// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "alloc_foreground.h" #include "bkey_buf.h" #include "bkey_methods.h" #include "btree_cache.h" #include "btree_gc.h" #include "btree_journal_iter.h" #include "btree_update.h" #include "btree_update_interior.h" #include "btree_io.h" #include "btree_iter.h" #include "btree_locking.h" #include "buckets.h" #include "clock.h" #include "error.h" #include "extents.h" #include "journal.h" #include "journal_reclaim.h" #include "keylist.h" #include "recovery_passes.h" #include "replicas.h" #include "sb-members.h" #include "super-io.h" #include "trace.h" #include static const char * const bch2_btree_update_modes[] = { #define x(t) #t, BTREE_UPDATE_MODES() #undef x NULL }; static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *, btree_path_idx_t, struct btree *, struct keylist *); static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *); /* * Verify that child nodes correctly span parent node's range: */ int bch2_btree_node_check_topology(struct btree_trans *trans, struct btree *b) { struct bch_fs *c = trans->c; struct bpos node_min = b->key.k.type == KEY_TYPE_btree_ptr_v2 ? bkey_i_to_btree_ptr_v2(&b->key)->v.min_key : b->data->min_key; struct btree_and_journal_iter iter; struct bkey_s_c k; struct printbuf buf = PRINTBUF; struct bkey_buf prev; int ret = 0; BUG_ON(b->key.k.type == KEY_TYPE_btree_ptr_v2 && !bpos_eq(bkey_i_to_btree_ptr_v2(&b->key)->v.min_key, b->data->min_key)); if (b == btree_node_root(c, b)) { if (!bpos_eq(b->data->min_key, POS_MIN)) { printbuf_reset(&buf); bch2_bpos_to_text(&buf, b->data->min_key); need_fsck_err(c, btree_root_bad_min_key, "btree root with incorrect min_key: %s", buf.buf); goto topology_repair; } if (!bpos_eq(b->data->max_key, SPOS_MAX)) { printbuf_reset(&buf); bch2_bpos_to_text(&buf, b->data->max_key); need_fsck_err(c, btree_root_bad_max_key, "btree root with incorrect max_key: %s", buf.buf); goto topology_repair; } } if (!b->c.level) return 0; bch2_bkey_buf_init(&prev); bkey_init(&prev.k->k); bch2_btree_and_journal_iter_init_node_iter(trans, &iter, b); while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { if (k.k->type != KEY_TYPE_btree_ptr_v2) goto out; struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); struct bpos expected_min = bkey_deleted(&prev.k->k) ? node_min : bpos_successor(prev.k->k.p); if (!bpos_eq(expected_min, bp.v->min_key)) { bch2_topology_error(c); printbuf_reset(&buf); prt_str(&buf, "end of prev node doesn't match start of next node\n"), prt_printf(&buf, " in btree %s level %u node ", bch2_btree_id_str(b->c.btree_id), b->c.level); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); prt_str(&buf, "\n prev "); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k)); prt_str(&buf, "\n next "); bch2_bkey_val_to_text(&buf, c, k); need_fsck_err(c, btree_node_topology_bad_min_key, "%s", buf.buf); goto topology_repair; } bch2_bkey_buf_reassemble(&prev, c, k); bch2_btree_and_journal_iter_advance(&iter); } if (bkey_deleted(&prev.k->k)) { bch2_topology_error(c); printbuf_reset(&buf); prt_str(&buf, "empty interior node\n"); prt_printf(&buf, " in btree %s level %u node ", bch2_btree_id_str(b->c.btree_id), b->c.level); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); need_fsck_err(c, btree_node_topology_empty_interior_node, "%s", buf.buf); goto topology_repair; } else if (!bpos_eq(prev.k->k.p, b->key.k.p)) { bch2_topology_error(c); printbuf_reset(&buf); prt_str(&buf, "last child node doesn't end at end of parent node\n"); prt_printf(&buf, " in btree %s level %u node ", bch2_btree_id_str(b->c.btree_id), b->c.level); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); prt_str(&buf, "\n last key "); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(prev.k)); need_fsck_err(c, btree_node_topology_bad_max_key, "%s", buf.buf); goto topology_repair; } out: fsck_err: bch2_btree_and_journal_iter_exit(&iter); bch2_bkey_buf_exit(&prev, c); printbuf_exit(&buf); return ret; topology_repair: if ((c->recovery_passes_explicit & BIT_ULL(BCH_RECOVERY_PASS_check_topology)) && c->curr_recovery_pass > BCH_RECOVERY_PASS_check_topology) { bch2_inconsistent_error(c); ret = -BCH_ERR_btree_need_topology_repair; } else { ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology); } goto out; } /* Calculate ideal packed bkey format for new btree nodes: */ static void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) { struct bkey_packed *k; struct bset_tree *t; struct bkey uk; for_each_bset(b, t) bset_tree_for_each_key(b, t, k) if (!bkey_deleted(k)) { uk = bkey_unpack_key(b, k); bch2_bkey_format_add_key(s, &uk); } } static struct bkey_format bch2_btree_calc_format(struct btree *b) { struct bkey_format_state s; bch2_bkey_format_init(&s); bch2_bkey_format_add_pos(&s, b->data->min_key); bch2_bkey_format_add_pos(&s, b->data->max_key); __bch2_btree_calc_format(&s, b); return bch2_bkey_format_done(&s); } static size_t btree_node_u64s_with_format(struct btree_nr_keys nr, struct bkey_format *old_f, struct bkey_format *new_f) { /* stupid integer promotion rules */ ssize_t delta = (((int) new_f->key_u64s - old_f->key_u64s) * (int) nr.packed_keys) + (((int) new_f->key_u64s - BKEY_U64s) * (int) nr.unpacked_keys); BUG_ON(delta + nr.live_u64s < 0); return nr.live_u64s + delta; } /** * bch2_btree_node_format_fits - check if we could rewrite node with a new format * * @c: filesystem handle * @b: btree node to rewrite * @nr: number of keys for new node (i.e. b->nr) * @new_f: bkey format to translate keys to * * Returns: true if all re-packed keys will be able to fit in a new node. * * Assumes all keys will successfully pack with the new format. */ static bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, struct btree_nr_keys nr, struct bkey_format *new_f) { size_t u64s = btree_node_u64s_with_format(nr, &b->format, new_f); return __vstruct_bytes(struct btree_node, u64s) < btree_buf_bytes(b); } /* Btree node freeing/allocation: */ static void __btree_node_free(struct btree_trans *trans, struct btree *b) { struct bch_fs *c = trans->c; trace_and_count(c, btree_node_free, trans, b); BUG_ON(btree_node_write_blocked(b)); BUG_ON(btree_node_dirty(b)); BUG_ON(btree_node_need_write(b)); BUG_ON(b == btree_node_root(c, b)); BUG_ON(b->ob.nr); BUG_ON(!list_empty(&b->write_blocked)); BUG_ON(b->will_make_reachable); clear_btree_node_noevict(b); mutex_lock(&c->btree_cache.lock); list_move(&b->list, &c->btree_cache.freeable); mutex_unlock(&c->btree_cache.lock); } static void bch2_btree_node_free_inmem(struct btree_trans *trans, struct btree_path *path, struct btree *b) { struct bch_fs *c = trans->c; unsigned i, level = b->c.level; bch2_btree_node_lock_write_nofail(trans, path, &b->c); bch2_btree_node_hash_remove(&c->btree_cache, b); __btree_node_free(trans, b); six_unlock_write(&b->c.lock); mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED); trans_for_each_path(trans, path, i) if (path->l[level].b == b) { btree_node_unlock(trans, path, level); path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); } } static void bch2_btree_node_free_never_used(struct btree_update *as, struct btree_trans *trans, struct btree *b) { struct bch_fs *c = as->c; struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL]; struct btree_path *path; unsigned i, level = b->c.level; BUG_ON(!list_empty(&b->write_blocked)); BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as)); b->will_make_reachable = 0; closure_put(&as->cl); clear_btree_node_will_make_reachable(b); clear_btree_node_accessed(b); clear_btree_node_dirty_acct(c, b); clear_btree_node_need_write(b); mutex_lock(&c->btree_cache.lock); list_del_init(&b->list); bch2_btree_node_hash_remove(&c->btree_cache, b); mutex_unlock(&c->btree_cache.lock); BUG_ON(p->nr >= ARRAY_SIZE(p->b)); p->b[p->nr++] = b; six_unlock_intent(&b->c.lock); trans_for_each_path(trans, path, i) if (path->l[level].b == b) { btree_node_unlock(trans, path, level); path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); } } static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans, struct disk_reservation *res, struct closure *cl, bool interior_node, unsigned flags) { struct bch_fs *c = trans->c; struct write_point *wp; struct btree *b; BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; struct open_buckets obs = { .nr = 0 }; struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; unsigned nr_reserve = watermark < BCH_WATERMARK_reclaim ? BTREE_NODE_RESERVE : 0; int ret; mutex_lock(&c->btree_reserve_cache_lock); if (c->btree_reserve_cache_nr > nr_reserve) { struct btree_alloc *a = &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; obs = a->ob; bkey_copy(&tmp.k, &a->k); mutex_unlock(&c->btree_reserve_cache_lock); goto mem_alloc; } mutex_unlock(&c->btree_reserve_cache_lock); retry: ret = bch2_alloc_sectors_start_trans(trans, c->opts.metadata_target ?: c->opts.foreground_target, 0, writepoint_ptr(&c->btree_write_point), &devs_have, res->nr_replicas, min(res->nr_replicas, c->opts.metadata_replicas_required), watermark, 0, cl, &wp); if (unlikely(ret)) return ERR_PTR(ret); if (wp->sectors_free < btree_sectors(c)) { struct open_bucket *ob; unsigned i; open_bucket_for_each(c, &wp->ptrs, ob, i) if (ob->sectors_free < btree_sectors(c)) ob->sectors_free = 0; bch2_alloc_sectors_done(c, wp); goto retry; } bkey_btree_ptr_v2_init(&tmp.k); bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false); bch2_open_bucket_get(c, wp, &obs); bch2_alloc_sectors_done(c, wp); mem_alloc: b = bch2_btree_node_mem_alloc(trans, interior_node); six_unlock_write(&b->c.lock); six_unlock_intent(&b->c.lock); /* we hold cannibalize_lock: */ BUG_ON(IS_ERR(b)); BUG_ON(b->ob.nr); bkey_copy(&b->key, &tmp.k); b->ob = obs; return b; } static struct btree *bch2_btree_node_alloc(struct btree_update *as, struct btree_trans *trans, unsigned level) { struct bch_fs *c = as->c; struct btree *b; struct prealloc_nodes *p = &as->prealloc_nodes[!!level]; int ret; BUG_ON(level >= BTREE_MAX_DEPTH); BUG_ON(!p->nr); b = p->b[--p->nr]; btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); set_btree_node_accessed(b); set_btree_node_dirty_acct(c, b); set_btree_node_need_write(b); bch2_bset_init_first(b, &b->data->keys); b->c.level = level; b->c.btree_id = as->btree_id; b->version_ondisk = c->sb.version; memset(&b->nr, 0, sizeof(b->nr)); b->data->magic = cpu_to_le64(bset_magic(c)); memset(&b->data->_ptr, 0, sizeof(b->data->_ptr)); b->data->flags = 0; SET_BTREE_NODE_ID(b->data, as->btree_id); SET_BTREE_NODE_LEVEL(b->data, level); if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key); bp->v.mem_ptr = 0; bp->v.seq = b->data->keys.seq; bp->v.sectors_written = 0; } SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true); bch2_btree_build_aux_trees(b); ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id); BUG_ON(ret); trace_and_count(c, btree_node_alloc, trans, b); bch2_increment_clock(c, btree_sectors(c), WRITE); return b; } static void btree_set_min(struct btree *b, struct bpos pos) { if (b->key.k.type == KEY_TYPE_btree_ptr_v2) bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos; b->data->min_key = pos; } static void btree_set_max(struct btree *b, struct bpos pos) { b->key.k.p = pos; b->data->max_key = pos; } static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, struct btree_trans *trans, struct btree *b) { struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level); struct bkey_format format = bch2_btree_calc_format(b); /* * The keys might expand with the new format - if they wouldn't fit in * the btree node anymore, use the old format for now: */ if (!bch2_btree_node_format_fits(as->c, b, b->nr, &format)) format = b->format; SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); btree_set_min(n, b->data->min_key); btree_set_max(n, b->data->max_key); n->data->format = format; btree_node_set_format(n, format); bch2_btree_sort_into(as->c, n, b); btree_node_reset_sib_u64s(n); return n; } static struct btree *__btree_root_alloc(struct btree_update *as, struct btree_trans *trans, unsigned level) { struct btree *b = bch2_btree_node_alloc(as, trans, level); btree_set_min(b, POS_MIN); btree_set_max(b, SPOS_MAX); b->data->format = bch2_btree_calc_format(b); btree_node_set_format(b, b->data->format); bch2_btree_build_aux_trees(b); return b; } static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans) { struct bch_fs *c = as->c; struct prealloc_nodes *p; for (p = as->prealloc_nodes; p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes); p++) { while (p->nr) { struct btree *b = p->b[--p->nr]; mutex_lock(&c->btree_reserve_cache_lock); if (c->btree_reserve_cache_nr < ARRAY_SIZE(c->btree_reserve_cache)) { struct btree_alloc *a = &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; a->ob = b->ob; b->ob.nr = 0; bkey_copy(&a->k, &b->key); } else { bch2_open_buckets_put(c, &b->ob); } mutex_unlock(&c->btree_reserve_cache_lock); btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); __btree_node_free(trans, b); six_unlock_write(&b->c.lock); six_unlock_intent(&b->c.lock); } } } static int bch2_btree_reserve_get(struct btree_trans *trans, struct btree_update *as, unsigned nr_nodes[2], unsigned flags, struct closure *cl) { struct btree *b; unsigned interior; int ret = 0; BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX); /* * Protects reaping from the btree node cache and using the btree node * open bucket reserve: */ ret = bch2_btree_cache_cannibalize_lock(trans, cl); if (ret) return ret; for (interior = 0; interior < 2; interior++) { struct prealloc_nodes *p = as->prealloc_nodes + interior; while (p->nr < nr_nodes[interior]) { b = __bch2_btree_node_alloc(trans, &as->disk_res, cl, interior, flags); if (IS_ERR(b)) { ret = PTR_ERR(b); goto err; } p->b[p->nr++] = b; } } err: bch2_btree_cache_cannibalize_unlock(trans); return ret; } /* Asynchronous interior node update machinery */ static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans) { struct bch_fs *c = as->c; if (as->took_gc_lock) up_read(&c->gc_lock); as->took_gc_lock = false; bch2_journal_pin_drop(&c->journal, &as->journal); bch2_journal_pin_flush(&c->journal, &as->journal); bch2_disk_reservation_put(c, &as->disk_res); bch2_btree_reserve_put(as, trans); bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total], as->start_time); mutex_lock(&c->btree_interior_update_lock); list_del(&as->unwritten_list); list_del(&as->list); closure_debug_destroy(&as->cl); mempool_free(as, &c->btree_interior_update_pool); /* * Have to do the wakeup with btree_interior_update_lock still held, * since being on btree_interior_update_list is our ref on @c: */ closure_wake_up(&c->btree_interior_update_wait); mutex_unlock(&c->btree_interior_update_lock); } static void btree_update_add_key(struct btree_update *as, struct keylist *keys, struct btree *b) { struct bkey_i *k = &b->key; BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s > ARRAY_SIZE(as->_old_keys)); bkey_copy(keys->top, k); bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1; bch2_keylist_push(keys); } static bool btree_update_new_nodes_marked_sb(struct btree_update *as) { for_each_keylist_key(&as->new_keys, k) if (!bch2_dev_btree_bitmap_marked(as->c, bkey_i_to_s_c(k))) return false; return true; } static void btree_update_new_nodes_mark_sb(struct btree_update *as) { struct bch_fs *c = as->c; mutex_lock(&c->sb_lock); for_each_keylist_key(&as->new_keys, k) bch2_dev_btree_bitmap_mark(c, bkey_i_to_s_c(k)); bch2_write_super(c); mutex_unlock(&c->sb_lock); } /* * The transactional part of an interior btree node update, where we journal the * update we did to the interior node and update alloc info: */ static int btree_update_nodes_written_trans(struct btree_trans *trans, struct btree_update *as) { struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, as->journal_u64s); int ret = PTR_ERR_OR_ZERO(e); if (ret) return ret; memcpy(e, as->journal_entries, as->journal_u64s * sizeof(u64)); trans->journal_pin = &as->journal; for_each_keylist_key(&as->old_keys, k) { unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; ret = bch2_key_trigger_old(trans, as->btree_id, level, bkey_i_to_s_c(k), BTREE_TRIGGER_transactional); if (ret) return ret; } for_each_keylist_key(&as->new_keys, k) { unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; ret = bch2_key_trigger_new(trans, as->btree_id, level, bkey_i_to_s(k), BTREE_TRIGGER_transactional); if (ret) return ret; } return 0; } static void btree_update_nodes_written(struct btree_update *as) { struct bch_fs *c = as->c; struct btree *b; struct btree_trans *trans = bch2_trans_get(c); u64 journal_seq = 0; unsigned i; int ret; /* * If we're already in an error state, it might be because a btree node * was never written, and we might be trying to free that same btree * node here, but it won't have been marked as allocated and we'll see * spurious disk usage inconsistencies in the transactional part below * if we don't skip it: */ ret = bch2_journal_error(&c->journal); if (ret) goto err; if (!btree_update_new_nodes_marked_sb(as)) btree_update_new_nodes_mark_sb(as); /* * Wait for any in flight writes to finish before we free the old nodes * on disk: */ for (i = 0; i < as->nr_old_nodes; i++) { __le64 seq; b = as->old_nodes[i]; btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); seq = b->data ? b->data->keys.seq : 0; six_unlock_read(&b->c.lock); if (seq == as->old_nodes_seq[i]) wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner, TASK_UNINTERRUPTIBLE); } /* * We did an update to a parent node where the pointers we added pointed * to child nodes that weren't written yet: now, the child nodes have * been written so we can write out the update to the interior node. */ /* * We can't call into journal reclaim here: we'd block on the journal * reclaim lock, but we may need to release the open buckets we have * pinned in order for other btree updates to make forward progress, and * journal reclaim does btree updates when flushing bkey_cached entries, * which may require allocations as well. */ ret = commit_do(trans, &as->disk_res, &journal_seq, BCH_WATERMARK_interior_updates| BCH_TRANS_COMMIT_no_enospc| BCH_TRANS_COMMIT_no_check_rw| BCH_TRANS_COMMIT_journal_reclaim, btree_update_nodes_written_trans(trans, as)); bch2_trans_unlock(trans); bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c, "%s", bch2_err_str(ret)); err: /* * We have to be careful because another thread might be getting ready * to free as->b and calling btree_update_reparent() on us - we'll * recheck under btree_update_lock below: */ b = READ_ONCE(as->b); if (b) { btree_path_idx_t path_idx = bch2_path_get_unlocked_mut(trans, as->btree_id, b->c.level, b->key.k.p); struct btree_path *path = trans->paths + path_idx; /* * @b is the node we did the final insert into: * * On failure to get a journal reservation, we still have to * unblock the write and allow most of the write path to happen * so that shutdown works, but the i->journal_seq mechanism * won't work to prevent the btree write from being visible (we * didn't get a journal sequence number) - instead * __bch2_btree_node_write() doesn't do the actual write if * we're in journal error state: */ /* * Ensure transaction is unlocked before using * btree_node_lock_nopath() (the use of which is always suspect, * we need to work on removing this in the future) * * It should be, but bch2_path_get_unlocked_mut() -> bch2_path_get() * calls bch2_path_upgrade(), before we call path_make_mut(), so * we may rarely end up with a locked path besides the one we * have here: */ bch2_trans_unlock(trans); btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED); path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock); path->l[b->c.level].b = b; bch2_btree_node_lock_write_nofail(trans, path, &b->c); mutex_lock(&c->btree_interior_update_lock); list_del(&as->write_blocked_list); if (list_empty(&b->write_blocked)) clear_btree_node_write_blocked(b); /* * Node might have been freed, recheck under * btree_interior_update_lock: */ if (as->b == b) { BUG_ON(!b->c.level); BUG_ON(!btree_node_dirty(b)); if (!ret) { struct bset *last = btree_bset_last(b); last->journal_seq = cpu_to_le64( max(journal_seq, le64_to_cpu(last->journal_seq))); bch2_btree_add_journal_pin(c, b, journal_seq); } else { /* * If we didn't get a journal sequence number we * can't write this btree node, because recovery * won't know to ignore this write: */ set_btree_node_never_write(b); } } mutex_unlock(&c->btree_interior_update_lock); mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED); six_unlock_write(&b->c.lock); btree_node_write_if_need(c, b, SIX_LOCK_intent); btree_node_unlock(trans, path, b->c.level); bch2_path_put(trans, path_idx, true); } bch2_journal_pin_drop(&c->journal, &as->journal); mutex_lock(&c->btree_interior_update_lock); for (i = 0; i < as->nr_new_nodes; i++) { b = as->new_nodes[i]; BUG_ON(b->will_make_reachable != (unsigned long) as); b->will_make_reachable = 0; clear_btree_node_will_make_reachable(b); } mutex_unlock(&c->btree_interior_update_lock); for (i = 0; i < as->nr_new_nodes; i++) { b = as->new_nodes[i]; btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); btree_node_write_if_need(c, b, SIX_LOCK_read); six_unlock_read(&b->c.lock); } for (i = 0; i < as->nr_open_buckets; i++) bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]); bch2_btree_update_free(as, trans); bch2_trans_put(trans); } static void btree_interior_update_work(struct work_struct *work) { struct bch_fs *c = container_of(work, struct bch_fs, btree_interior_update_work); struct btree_update *as; while (1) { mutex_lock(&c->btree_interior_update_lock); as = list_first_entry_or_null(&c->btree_interior_updates_unwritten, struct btree_update, unwritten_list); if (as && !as->nodes_written) as = NULL; mutex_unlock(&c->btree_interior_update_lock); if (!as) break; btree_update_nodes_written(as); } } static CLOSURE_CALLBACK(btree_update_set_nodes_written) { closure_type(as, struct btree_update, cl); struct bch_fs *c = as->c; mutex_lock(&c->btree_interior_update_lock); as->nodes_written = true; mutex_unlock(&c->btree_interior_update_lock); queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work); } /* * We're updating @b with pointers to nodes that haven't finished writing yet: * block @b from being written until @as completes */ static void btree_update_updated_node(struct btree_update *as, struct btree *b) { struct bch_fs *c = as->c; BUG_ON(as->mode != BTREE_UPDATE_none); BUG_ON(as->update_level_end < b->c.level); BUG_ON(!btree_node_dirty(b)); BUG_ON(!b->c.level); mutex_lock(&c->btree_interior_update_lock); list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); as->mode = BTREE_UPDATE_node; as->b = b; as->update_level_end = b->c.level; set_btree_node_write_blocked(b); list_add(&as->write_blocked_list, &b->write_blocked); mutex_unlock(&c->btree_interior_update_lock); } static int bch2_update_reparent_journal_pin_flush(struct journal *j, struct journal_entry_pin *_pin, u64 seq) { return 0; } static void btree_update_reparent(struct btree_update *as, struct btree_update *child) { struct bch_fs *c = as->c; lockdep_assert_held(&c->btree_interior_update_lock); child->b = NULL; child->mode = BTREE_UPDATE_update; bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, bch2_update_reparent_journal_pin_flush); } static void btree_update_updated_root(struct btree_update *as, struct btree *b) { struct bkey_i *insert = &b->key; struct bch_fs *c = as->c; BUG_ON(as->mode != BTREE_UPDATE_none); BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > ARRAY_SIZE(as->journal_entries)); as->journal_u64s += journal_entry_set((void *) &as->journal_entries[as->journal_u64s], BCH_JSET_ENTRY_btree_root, b->c.btree_id, b->c.level, insert, insert->k.u64s); mutex_lock(&c->btree_interior_update_lock); list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); as->mode = BTREE_UPDATE_root; mutex_unlock(&c->btree_interior_update_lock); } /* * bch2_btree_update_add_new_node: * * This causes @as to wait on @b to be written, before it gets to * bch2_btree_update_nodes_written * * Additionally, it sets b->will_make_reachable to prevent any additional writes * to @b from happening besides the first until @b is reachable on disk * * And it adds @b to the list of @as's new nodes, so that we can update sector * counts in bch2_btree_update_nodes_written: */ static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b) { struct bch_fs *c = as->c; closure_get(&as->cl); mutex_lock(&c->btree_interior_update_lock); BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); BUG_ON(b->will_make_reachable); as->new_nodes[as->nr_new_nodes++] = b; b->will_make_reachable = 1UL|(unsigned long) as; set_btree_node_will_make_reachable(b); mutex_unlock(&c->btree_interior_update_lock); btree_update_add_key(as, &as->new_keys, b); if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data; unsigned sectors = round_up(bytes, block_bytes(c)) >> 9; bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written = cpu_to_le16(sectors); } } /* * returns true if @b was a new node */ static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) { struct btree_update *as; unsigned long v; unsigned i; mutex_lock(&c->btree_interior_update_lock); /* * When b->will_make_reachable != 0, it owns a ref on as->cl that's * dropped when it gets written by bch2_btree_complete_write - the * xchg() is for synchronization with bch2_btree_complete_write: */ v = xchg(&b->will_make_reachable, 0); clear_btree_node_will_make_reachable(b); as = (struct btree_update *) (v & ~1UL); if (!as) { mutex_unlock(&c->btree_interior_update_lock); return; } for (i = 0; i < as->nr_new_nodes; i++) if (as->new_nodes[i] == b) goto found; BUG(); found: array_remove_item(as->new_nodes, as->nr_new_nodes, i); mutex_unlock(&c->btree_interior_update_lock); if (v & 1) closure_put(&as->cl); } static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b) { while (b->ob.nr) as->open_buckets[as->nr_open_buckets++] = b->ob.v[--b->ob.nr]; } static int bch2_btree_update_will_free_node_journal_pin_flush(struct journal *j, struct journal_entry_pin *_pin, u64 seq) { return 0; } /* * @b is being split/rewritten: it may have pointers to not-yet-written btree * nodes and thus outstanding btree_updates - redirect @b's * btree_updates to point to this btree_update: */ static void bch2_btree_interior_update_will_free_node(struct btree_update *as, struct btree *b) { struct bch_fs *c = as->c; struct btree_update *p, *n; struct btree_write *w; set_btree_node_dying(b); if (btree_node_fake(b)) return; mutex_lock(&c->btree_interior_update_lock); /* * Does this node have any btree_update operations preventing * it from being written? * * If so, redirect them to point to this btree_update: we can * write out our new nodes, but we won't make them visible until those * operations complete */ list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { list_del_init(&p->write_blocked_list); btree_update_reparent(as, p); /* * for flush_held_btree_writes() waiting on updates to flush or * nodes to be writeable: */ closure_wake_up(&c->btree_interior_update_wait); } clear_btree_node_dirty_acct(c, b); clear_btree_node_need_write(b); clear_btree_node_write_blocked(b); /* * Does this node have unwritten data that has a pin on the journal? * * If so, transfer that pin to the btree_update operation - * note that if we're freeing multiple nodes, we only need to keep the * oldest pin of any of the nodes we're freeing. We'll release the pin * when the new nodes are persistent and reachable on disk: */ w = btree_current_write(b); bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, bch2_btree_update_will_free_node_journal_pin_flush); bch2_journal_pin_drop(&c->journal, &w->journal); w = btree_prev_write(b); bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, bch2_btree_update_will_free_node_journal_pin_flush); bch2_journal_pin_drop(&c->journal, &w->journal); mutex_unlock(&c->btree_interior_update_lock); /* * Is this a node that isn't reachable on disk yet? * * Nodes that aren't reachable yet have writes blocked until they're * reachable - now that we've cancelled any pending writes and moved * things waiting on that write to wait on this update, we can drop this * node from the list of nodes that the other update is making * reachable, prior to freeing it: */ btree_update_drop_new_node(c, b); btree_update_add_key(as, &as->old_keys, b); as->old_nodes[as->nr_old_nodes] = b; as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq; as->nr_old_nodes++; } static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans) { struct bch_fs *c = as->c; u64 start_time = as->start_time; BUG_ON(as->mode == BTREE_UPDATE_none); if (as->took_gc_lock) up_read(&as->c->gc_lock); as->took_gc_lock = false; bch2_btree_reserve_put(as, trans); continue_at(&as->cl, btree_update_set_nodes_written, as->c->btree_interior_update_worker); bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground], start_time); } static struct btree_update * bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path, unsigned level_start, bool split, unsigned flags) { struct bch_fs *c = trans->c; struct btree_update *as; u64 start_time = local_clock(); int disk_res_flags = (flags & BCH_TRANS_COMMIT_no_enospc) ? BCH_DISK_RESERVATION_NOFAIL : 0; unsigned nr_nodes[2] = { 0, 0 }; unsigned level_end = level_start; enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; int ret = 0; u32 restart_count = trans->restart_count; BUG_ON(!path->should_be_locked); if (watermark == BCH_WATERMARK_copygc) watermark = BCH_WATERMARK_btree_copygc; if (watermark < BCH_WATERMARK_btree) watermark = BCH_WATERMARK_btree; flags &= ~BCH_WATERMARK_MASK; flags |= watermark; if (watermark < BCH_WATERMARK_reclaim && test_bit(JOURNAL_SPACE_LOW, &c->journal.flags)) { if (flags & BCH_TRANS_COMMIT_journal_reclaim) return ERR_PTR(-BCH_ERR_journal_reclaim_would_deadlock); ret = drop_locks_do(trans, ({ wait_event(c->journal.wait, !test_bit(JOURNAL_SPACE_LOW, &c->journal.flags)); 0; })); if (ret) return ERR_PTR(ret); } while (1) { nr_nodes[!!level_end] += 1 + split; level_end++; ret = bch2_btree_path_upgrade(trans, path, level_end + 1); if (ret) return ERR_PTR(ret); if (!btree_path_node(path, level_end)) { /* Allocating new root? */ nr_nodes[1] += split; level_end = BTREE_MAX_DEPTH; break; } /* * Always check for space for two keys, even if we won't have to * split at prior level - it might have been a merge instead: */ if (bch2_btree_node_insert_fits(path->l[level_end].b, BKEY_BTREE_PTR_U64s_MAX * 2)) break; split = path->l[level_end].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c); } if (!down_read_trylock(&c->gc_lock)) { ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0)); if (ret) { up_read(&c->gc_lock); return ERR_PTR(ret); } } as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS); memset(as, 0, sizeof(*as)); closure_init(&as->cl, NULL); as->c = c; as->start_time = start_time; as->ip_started = _RET_IP_; as->mode = BTREE_UPDATE_none; as->watermark = watermark; as->took_gc_lock = true; as->btree_id = path->btree_id; as->update_level_start = level_start; as->update_level_end = level_end; INIT_LIST_HEAD(&as->list); INIT_LIST_HEAD(&as->unwritten_list); INIT_LIST_HEAD(&as->write_blocked_list); bch2_keylist_init(&as->old_keys, as->_old_keys); bch2_keylist_init(&as->new_keys, as->_new_keys); bch2_keylist_init(&as->parent_keys, as->inline_keys); mutex_lock(&c->btree_interior_update_lock); list_add_tail(&as->list, &c->btree_interior_update_list); mutex_unlock(&c->btree_interior_update_lock); /* * We don't want to allocate if we're in an error state, that can cause * deadlock on emergency shutdown due to open buckets getting stuck in * the btree_reserve_cache after allocator shutdown has cleared it out. * This check needs to come after adding us to the btree_interior_update * list but before calling bch2_btree_reserve_get, to synchronize with * __bch2_fs_read_only(). */ ret = bch2_journal_error(&c->journal); if (ret) goto err; ret = bch2_disk_reservation_get(c, &as->disk_res, (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c), c->opts.metadata_replicas, disk_res_flags); if (ret) goto err; ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL); if (bch2_err_matches(ret, ENOSPC) || bch2_err_matches(ret, ENOMEM)) { struct closure cl; /* * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK * flag */ if (bch2_err_matches(ret, ENOSPC) && (flags & BCH_TRANS_COMMIT_journal_reclaim) && watermark < BCH_WATERMARK_reclaim) { ret = -BCH_ERR_journal_reclaim_would_deadlock; goto err; } closure_init_stack(&cl); do { ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl); bch2_trans_unlock(trans); closure_sync(&cl); } while (bch2_err_matches(ret, BCH_ERR_operation_blocked)); } if (ret) { trace_and_count(c, btree_reserve_get_fail, trans->fn, _RET_IP_, nr_nodes[0] + nr_nodes[1], ret); goto err; } ret = bch2_trans_relock(trans); if (ret) goto err; bch2_trans_verify_not_restarted(trans, restart_count); return as; err: bch2_btree_update_free(as, trans); if (!bch2_err_matches(ret, ENOSPC) && !bch2_err_matches(ret, EROFS) && ret != -BCH_ERR_journal_reclaim_would_deadlock) bch_err_fn_ratelimited(c, ret); return ERR_PTR(ret); } /* Btree root updates: */ static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) { /* Root nodes cannot be reaped */ mutex_lock(&c->btree_cache.lock); list_del_init(&b->list); mutex_unlock(&c->btree_cache.lock); mutex_lock(&c->btree_root_lock); bch2_btree_id_root(c, b->c.btree_id)->b = b; mutex_unlock(&c->btree_root_lock); bch2_recalc_btree_reserve(c); } static int bch2_btree_set_root(struct btree_update *as, struct btree_trans *trans, struct btree_path *path, struct btree *b, bool nofail) { struct bch_fs *c = as->c; trace_and_count(c, btree_node_set_root, trans, b); struct btree *old = btree_node_root(c, b); /* * Ensure no one is using the old root while we switch to the * new root: */ if (nofail) { bch2_btree_node_lock_write_nofail(trans, path, &old->c); } else { int ret = bch2_btree_node_lock_write(trans, path, &old->c); if (ret) return ret; } bch2_btree_set_root_inmem(c, b); btree_update_updated_root(as, b); /* * Unlock old root after new root is visible: * * The new root isn't persistent, but that's ok: we still have * an intent lock on the new root, and any updates that would * depend on the new root would have to update the new root. */ bch2_btree_node_unlock_write(trans, path, old); return 0; } /* Interior node updates: */ static void bch2_insert_fixup_btree_ptr(struct btree_update *as, struct btree_trans *trans, struct btree_path *path, struct btree *b, struct btree_node_iter *node_iter, struct bkey_i *insert) { struct bch_fs *c = as->c; struct bkey_packed *k; struct printbuf buf = PRINTBUF; unsigned long old, new, v; BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 && !btree_ptr_sectors_written(insert)); if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))) bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p); if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert), btree_node_type(b), WRITE, &buf) ?: bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf)) { printbuf_reset(&buf); prt_printf(&buf, "inserting invalid bkey\n "); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert)); prt_printf(&buf, "\n "); bch2_bkey_invalid(c, bkey_i_to_s_c(insert), btree_node_type(b), WRITE, &buf); bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf); bch2_fs_inconsistent(c, "%s", buf.buf); dump_stack(); } BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > ARRAY_SIZE(as->journal_entries)); as->journal_u64s += journal_entry_set((void *) &as->journal_entries[as->journal_u64s], BCH_JSET_ENTRY_btree_keys, b->c.btree_id, b->c.level, insert, insert->k.u64s); while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && bkey_iter_pos_cmp(b, k, &insert->k.p) < 0) bch2_btree_node_iter_advance(node_iter, b); bch2_btree_bset_insert_key(trans, path, b, node_iter, insert); set_btree_node_dirty_acct(c, b); v = READ_ONCE(b->flags); do { old = new = v; new &= ~BTREE_WRITE_TYPE_MASK; new |= BTREE_WRITE_interior; new |= 1 << BTREE_NODE_need_write; } while ((v = cmpxchg(&b->flags, old, new)) != old); printbuf_exit(&buf); } static void bch2_btree_insert_keys_interior(struct btree_update *as, struct btree_trans *trans, struct btree_path *path, struct btree *b, struct btree_node_iter node_iter, struct keylist *keys) { struct bkey_i *insert = bch2_keylist_front(keys); struct bkey_packed *k; BUG_ON(btree_node_type(b) != BKEY_TYPE_btree); while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0)) ; while (!bch2_keylist_empty(keys)) { insert = bch2_keylist_front(keys); if (bpos_gt(insert->k.p, b->key.k.p)) break; bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert); bch2_keylist_pop_front(keys); } } /* * Move keys from n1 (original replacement node, now lower node) to n2 (higher * node) */ static void __btree_split_node(struct btree_update *as, struct btree_trans *trans, struct btree *b, struct btree *n[2]) { struct bkey_packed *k; struct bpos n1_pos = POS_MIN; struct btree_node_iter iter; struct bset *bsets[2]; struct bkey_format_state format[2]; struct bkey_packed *out[2]; struct bkey uk; unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5; struct { unsigned nr_keys, val_u64s; } nr_keys[2]; int i; memset(&nr_keys, 0, sizeof(nr_keys)); for (i = 0; i < 2; i++) { BUG_ON(n[i]->nsets != 1); bsets[i] = btree_bset_first(n[i]); out[i] = bsets[i]->start; SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1); bch2_bkey_format_init(&format[i]); } u64s = 0; for_each_btree_node_key(b, k, &iter) { if (bkey_deleted(k)) continue; uk = bkey_unpack_key(b, k); if (b->c.level && u64s < n1_u64s && u64s + k->u64s >= n1_u64s && bch2_key_deleted_in_journal(trans, b->c.btree_id, b->c.level, uk.p)) n1_u64s += k->u64s; i = u64s >= n1_u64s; u64s += k->u64s; if (!i) n1_pos = uk.p; bch2_bkey_format_add_key(&format[i], &uk); nr_keys[i].nr_keys++; nr_keys[i].val_u64s += bkeyp_val_u64s(&b->format, k); } btree_set_min(n[0], b->data->min_key); btree_set_max(n[0], n1_pos); btree_set_min(n[1], bpos_successor(n1_pos)); btree_set_max(n[1], b->data->max_key); for (i = 0; i < 2; i++) { bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key); bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key); n[i]->data->format = bch2_bkey_format_done(&format[i]); unsigned u64s = nr_keys[i].nr_keys * n[i]->data->format.key_u64s + nr_keys[i].val_u64s; if (__vstruct_bytes(struct btree_node, u64s) > btree_buf_bytes(b)) n[i]->data->format = b->format; btree_node_set_format(n[i], n[i]->data->format); } u64s = 0; for_each_btree_node_key(b, k, &iter) { if (bkey_deleted(k)) continue; i = u64s >= n1_u64s; u64s += k->u64s; if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k) ? &b->format: &bch2_bkey_format_current, k)) out[i]->format = KEY_FORMAT_LOCAL_BTREE; else bch2_bkey_unpack(b, (void *) out[i], k); out[i]->needs_whiteout = false; btree_keys_account_key_add(&n[i]->nr, 0, out[i]); out[i] = bkey_p_next(out[i]); } for (i = 0; i < 2; i++) { bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data); BUG_ON(!bsets[i]->u64s); set_btree_bset_end(n[i], n[i]->set); btree_node_reset_sib_u64s(n[i]); bch2_verify_btree_nr_keys(n[i]); BUG_ON(bch2_btree_node_check_topology(trans, n[i])); } } /* * For updates to interior nodes, we've got to do the insert before we split * because the stuff we're inserting has to be inserted atomically. Post split, * the keys might have to go in different nodes and the split would no longer be * atomic. * * Worse, if the insert is from btree node coalescing, if we do the insert after * we do the split (and pick the pivot) - the pivot we pick might be between * nodes that were coalesced, and thus in the middle of a child node post * coalescing: */ static void btree_split_insert_keys(struct btree_update *as, struct btree_trans *trans, btree_path_idx_t path_idx, struct btree *b, struct keylist *keys) { struct btree_path *path = trans->paths + path_idx; if (!bch2_keylist_empty(keys) && bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) { struct btree_node_iter node_iter; bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p); bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys); BUG_ON(bch2_btree_node_check_topology(trans, b)); } } static int btree_split(struct btree_update *as, struct btree_trans *trans, btree_path_idx_t path, struct btree *b, struct keylist *keys) { struct bch_fs *c = as->c; struct btree *parent = btree_node_parent(trans->paths + path, b); struct btree *n1, *n2 = NULL, *n3 = NULL; btree_path_idx_t path1 = 0, path2 = 0; u64 start_time = local_clock(); int ret = 0; bch2_verify_btree_nr_keys(b); BUG_ON(!parent && (b != btree_node_root(c, b))); BUG_ON(parent && !btree_node_intent_locked(trans->paths + path, b->c.level + 1)); ret = bch2_btree_node_check_topology(trans, b); if (ret) return ret; bch2_btree_interior_update_will_free_node(as, b); if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) { struct btree *n[2]; trace_and_count(c, btree_node_split, trans, b); n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level); n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level); __btree_split_node(as, trans, b, n); if (keys) { btree_split_insert_keys(as, trans, path, n1, keys); btree_split_insert_keys(as, trans, path, n2, keys); BUG_ON(!bch2_keylist_empty(keys)); } bch2_btree_build_aux_trees(n2); bch2_btree_build_aux_trees(n1); bch2_btree_update_add_new_node(as, n1); bch2_btree_update_add_new_node(as, n2); six_unlock_write(&n2->c.lock); six_unlock_write(&n1->c.lock); path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p); six_lock_increment(&n1->c.lock, SIX_LOCK_intent); mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); bch2_btree_path_level_init(trans, trans->paths + path1, n1); path2 = bch2_path_get_unlocked_mut(trans, as->btree_id, n2->c.level, n2->key.k.p); six_lock_increment(&n2->c.lock, SIX_LOCK_intent); mark_btree_node_locked(trans, trans->paths + path2, n2->c.level, BTREE_NODE_INTENT_LOCKED); bch2_btree_path_level_init(trans, trans->paths + path2, n2); /* * Note that on recursive parent_keys == keys, so we * can't start adding new keys to parent_keys before emptying it * out (which we did with btree_split_insert_keys() above) */ bch2_keylist_add(&as->parent_keys, &n1->key); bch2_keylist_add(&as->parent_keys, &n2->key); if (!parent) { /* Depth increases, make a new root */ n3 = __btree_root_alloc(as, trans, b->c.level + 1); bch2_btree_update_add_new_node(as, n3); six_unlock_write(&n3->c.lock); trans->paths[path2].locks_want++; BUG_ON(btree_node_locked(trans->paths + path2, n3->c.level)); six_lock_increment(&n3->c.lock, SIX_LOCK_intent); mark_btree_node_locked(trans, trans->paths + path2, n3->c.level, BTREE_NODE_INTENT_LOCKED); bch2_btree_path_level_init(trans, trans->paths + path2, n3); n3->sib_u64s[0] = U16_MAX; n3->sib_u64s[1] = U16_MAX; btree_split_insert_keys(as, trans, path, n3, &as->parent_keys); } } else { trace_and_count(c, btree_node_compact, trans, b); n1 = bch2_btree_node_alloc_replacement(as, trans, b); if (keys) { btree_split_insert_keys(as, trans, path, n1, keys); BUG_ON(!bch2_keylist_empty(keys)); } bch2_btree_build_aux_trees(n1); bch2_btree_update_add_new_node(as, n1); six_unlock_write(&n1->c.lock); path1 = bch2_path_get_unlocked_mut(trans, as->btree_id, n1->c.level, n1->key.k.p); six_lock_increment(&n1->c.lock, SIX_LOCK_intent); mark_btree_node_locked(trans, trans->paths + path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); bch2_btree_path_level_init(trans, trans->paths + path1, n1); if (parent) bch2_keylist_add(&as->parent_keys, &n1->key); } /* New nodes all written, now make them visible: */ if (parent) { /* Split a non root node */ ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys); } else if (n3) { ret = bch2_btree_set_root(as, trans, trans->paths + path, n3, false); } else { /* Root filled up but didn't need to be split */ ret = bch2_btree_set_root(as, trans, trans->paths + path, n1, false); } if (ret) goto err; if (n3) { bch2_btree_update_get_open_buckets(as, n3); bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0); } if (n2) { bch2_btree_update_get_open_buckets(as, n2); bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0); } bch2_btree_update_get_open_buckets(as, n1); bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0); /* * The old node must be freed (in memory) _before_ unlocking the new * nodes - else another thread could re-acquire a read lock on the old * node after another thread has locked and updated the new node, thus * seeing stale data: */ bch2_btree_node_free_inmem(trans, trans->paths + path, b); if (n3) bch2_trans_node_add(trans, trans->paths + path, n3); if (n2) bch2_trans_node_add(trans, trans->paths + path2, n2); bch2_trans_node_add(trans, trans->paths + path1, n1); if (n3) six_unlock_intent(&n3->c.lock); if (n2) six_unlock_intent(&n2->c.lock); six_unlock_intent(&n1->c.lock); out: if (path2) { __bch2_btree_path_unlock(trans, trans->paths + path2); bch2_path_put(trans, path2, true); } if (path1) { __bch2_btree_path_unlock(trans, trans->paths + path1); bch2_path_put(trans, path1, true); } bch2_trans_verify_locks(trans); bch2_time_stats_update(&c->times[n2 ? BCH_TIME_btree_node_split : BCH_TIME_btree_node_compact], start_time); return ret; err: if (n3) bch2_btree_node_free_never_used(as, trans, n3); if (n2) bch2_btree_node_free_never_used(as, trans, n2); bch2_btree_node_free_never_used(as, trans, n1); goto out; } /** * bch2_btree_insert_node - insert bkeys into a given btree node * * @as: btree_update object * @trans: btree_trans object * @path_idx: path that points to current node * @b: node to insert keys into * @keys: list of keys to insert * * Returns: 0 on success, typically transaction restart error on failure * * Inserts as many keys as it can into a given btree node, splitting it if full. * If a split occurred, this function will return early. This can only happen * for leaf nodes -- inserts into interior nodes have to be atomic. */ static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans, btree_path_idx_t path_idx, struct btree *b, struct keylist *keys) { struct bch_fs *c = as->c; struct btree_path *path = trans->paths + path_idx, *linked; unsigned i; int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); int old_live_u64s = b->nr.live_u64s; int live_u64s_added, u64s_added; int ret; lockdep_assert_held(&c->gc_lock); BUG_ON(!btree_node_intent_locked(path, b->c.level)); BUG_ON(!b->c.level); BUG_ON(!as || as->b); bch2_verify_keylist_sorted(keys); ret = bch2_btree_node_lock_write(trans, path, &b->c); if (ret) return ret; bch2_btree_node_prep_for_write(trans, path, b); if (!bch2_btree_node_insert_fits(b, bch2_keylist_u64s(keys))) { bch2_btree_node_unlock_write(trans, path, b); goto split; } ret = bch2_btree_node_check_topology(trans, b); if (ret) { bch2_btree_node_unlock_write(trans, path, b); return ret; } bch2_btree_insert_keys_interior(as, trans, path, b, path->l[b->c.level].iter, keys); trans_for_each_path_with_node(trans, b, linked, i) bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b); bch2_trans_verify_paths(trans); live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); if (u64s_added > live_u64s_added && bch2_maybe_compact_whiteouts(c, b)) bch2_trans_node_reinit_iter(trans, b); btree_update_updated_node(as, b); bch2_btree_node_unlock_write(trans, path, b); BUG_ON(bch2_btree_node_check_topology(trans, b)); return 0; split: /* * We could attempt to avoid the transaction restart, by calling * bch2_btree_path_upgrade() and allocating more nodes: */ if (b->c.level >= as->update_level_end) { trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b); return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race); } return btree_split(as, trans, path_idx, b, keys); } int bch2_btree_split_leaf(struct btree_trans *trans, btree_path_idx_t path, unsigned flags) { /* btree_split & merge may both cause paths array to be reallocated */ struct btree *b = path_l(trans->paths + path)->b; struct btree_update *as; unsigned l; int ret = 0; as = bch2_btree_update_start(trans, trans->paths + path, trans->paths[path].level, true, flags); if (IS_ERR(as)) return PTR_ERR(as); ret = btree_split(as, trans, path, b, NULL); if (ret) { bch2_btree_update_free(as, trans); return ret; } bch2_btree_update_done(as, trans); for (l = trans->paths[path].level + 1; btree_node_intent_locked(&trans->paths[path], l) && !ret; l++) ret = bch2_foreground_maybe_merge(trans, path, l, flags); return ret; } static void __btree_increase_depth(struct btree_update *as, struct btree_trans *trans, btree_path_idx_t path_idx) { struct bch_fs *c = as->c; struct btree_path *path = trans->paths + path_idx; struct btree *n, *b = bch2_btree_id_root(c, path->btree_id)->b; BUG_ON(!btree_node_locked(path, b->c.level)); n = __btree_root_alloc(as, trans, b->c.level + 1); bch2_btree_update_add_new_node(as, n); six_unlock_write(&n->c.lock); path->locks_want++; BUG_ON(btree_node_locked(path, n->c.level)); six_lock_increment(&n->c.lock, SIX_LOCK_intent); mark_btree_node_locked(trans, path, n->c.level, BTREE_NODE_INTENT_LOCKED); bch2_btree_path_level_init(trans, path, n); n->sib_u64s[0] = U16_MAX; n->sib_u64s[1] = U16_MAX; bch2_keylist_add(&as->parent_keys, &b->key); btree_split_insert_keys(as, trans, path_idx, n, &as->parent_keys); int ret = bch2_btree_set_root(as, trans, path, n, true); BUG_ON(ret); bch2_btree_update_get_open_buckets(as, n); bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); bch2_trans_node_add(trans, path, n); six_unlock_intent(&n->c.lock); mutex_lock(&c->btree_cache.lock); list_add_tail(&b->list, &c->btree_cache.live); mutex_unlock(&c->btree_cache.lock); bch2_trans_verify_locks(trans); } int bch2_btree_increase_depth(struct btree_trans *trans, btree_path_idx_t path, unsigned flags) { struct bch_fs *c = trans->c; struct btree *b = bch2_btree_id_root(c, trans->paths[path].btree_id)->b; if (btree_node_fake(b)) return bch2_btree_split_leaf(trans, path, flags); struct btree_update *as = bch2_btree_update_start(trans, trans->paths + path, b->c.level, true, flags); if (IS_ERR(as)) return PTR_ERR(as); __btree_increase_depth(as, trans, path); bch2_btree_update_done(as, trans); return 0; } int __bch2_foreground_maybe_merge(struct btree_trans *trans, btree_path_idx_t path, unsigned level, unsigned flags, enum btree_node_sibling sib) { struct bch_fs *c = trans->c; struct btree_update *as; struct bkey_format_state new_s; struct bkey_format new_f; struct bkey_i delete; struct btree *b, *m, *n, *prev, *next, *parent; struct bpos sib_pos; size_t sib_u64s; enum btree_id btree = trans->paths[path].btree_id; btree_path_idx_t sib_path = 0, new_path = 0; u64 start_time = local_clock(); int ret = 0; BUG_ON(!trans->paths[path].should_be_locked); BUG_ON(!btree_node_locked(&trans->paths[path], level)); /* * Work around a deadlock caused by the btree write buffer not doing * merges and leaving tons of merges for us to do - we really don't need * to be doing merges at all from the interior update path, and if the * interior update path is generating too many new interior updates we * deadlock: */ if ((flags & BCH_WATERMARK_MASK) == BCH_WATERMARK_interior_updates) return 0; if ((flags & BCH_WATERMARK_MASK) <= BCH_WATERMARK_reclaim) { flags &= ~BCH_WATERMARK_MASK; flags |= BCH_WATERMARK_btree; flags |= BCH_TRANS_COMMIT_journal_reclaim; } b = trans->paths[path].l[level].b; if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) || (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) { b->sib_u64s[sib] = U16_MAX; return 0; } sib_pos = sib == btree_prev_sib ? bpos_predecessor(b->data->min_key) : bpos_successor(b->data->max_key); sib_path = bch2_path_get(trans, btree, sib_pos, U8_MAX, level, BTREE_ITER_intent, _THIS_IP_); ret = bch2_btree_path_traverse(trans, sib_path, false); if (ret) goto err; btree_path_set_should_be_locked(trans->paths + sib_path); m = trans->paths[sib_path].l[level].b; if (btree_node_parent(trans->paths + path, b) != btree_node_parent(trans->paths + sib_path, m)) { b->sib_u64s[sib] = U16_MAX; goto out; } if (sib == btree_prev_sib) { prev = m; next = b; } else { prev = b; next = m; } if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) { struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; bch2_bpos_to_text(&buf1, prev->data->max_key); bch2_bpos_to_text(&buf2, next->data->min_key); bch_err(c, "%s(): btree topology error:\n" " prev ends at %s\n" " next starts at %s", __func__, buf1.buf, buf2.buf); printbuf_exit(&buf1); printbuf_exit(&buf2); ret = bch2_topology_error(c); goto err; } bch2_bkey_format_init(&new_s); bch2_bkey_format_add_pos(&new_s, prev->data->min_key); __bch2_btree_calc_format(&new_s, prev); __bch2_btree_calc_format(&new_s, next); bch2_bkey_format_add_pos(&new_s, next->data->max_key); new_f = bch2_bkey_format_done(&new_s); sib_u64s = btree_node_u64s_with_format(b->nr, &b->format, &new_f) + btree_node_u64s_with_format(m->nr, &m->format, &new_f); if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); sib_u64s /= 2; sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); } sib_u64s = min(sib_u64s, btree_max_u64s(c)); sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1); b->sib_u64s[sib] = sib_u64s; if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold) goto out; parent = btree_node_parent(trans->paths + path, b); as = bch2_btree_update_start(trans, trans->paths + path, level, false, BCH_TRANS_COMMIT_no_enospc|flags); ret = PTR_ERR_OR_ZERO(as); if (ret) goto err; trace_and_count(c, btree_node_merge, trans, b); bch2_btree_interior_update_will_free_node(as, b); bch2_btree_interior_update_will_free_node(as, m); n = bch2_btree_node_alloc(as, trans, b->c.level); SET_BTREE_NODE_SEQ(n->data, max(BTREE_NODE_SEQ(b->data), BTREE_NODE_SEQ(m->data)) + 1); btree_set_min(n, prev->data->min_key); btree_set_max(n, next->data->max_key); n->data->format = new_f; btree_node_set_format(n, new_f); bch2_btree_sort_into(c, n, prev); bch2_btree_sort_into(c, n, next); bch2_btree_build_aux_trees(n); bch2_btree_update_add_new_node(as, n); six_unlock_write(&n->c.lock); new_path = bch2_path_get_unlocked_mut(trans, btree, n->c.level, n->key.k.p); six_lock_increment(&n->c.lock, SIX_LOCK_intent); mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); bch2_btree_path_level_init(trans, trans->paths + new_path, n); bkey_init(&delete.k); delete.k.p = prev->key.k.p; bch2_keylist_add(&as->parent_keys, &delete); bch2_keylist_add(&as->parent_keys, &n->key); bch2_trans_verify_paths(trans); ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys); if (ret) goto err_free_update; bch2_trans_verify_paths(trans); bch2_btree_update_get_open_buckets(as, n); bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); bch2_btree_node_free_inmem(trans, trans->paths + path, b); bch2_btree_node_free_inmem(trans, trans->paths + sib_path, m); bch2_trans_node_add(trans, trans->paths + path, n); bch2_trans_verify_paths(trans); six_unlock_intent(&n->c.lock); bch2_btree_update_done(as, trans); bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time); out: err: if (new_path) bch2_path_put(trans, new_path, true); bch2_path_put(trans, sib_path, true); bch2_trans_verify_locks(trans); if (ret == -BCH_ERR_journal_reclaim_would_deadlock) ret = 0; if (!ret) ret = bch2_trans_relock(trans); return ret; err_free_update: bch2_btree_node_free_never_used(as, trans, n); bch2_btree_update_free(as, trans); goto out; } int bch2_btree_node_rewrite(struct btree_trans *trans, struct btree_iter *iter, struct btree *b, unsigned flags) { struct bch_fs *c = trans->c; struct btree *n, *parent; struct btree_update *as; btree_path_idx_t new_path = 0; int ret; flags |= BCH_TRANS_COMMIT_no_enospc; struct btree_path *path = btree_iter_path(trans, iter); parent = btree_node_parent(path, b); as = bch2_btree_update_start(trans, path, b->c.level, false, flags); ret = PTR_ERR_OR_ZERO(as); if (ret) goto out; bch2_btree_interior_update_will_free_node(as, b); n = bch2_btree_node_alloc_replacement(as, trans, b); bch2_btree_build_aux_trees(n); bch2_btree_update_add_new_node(as, n); six_unlock_write(&n->c.lock); new_path = bch2_path_get_unlocked_mut(trans, iter->btree_id, n->c.level, n->key.k.p); six_lock_increment(&n->c.lock, SIX_LOCK_intent); mark_btree_node_locked(trans, trans->paths + new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); bch2_btree_path_level_init(trans, trans->paths + new_path, n); trace_and_count(c, btree_node_rewrite, trans, b); if (parent) { bch2_keylist_add(&as->parent_keys, &n->key); ret = bch2_btree_insert_node(as, trans, iter->path, parent, &as->parent_keys); } else { ret = bch2_btree_set_root(as, trans, btree_iter_path(trans, iter), n, false); } if (ret) goto err; bch2_btree_update_get_open_buckets(as, n); bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); bch2_btree_node_free_inmem(trans, btree_iter_path(trans, iter), b); bch2_trans_node_add(trans, trans->paths + iter->path, n); six_unlock_intent(&n->c.lock); bch2_btree_update_done(as, trans); out: if (new_path) bch2_path_put(trans, new_path, true); bch2_trans_downgrade(trans); return ret; err: bch2_btree_node_free_never_used(as, trans, n); bch2_btree_update_free(as, trans); goto out; } struct async_btree_rewrite { struct bch_fs *c; struct work_struct work; struct list_head list; enum btree_id btree_id; unsigned level; struct bpos pos; __le64 seq; }; static int async_btree_node_rewrite_trans(struct btree_trans *trans, struct async_btree_rewrite *a) { struct bch_fs *c = trans->c; struct btree_iter iter; struct btree *b; int ret; bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos, BTREE_MAX_DEPTH, a->level, 0); b = bch2_btree_iter_peek_node(&iter); ret = PTR_ERR_OR_ZERO(b); if (ret) goto out; if (!b || b->data->keys.seq != a->seq) { struct printbuf buf = PRINTBUF; if (b) bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); else prt_str(&buf, "(null"); bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s", __func__, a->seq, buf.buf); printbuf_exit(&buf); goto out; } ret = bch2_btree_node_rewrite(trans, &iter, b, 0); out: bch2_trans_iter_exit(trans, &iter); return ret; } static void async_btree_node_rewrite_work(struct work_struct *work) { struct async_btree_rewrite *a = container_of(work, struct async_btree_rewrite, work); struct bch_fs *c = a->c; int ret; ret = bch2_trans_do(c, NULL, NULL, 0, async_btree_node_rewrite_trans(trans, a)); bch_err_fn_ratelimited(c, ret); bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite); kfree(a); } void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b) { struct async_btree_rewrite *a; int ret; a = kmalloc(sizeof(*a), GFP_NOFS); if (!a) { bch_err(c, "%s: error allocating memory", __func__); return; } a->c = c; a->btree_id = b->c.btree_id; a->level = b->c.level; a->pos = b->key.k.p; a->seq = b->data->keys.seq; INIT_WORK(&a->work, async_btree_node_rewrite_work); if (unlikely(!test_bit(BCH_FS_may_go_rw, &c->flags))) { mutex_lock(&c->pending_node_rewrites_lock); list_add(&a->list, &c->pending_node_rewrites); mutex_unlock(&c->pending_node_rewrites_lock); return; } if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) { if (test_bit(BCH_FS_started, &c->flags)) { bch_err(c, "%s: error getting c->writes ref", __func__); kfree(a); return; } ret = bch2_fs_read_write_early(c); bch_err_msg(c, ret, "going read-write"); if (ret) { kfree(a); return; } bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); } queue_work(c->btree_node_rewrite_worker, &a->work); } void bch2_do_pending_node_rewrites(struct bch_fs *c) { struct async_btree_rewrite *a, *n; mutex_lock(&c->pending_node_rewrites_lock); list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { list_del(&a->list); bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); queue_work(c->btree_node_rewrite_worker, &a->work); } mutex_unlock(&c->pending_node_rewrites_lock); } void bch2_free_pending_node_rewrites(struct bch_fs *c) { struct async_btree_rewrite *a, *n; mutex_lock(&c->pending_node_rewrites_lock); list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { list_del(&a->list); kfree(a); } mutex_unlock(&c->pending_node_rewrites_lock); } static int __bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter, struct btree *b, struct btree *new_hash, struct bkey_i *new_key, unsigned commit_flags, bool skip_triggers) { struct bch_fs *c = trans->c; struct btree_iter iter2 = { NULL }; struct btree *parent; int ret; if (!skip_triggers) { ret = bch2_key_trigger_old(trans, b->c.btree_id, b->c.level + 1, bkey_i_to_s_c(&b->key), BTREE_TRIGGER_transactional) ?: bch2_key_trigger_new(trans, b->c.btree_id, b->c.level + 1, bkey_i_to_s(new_key), BTREE_TRIGGER_transactional); if (ret) return ret; } if (new_hash) { bkey_copy(&new_hash->key, new_key); ret = bch2_btree_node_hash_insert(&c->btree_cache, new_hash, b->c.level, b->c.btree_id); BUG_ON(ret); } parent = btree_node_parent(btree_iter_path(trans, iter), b); if (parent) { bch2_trans_copy_iter(&iter2, iter); iter2.path = bch2_btree_path_make_mut(trans, iter2.path, iter2.flags & BTREE_ITER_intent, _THIS_IP_); struct btree_path *path2 = btree_iter_path(trans, &iter2); BUG_ON(path2->level != b->c.level); BUG_ON(!bpos_eq(path2->pos, new_key->k.p)); btree_path_set_level_up(trans, path2); trans->paths_sorted = false; ret = bch2_btree_iter_traverse(&iter2) ?: bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_norun); if (ret) goto err; } else { BUG_ON(btree_node_root(c, b) != b); struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, jset_u64s(new_key->k.u64s)); ret = PTR_ERR_OR_ZERO(e); if (ret) return ret; journal_entry_set(e, BCH_JSET_ENTRY_btree_root, b->c.btree_id, b->c.level, new_key, new_key->k.u64s); } ret = bch2_trans_commit(trans, NULL, NULL, commit_flags); if (ret) goto err; bch2_btree_node_lock_write_nofail(trans, btree_iter_path(trans, iter), &b->c); if (new_hash) { mutex_lock(&c->btree_cache.lock); bch2_btree_node_hash_remove(&c->btree_cache, new_hash); bch2_btree_node_hash_remove(&c->btree_cache, b); bkey_copy(&b->key, new_key); ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); BUG_ON(ret); mutex_unlock(&c->btree_cache.lock); } else { bkey_copy(&b->key, new_key); } bch2_btree_node_unlock_write(trans, btree_iter_path(trans, iter), b); out: bch2_trans_iter_exit(trans, &iter2); return ret; err: if (new_hash) { mutex_lock(&c->btree_cache.lock); bch2_btree_node_hash_remove(&c->btree_cache, b); mutex_unlock(&c->btree_cache.lock); } goto out; } int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter, struct btree *b, struct bkey_i *new_key, unsigned commit_flags, bool skip_triggers) { struct bch_fs *c = trans->c; struct btree *new_hash = NULL; struct btree_path *path = btree_iter_path(trans, iter); struct closure cl; int ret = 0; ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1); if (ret) return ret; closure_init_stack(&cl); /* * check btree_ptr_hash_val() after @b is locked by * btree_iter_traverse(): */ if (btree_ptr_hash_val(new_key) != b->hash_val) { ret = bch2_btree_cache_cannibalize_lock(trans, &cl); if (ret) { ret = drop_locks_do(trans, (closure_sync(&cl), 0)); if (ret) return ret; } new_hash = bch2_btree_node_mem_alloc(trans, false); } path->intent_ref++; ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key, commit_flags, skip_triggers); --path->intent_ref; if (new_hash) { mutex_lock(&c->btree_cache.lock); list_move(&new_hash->list, &c->btree_cache.freeable); mutex_unlock(&c->btree_cache.lock); six_unlock_write(&new_hash->c.lock); six_unlock_intent(&new_hash->c.lock); } closure_sync(&cl); bch2_btree_cache_cannibalize_unlock(trans); return ret; } int bch2_btree_node_update_key_get_iter(struct btree_trans *trans, struct btree *b, struct bkey_i *new_key, unsigned commit_flags, bool skip_triggers) { struct btree_iter iter; int ret; bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p, BTREE_MAX_DEPTH, b->c.level, BTREE_ITER_intent); ret = bch2_btree_iter_traverse(&iter); if (ret) goto out; /* has node been freed? */ if (btree_iter_path(trans, &iter)->l[b->c.level].b != b) { /* node has been freed: */ BUG_ON(!btree_node_dying(b)); goto out; } BUG_ON(!btree_node_hashed(b)); struct bch_extent_ptr *ptr; bch2_bkey_drop_ptrs(bkey_i_to_s(new_key), ptr, !bch2_bkey_has_device(bkey_i_to_s(&b->key), ptr->dev)); ret = bch2_btree_node_update_key(trans, &iter, b, new_key, commit_flags, skip_triggers); out: bch2_trans_iter_exit(trans, &iter); return ret; } /* Init code: */ /* * Only for filesystem bringup, when first reading the btree roots or allocating * btree roots when initializing a new filesystem: */ void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) { BUG_ON(btree_node_root(c, b)); bch2_btree_set_root_inmem(c, b); } static int __bch2_btree_root_alloc_fake(struct btree_trans *trans, enum btree_id id, unsigned level) { struct bch_fs *c = trans->c; struct closure cl; struct btree *b; int ret; closure_init_stack(&cl); do { ret = bch2_btree_cache_cannibalize_lock(trans, &cl); closure_sync(&cl); } while (ret); b = bch2_btree_node_mem_alloc(trans, false); bch2_btree_cache_cannibalize_unlock(trans); set_btree_node_fake(b); set_btree_node_need_rewrite(b); b->c.level = level; b->c.btree_id = id; bkey_btree_ptr_init(&b->key); b->key.k.p = SPOS_MAX; *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id; bch2_bset_init_first(b, &b->data->keys); bch2_btree_build_aux_trees(b); b->data->flags = 0; btree_set_min(b, POS_MIN); btree_set_max(b, SPOS_MAX); b->data->format = bch2_btree_calc_format(b); btree_node_set_format(b, b->data->format); ret = bch2_btree_node_hash_insert(&c->btree_cache, b, b->c.level, b->c.btree_id); BUG_ON(ret); bch2_btree_set_root_inmem(c, b); six_unlock_write(&b->c.lock); six_unlock_intent(&b->c.lock); return 0; } void bch2_btree_root_alloc_fake(struct bch_fs *c, enum btree_id id, unsigned level) { bch2_trans_run(c, __bch2_btree_root_alloc_fake(trans, id, level)); } static void bch2_btree_update_to_text(struct printbuf *out, struct btree_update *as) { prt_printf(out, "%ps: btree=%s l=%u-%u watermark=%s mode=%s nodes_written=%u cl.remaining=%u journal_seq=%llu\n", (void *) as->ip_started, bch2_btree_id_str(as->btree_id), as->update_level_start, as->update_level_end, bch2_watermarks[as->watermark], bch2_btree_update_modes[as->mode], as->nodes_written, closure_nr_remaining(&as->cl), as->journal.seq); } void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c) { struct btree_update *as; mutex_lock(&c->btree_interior_update_lock); list_for_each_entry(as, &c->btree_interior_update_list, list) bch2_btree_update_to_text(out, as); mutex_unlock(&c->btree_interior_update_lock); } static bool bch2_btree_interior_updates_pending(struct bch_fs *c) { bool ret; mutex_lock(&c->btree_interior_update_lock); ret = !list_empty(&c->btree_interior_update_list); mutex_unlock(&c->btree_interior_update_lock); return ret; } bool bch2_btree_interior_updates_flush(struct bch_fs *c) { bool ret = bch2_btree_interior_updates_pending(c); if (ret) closure_wait_event(&c->btree_interior_update_wait, !bch2_btree_interior_updates_pending(c)); return ret; } void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry) { struct btree_root *r = bch2_btree_id_root(c, entry->btree_id); mutex_lock(&c->btree_root_lock); r->level = entry->level; r->alive = true; bkey_copy(&r->key, (struct bkey_i *) entry->start); mutex_unlock(&c->btree_root_lock); } struct jset_entry * bch2_btree_roots_to_journal_entries(struct bch_fs *c, struct jset_entry *end, unsigned long skip) { unsigned i; mutex_lock(&c->btree_root_lock); for (i = 0; i < btree_id_nr_alive(c); i++) { struct btree_root *r = bch2_btree_id_root(c, i); if (r->alive && !test_bit(i, &skip)) { journal_entry_set(end, BCH_JSET_ENTRY_btree_root, i, r->level, &r->key, r->key.k.u64s); end = vstruct_next(end); } } mutex_unlock(&c->btree_root_lock); return end; } void bch2_fs_btree_interior_update_exit(struct bch_fs *c) { if (c->btree_node_rewrite_worker) destroy_workqueue(c->btree_node_rewrite_worker); if (c->btree_interior_update_worker) destroy_workqueue(c->btree_interior_update_worker); mempool_exit(&c->btree_interior_update_pool); } void bch2_fs_btree_interior_update_init_early(struct bch_fs *c) { mutex_init(&c->btree_reserve_cache_lock); INIT_LIST_HEAD(&c->btree_interior_update_list); INIT_LIST_HEAD(&c->btree_interior_updates_unwritten); mutex_init(&c->btree_interior_update_lock); INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work); INIT_LIST_HEAD(&c->pending_node_rewrites); mutex_init(&c->pending_node_rewrites_lock); } int bch2_fs_btree_interior_update_init(struct bch_fs *c) { c->btree_interior_update_worker = alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 8); if (!c->btree_interior_update_worker) return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; c->btree_node_rewrite_worker = alloc_ordered_workqueue("btree_node_rewrite", WQ_UNBOUND); if (!c->btree_node_rewrite_worker) return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1, sizeof(struct btree_update))) return -BCH_ERR_ENOMEM_btree_interior_update_pool_init; return 0; }