40c->runtime_addr; else dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type]; else if (direction == DMA_TO_DEVICE) if (d40c->runtime_addr) dev_addr = d40c->runtime_addr; else dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type]; else return -EINVAL; total_size = d40_log_sg_to_dev(&d40c->lcla, sgl, sg_len, &d40d->lli_log, &d40c->log_def, d40c->dma_cfg.src_info.data_width, d40c->dma_cfg.dst_info.data_width, direction, dma_flags & DMA_PREP_INTERRUPT, dev_addr, d40d->lli_tx_len, d40c->base->plat_data->llis_per_log); if (total_size < 0) return -EINVAL; return 0; } static int d40_prep_slave_sg_phy(struct d40_desc *d40d, struct d40_chan *d40c, struct scatterlist *sgl, unsigned int sgl_len, enum dma_data_direction direction, unsigned long dma_flags) { dma_addr_t src_dev_addr; dma_addr_t dst_dev_addr; int res; if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) { dev_err(&d40c->chan.dev->device, "[%s] Out of memory\n", __func__); return -ENOMEM; } d40d->lli_len = sgl_len; d40d->lli_tx_len = sgl_len; if (direction == DMA_FROM_DEVICE) { dst_dev_addr = 0; if (d40c->runtime_addr) src_dev_addr = d40c->runtime_addr; else src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type]; } else if (direction == DMA_TO_DEVICE) { if (d40c->runtime_addr) dst_dev_addr = d40c->runtime_addr; else dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type]; src_dev_addr = 0; } else return -EINVAL; res = d40_phy_sg_to_lli(sgl, sgl_len, src_dev_addr, d40d->lli_phy.src, d40d->lli_phy.src_addr, d40c->src_def_cfg, d40c->dma_cfg.src_info.data_width, d40c->dma_cfg.src_info.psize, true); if (res < 0) return res; res = d40_phy_sg_to_lli(sgl, sgl_len, dst_dev_addr, d40d->lli_phy.dst, d40d->lli_phy.dst_addr, d40c->dst_def_cfg, d40c->dma_cfg.dst_info.data_width, d40c->dma_cfg.dst_info.psize, true); if (res < 0) return res; (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src, d40d->lli_pool.size, DMA_TO_DEVICE); return 0; } static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_data_direction direction, unsigned long dma_flags) { struct d40_desc *d40d; struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); unsigned long flags; int err; if (d40c->phy_chan == NULL) { dev_err(&d40c->chan.dev->device, "[%s] Cannot prepare unallocated channel\n", __func__); return ERR_PTR(-EINVAL); } if (d40c->dma_cfg.pre_transfer) d40c->dma_cfg.pre_transfer(chan, d40c->dma_cfg.pre_transfer_data, sg_dma_len(sgl)); spin_lock_irqsave(&d40c->lock, flags); d40d = d40_desc_get(d40c); spin_unlock_irqrestore(&d40c->lock, flags); if (d40d == NULL) return NULL; if (d40c->log_num != D40_PHY_CHAN) err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len, direction, dma_flags); else err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len, direction, dma_flags); if (err) { dev_err(&d40c->chan.dev->device, "[%s] Failed to prepare %s slave sg job: %d\n", __func__, d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err); return NULL; } d40d->txd.flags = dma_flags; dma_async_tx_descriptor_init(&d40d->txd, chan); d40d->txd.tx_submit = d40_tx_submit; return &d40d->txd; } static enum dma_status d40_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); dma_cookie_t last_used; dma_cookie_t last_complete; int ret; if (d40c->phy_chan == NULL) { dev_err(&d40c->chan.dev->device, "[%s] Cannot read status of unallocated channel\n", __func__); return -EINVAL; } last_complete = d40c->completed; last_used = chan->cookie; if (d40_is_paused(d40c)) ret = DMA_PAUSED; else ret = dma_async_is_complete(cookie, last_complete, last_used); dma_set_tx_state(txstate, last_complete, last_used, stedma40_residue(chan)); return ret; } static void d40_issue_pending(struct dma_chan *chan) { struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); unsigned long flags; if (d40c->phy_chan == NULL) { dev_err(&d40c->chan.dev->device, "[%s] Channel is not allocated!\n", __func__); return; } spin_lock_irqsave(&d40c->lock, flags); /* Busy means that pending jobs are already being processed */ if (!d40c->busy) (void) d40_queue_start(d40c); spin_unlock_irqrestore(&d40c->lock, flags); } /* Runtime reconfiguration extension */ static void d40_set_runtime_config(struct dma_chan *chan, struct dma_slave_config *config) { struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); struct stedma40_chan_cfg *cfg = &d40c->dma_cfg; enum dma_slave_buswidth config_addr_width; dma_addr_t config_addr; u32 config_maxburst; enum stedma40_periph_data_width addr_width; int psize; if (config->direction == DMA_FROM_DEVICE) { dma_addr_t dev_addr_rx = d40c->base->plat_data->dev_rx[cfg->src_dev_type]; config_addr = config->src_addr; if (dev_addr_rx) dev_dbg(d40c->base->dev, "channel has a pre-wired RX address %08x " "overriding with %08x\n", dev_addr_rx, config_addr); if (cfg->dir != STEDMA40_PERIPH_TO_MEM) dev_dbg(d40c->base->dev, "channel was not configured for peripheral " "to memory transfer (%d) overriding\n", cfg->dir); cfg->dir = STEDMA40_PERIPH_TO_MEM; config_addr_width = config->src_addr_width; config_maxburst = config->src_maxburst; } else if (config->direction == DMA_TO_DEVICE) { dma_addr_t dev_addr_tx = d40c->base->plat_data->dev_tx[cfg->dst_dev_type]; config_addr = config->dst_addr; if (dev_addr_tx) dev_dbg(d40c->base->dev, "channel has a pre-wired TX address %08x " "overriding with %08x\n", dev_addr_tx, config_addr); if (cfg->dir != STEDMA40_MEM_TO_PERIPH) dev_dbg(d40c->base->dev, "channel was not configured for memory " "to peripheral transfer (%d) overriding\n", cfg->dir); cfg->dir = STEDMA40_MEM_TO_PERIPH; config_addr_width = config->dst_addr_width; config_maxburst = config->dst_maxburst; } else { dev_err(d40c->base->dev, "unrecognized channel direction %d\n", config->direction); return; } switch (config_addr_width) { case DMA_SLAVE_BUSWIDTH_1_BYTE: addr_width = STEDMA40_BYTE_WIDTH; break; case DMA_SLAVE_BUSWIDTH_2_BYTES: addr_width = STEDMA40_HALFWORD_WIDTH; break; case DMA_SLAVE_BUSWIDTH_4_BYTES: addr_width = STEDMA40_WORD_WIDTH; break; case DMA_SLAVE_BUSWIDTH_8_BYTES: addr_width = STEDMA40_DOUBLEWORD_WIDTH; break; default: dev_err(d40c->base->dev, "illegal peripheral address width " "requested (%d)\n", config->src_addr_width); return; } if (config_maxburst >= 16) psize = STEDMA40_PSIZE_LOG_16; else if (config_maxburst >= 8) psize = STEDMA40_PSIZE_LOG_8; else if (config_maxburst >= 4) psize = STEDMA40_PSIZE_LOG_4; else psize = STEDMA40_PSIZE_LOG_1; /* Set up all the endpoint configs */ cfg->src_info.data_width = addr_width; cfg->src_info.psize = psize; cfg->src_info.endianess = STEDMA40_LITTLE_ENDIAN; cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL; cfg->dst_info.data_width = addr_width; cfg->dst_info.psize = psize; cfg->dst_info.endianess = STEDMA40_LITTLE_ENDIAN; cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL; /* These settings will take precedence later */ d40c->runtime_addr = config_addr; d40c->runtime_direction = config->direction; dev_dbg(d40c->base->dev, "configured channel %s for %s, data width %d, " "maxburst %d bytes, LE, no flow control\n", dma_chan_name(chan), (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX", config_addr_width, config_maxburst); } static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) { unsigned long flags; struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); if (d40c->phy_chan == NULL) { dev_err(&d40c->chan.dev->device, "[%s] Channel is not allocated!\n", __func__); return -EINVAL; } switch (cmd) { case DMA_TERMINATE_ALL: spin_lock_irqsave(&d40c->lock, flags); d40_term_all(d40c); spin_unlock_irqrestore(&d40c->lock, flags); return 0; case DMA_PAUSE: return d40_pause(chan); case DMA_RESUME: return d40_resume(chan); case DMA_SLAVE_CONFIG: d40_set_runtime_config(chan, (struct dma_slave_config *) arg); return 0; default: break; } /* Other commands are unimplemented */ return -ENXIO; } /* Initialization functions */ static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma, struct d40_chan *chans, int offset, int num_chans) { int i = 0; struct d40_chan *d40c; INIT_LIST_HEAD(&dma->channels); for (i = offset; i < offset + num_chans; i++) { d40c = &chans[i]; d40c->base = base; d40c->chan.device = dma; /* Invalidate lcla element */ d40c->lcla.src_id = -1; d40c->lcla.dst_id = -1; spin_lock_init(&d40c->lock); d40c->log_num = D40_PHY_CHAN; INIT_LIST_HEAD(&d40c->active); INIT_LIST_HEAD(&d40c->queue); INIT_LIST_HEAD(&d40c->client); tasklet_init(&d40c->tasklet, dma_tasklet, (unsigned long) d40c); list_add_tail(&d40c->chan.device_node, &dma->channels); } } static int __init d40_dmaengine_init(struct d40_base *base, int num_reserved_chans) { int err ; d40_chan_init(base, &base->dma_slave, base->log_chans, 0, base->num_log_chans); dma_cap_zero(base->dma_slave.cap_mask); dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask); base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources; base->dma_slave.device_free_chan_resources = d40_free_chan_resources; base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy; base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg; base->dma_slave.device_tx_status = d40_tx_status; base->dma_slave.device_issue_pending = d40_issue_pending; base->dma_slave.device_control = d40_control; base->dma_slave.dev = base->dev; err = dma_async_device_register(&base->dma_slave); if (err) { dev_err(base->dev, "[%s] Failed to register slave channels\n", __func__); goto failure1; } d40_chan_init(base, &base->dma_memcpy, base->log_chans, base->num_log_chans, base->plat_data->memcpy_len); dma_cap_zero(base->dma_memcpy.cap_mask); dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask); base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources; base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources; base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy; base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg; base->dma_memcpy.device_tx_status = d40_tx_status; base->dma_memcpy.device_issue_pending = d40_issue_pending; base->dma_memcpy.device_control = d40_control; base->dma_memcpy.dev = base->dev; /* * This controller can only access address at even * 32bit boundaries, i.e. 2^2 */ base->dma_memcpy.copy_align = 2; err = dma_async_device_register(&base->dma_memcpy); if (err) { dev_err(base->dev, "[%s] Failed to regsiter memcpy only channels\n", __func__); goto failure2; } d40_chan_init(base, &base->dma_both, base->phy_chans, 0, num_reserved_chans); dma_cap_zero(base->dma_both.cap_mask); dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask); dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask); base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources; base->dma_both.device_free_chan_resources = d40_free_chan_resources; base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy; base->dma_both.device_prep_slave_sg = d40_prep_slave_sg; base->dma_both.device_tx_status = d40_tx_status; base->dma_both.device_issue_pending = d40_issue_pending; base->dma_both.device_control = d40_control; base->dma_both.dev = base->dev; base->dma_both.copy_align = 2; err = dma_async_device_register(&base->dma_both); if (err) { dev_err(base->dev, "[%s] Failed to register logical and physical capable channels\n", __func__); goto failure3; } return 0; failure3: dma_async_device_unregister(&base->dma_memcpy); failure2: dma_async_device_unregister(&base->dma_slave); failure1: return err; } /* Initialization functions. */ static int __init d40_phy_res_init(struct d40_base *base) { int i; int num_phy_chans_avail = 0; u32 val[2]; int odd_even_bit = -2; val[0] = readl(base->virtbase + D40_DREG_PRSME); val[1] = readl(base->virtbase + D40_DREG_PRSMO); for (i = 0; i < base->num_phy_chans; i++) { base->phy_res[i].num = i; odd_even_bit += 2 * ((i % 2) == 0); if (((val[i % 2] >> odd_even_bit) & 3) == 1) { /* Mark security only channels as occupied */ base->phy_res[i].allocated_src = D40_ALLOC_PHY; base->phy_res[i].allocated_dst = D40_ALLOC_PHY; } else { base->phy_res[i].allocated_src = D40_ALLOC_FREE; base->phy_res[i].allocated_dst = D40_ALLOC_FREE; num_phy_chans_avail++; } spin_lock_init(&base->phy_res[i].lock); } /* Mark disabled channels as occupied */ for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) { base->phy_res[i].allocated_src = D40_ALLOC_PHY; base->phy_res[i].allocated_dst = D40_ALLOC_PHY; num_phy_chans_avail--; } dev_info(base->dev, "%d of %d physical DMA channels available\n", num_phy_chans_avail, base->num_phy_chans); /* Verify settings extended vs standard */ val[0] = readl(base->virtbase + D40_DREG_PRTYP); for (i = 0; i < base->num_phy_chans; i++) { if (base->phy_res[i].allocated_src == D40_ALLOC_FREE && (val[0] & 0x3) != 1) dev_info(base->dev, "[%s] INFO: channel %d is misconfigured (%d)\n", __func__, i, val[0] & 0x3); val[0] = val[0] >> 2; } return num_phy_chans_avail; } static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev) { static const struct d40_reg_val dma_id_regs[] = { /* Peripheral Id */ { .reg = D40_DREG_PERIPHID0, .val = 0x0040}, { .reg = D40_DREG_PERIPHID1, .val = 0x0000}, /* * D40_DREG_PERIPHID2 Depends on HW revision: * MOP500/HREF ED has 0x0008, * ? has 0x0018, * HREF V1 has 0x0028 */ { .reg = D40_DREG_PERIPHID3, .val = 0x0000}, /* PCell Id */ { .reg = D40_DREG_CELLID0, .val = 0x000d}, { .reg = D40_DREG_CELLID1, .val = 0x00f0}, { .reg = D40_DREG_CELLID2, .val = 0x0005}, { .reg = D40_DREG_CELLID3, .val = 0x00b1} }; struct stedma40_platform_data *plat_data; struct clk *clk = NULL; void __iomem *virtbase = NULL; struct resource *res = NULL; struct d40_base *base = NULL; int num_log_chans = 0; int num_phy_chans; int i; u32 val; clk = clk_get(&pdev->dev, NULL); if (IS_ERR(clk)) { dev_err(&pdev->dev, "[%s] No matching clock found\n", __func__); goto failure; } clk_enable(clk); /* Get IO for DMAC base address */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base"); if (!res) goto failure; if (request_mem_region(res->start, resource_size(res), D40_NAME " I/O base") == NULL) goto failure; virtbase = ioremap(res->start, resource_size(res)); if (!virtbase) goto failure; /* HW version check */ for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) { if (dma_id_regs[i].val != readl(virtbase + dma_id_regs[i].reg)) { dev_err(&pdev->dev, "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n", __func__, dma_id_regs[i].val, dma_id_regs[i].reg, readl(virtbase + dma_id_regs[i].reg)); goto failure; } } /* Get silicon revision */ val = readl(virtbase + D40_DREG_PERIPHID2); if ((val & 0xf) != D40_PERIPHID2_DESIGNER) { dev_err(&pdev->dev, "[%s] Unknown designer! Got %x wanted %x\n", __func__, val & 0xf, D40_PERIPHID2_DESIGNER); goto failure; } /* The number of physical channels on this HW */ num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4; dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n", (val >> 4) & 0xf, res->start); plat_data = pdev->dev.platform_data; /* Count the number of logical channels in use */ for (i = 0; i < plat_data->dev_len; i++) if (plat_data->dev_rx[i] != 0) num_log_chans++; for (i = 0; i < plat_data->dev_len; i++) if (plat_data->dev_tx[i] != 0) num_log_chans++; base = kzalloc(ALIGN(sizeof(struct d40_base), 4) + (num_phy_chans + num_log_chans + plat_data->memcpy_len) * sizeof(struct d40_chan), GFP_KERNEL); if (base == NULL) { dev_err(&pdev->dev, "[%s] Out of memory\n", __func__); goto failure; } base->rev = (val >> 4) & 0xf; base->clk = clk; base->num_phy_chans = num_phy_chans; base->num_log_chans = num_log_chans; base->phy_start = res->start; base->phy_size = resource_size(res); base->virtbase = virtbase; base->plat_data = plat_data; base->dev = &pdev->dev; base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4); base->log_chans = &base->phy_chans[num_phy_chans]; base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res), GFP_KERNEL); if (!base->phy_res) goto failure; base->lookup_phy_chans = kzalloc(num_phy_chans * sizeof(struct d40_chan *), GFP_KERNEL); if (!base->lookup_phy_chans) goto failure; if (num_log_chans + plat_data->memcpy_len) { /* * The max number of logical channels are event lines for all * src devices and dst devices */ base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 * sizeof(struct d40_chan *), GFP_KERNEL); if (!base->lookup_log_chans) goto failure; } base->lcla_pool.alloc_map = kzalloc(num_phy_chans * sizeof(u32), GFP_KERNEL); if (!base->lcla_pool.alloc_map) goto failure; base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc), 0, SLAB_HWCACHE_ALIGN, NULL); if (base->desc_slab == NULL) goto failure; return base; failure: if (clk) { clk_disable(clk); clk_put(clk); } if (virtbase) iounmap(virtbase); if (res) release_mem_region(res->start, resource_size(res)); if (virtbase) iounmap(virtbase); if (base) { kfree(base->lcla_pool.alloc_map); kfree(base->lookup_log_chans); kfree(base->lookup_phy_chans); kfree(base->phy_res); kfree(base); } return NULL; } static void __init d40_hw_init(struct d40_base *base) { static const struct d40_reg_val dma_init_reg[] = { /* Clock every part of the DMA block from start */ { .reg = D40_DREG_GCC, .val = 0x0000ff01}, /* Interrupts on all logical channels */ { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF} }; int i; u32 prmseo[2] = {0, 0}; u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF}; u32 pcmis = 0; u32 pcicr = 0; for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++) writel(dma_init_reg[i].val, base->virtbase + dma_init_reg[i].reg); /* Configure all our dma channels to default settings */ for (i = 0; i < base->num_phy_chans; i++) { activeo[i % 2] = activeo[i % 2] << 2; if (base->phy_res[base->num_phy_chans - i - 1].allocated_src == D40_ALLOC_PHY) { activeo[i % 2] |= 3; continue; } /* Enable interrupt # */ pcmis = (pcmis << 1) | 1; /* Clear interrupt # */ pcicr = (pcicr << 1) | 1; /* Set channel to physical mode */ prmseo[i % 2] = prmseo[i % 2] << 2; prmseo[i % 2] |= 1; } writel(prmseo[1], base->virtbase + D40_DREG_PRMSE); writel(prmseo[0], base->virtbase + D40_DREG_PRMSO); writel(activeo[1], base->virtbase + D40_DREG_ACTIVE); writel(activeo[0], base->virtbase + D40_DREG_ACTIVO); /* Write which interrupt to enable */ writel(pcmis, base->virtbase + D40_DREG_PCMIS); /* Write which interrupt to clear */ writel(pcicr, base->virtbase + D40_DREG_PCICR); } static int __init d40_lcla_allocate(struct d40_base *base) { unsigned long *page_list; int i, j; int ret = 0; /* * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned, * To full fill this hardware requirement without wasting 256 kb * we allocate pages until we get an aligned one. */ page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS, GFP_KERNEL); if (!page_list) { ret = -ENOMEM; goto failure; } /* Calculating how many pages that are required */ base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE; for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) { page_list[i] = __get_free_pages(GFP_KERNEL, base->lcla_pool.pages); if (!page_list[i]) { dev_err(base->dev, "[%s] Failed to allocate %d pages.\n", __func__, base->lcla_pool.pages); for (j = 0; j < i; j++) free_pages(page_list[j], base->lcla_pool.pages); goto failure; } if ((virt_to_phys((void *)page_list[i]) & (LCLA_ALIGNMENT - 1)) == 0) break; } for (j = 0; j < i; j++) free_pages(page_list[j], base->lcla_pool.pages); if (i < MAX_LCLA_ALLOC_ATTEMPTS) { base->lcla_pool.base = (void *)page_list[i]; } else { /* After many attempts, no succees with finding the correct * alignment try with allocating a big buffer */ dev_warn(base->dev, "[%s] Failed to get %d pages @ 18 bit align.\n", __func__, base->lcla_pool.pages); base->lcla_pool.base_unaligned = kmalloc(SZ_1K * base->num_phy_chans + LCLA_ALIGNMENT, GFP_KERNEL); if (!base->lcla_pool.base_unaligned) { ret = -ENOMEM; goto failure; } base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned, LCLA_ALIGNMENT); } writel(virt_to_phys(base->lcla_pool.base), base->virtbase + D40_DREG_LCLA); failure: kfree(page_list); return ret; } static int __init d40_probe(struct platform_device *pdev) { int err; int ret = -ENOENT; struct d40_base *base; struct resource *res = NULL; int num_reserved_chans; u32 val; base = d40_hw_detect_init(pdev); if (!base) goto failure; num_reserved_chans = d40_phy_res_init(base); platform_set_drvdata(pdev, base); spin_lock_init(&base->interrupt_lock); spin_lock_init(&base->execmd_lock); /* Get IO for logical channel parameter address */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa"); if (!res) { ret = -ENOENT; dev_err(&pdev->dev, "[%s] No \"lcpa\" memory resource\n", __func__); goto failure; } base->lcpa_size = resource_size(res); base->phy_lcpa = res->start; if (request_mem_region(res->start, resource_size(res), D40_NAME " I/O lcpa") == NULL) { ret = -EBUSY; dev_err(&pdev->dev, "[%s] Failed to request LCPA region 0x%x-0x%x\n", __func__, res->start, res->end); goto failure; } /* We make use of ESRAM memory for this. */ val = readl(base->virtbase + D40_DREG_LCPA); if (res->start != val && val != 0) { dev_warn(&pdev->dev, "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n", __func__, val, res->start); } else writel(res->start, base->virtbase + D40_DREG_LCPA); base->lcpa_base = ioremap(res->start, resource_size(res)); if (!base->lcpa_base) { ret = -ENOMEM; dev_err(&pdev->dev, "[%s] Failed to ioremap LCPA region\n", __func__); goto failure; } ret = d40_lcla_allocate(base); if (ret) { dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n", __func__); goto failure; } spin_lock_init(&base->lcla_pool.lock); base->lcla_pool.num_blocks = base->num_phy_chans; base->irq = platform_get_irq(pdev, 0); ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base); if (ret) { dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__); goto failure; } err = d40_dmaengine_init(base, num_reserved_chans); if (err) goto failure; d40_hw_init(base); dev_info(base->dev, "initialized\n"); return 0; failure: if (base) { if (base->desc_slab) kmem_cache_destroy(base->desc_slab); if (base->virtbase) iounmap(base->virtbase); if (!base->lcla_pool.base_unaligned && base->lcla_pool.base) free_pages((unsigned long)base->lcla_pool.base, base->lcla_pool.pages); if (base->lcla_pool.base_unaligned) kfree(base->lcla_pool.base_unaligned); if (base->phy_lcpa) release_mem_region(base->phy_lcpa, base->lcpa_size); if (base->phy_start) release_mem_region(base->phy_start, base->phy_size); if (base->clk) { clk_disable(base->clk); clk_put(base->clk); } kfree(base->lcla_pool.alloc_map); kfree(base->lookup_log_chans); kfree(base->lookup_phy_chans); kfree(base->phy_res); kfree(base); } dev_err(&pdev->dev, "[%s] probe failed\n", __func__); return ret; } static struct platform_driver d40_driver = { .driver = { .owner = THIS_MODULE, .name = D40_NAME, }, }; int __init stedma40_init(void) { return platform_driver_probe(&d40_driver, d40_probe); } arch_initcall(stedma40_init);