// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2006 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_mount.h" #include "xfs_trans.h" #include "xfs_buf_item.h" #include "xfs_trans_priv.h" #include "xfs_trace.h" #include "xfs_log.h" #include "xfs_log_priv.h" #include "xfs_log_recover.h" #include "xfs_error.h" #include "xfs_inode.h" #include "xfs_dir2.h" #include "xfs_quota.h" #include "xfs_alloc.h" #include "xfs_ag.h" #include "xfs_sb.h" #include "xfs_rtgroup.h" #include "xfs_rtbitmap.h" /* * This is the number of entries in the l_buf_cancel_table used during * recovery. */ #define XLOG_BC_TABLE_SIZE 64 #define XLOG_BUF_CANCEL_BUCKET(log, blkno) \ ((log)->l_buf_cancel_table + ((uint64_t)blkno % XLOG_BC_TABLE_SIZE)) /* * This structure is used during recovery to record the buf log items which * have been canceled and should not be replayed. */ struct xfs_buf_cancel { xfs_daddr_t bc_blkno; uint bc_len; int bc_refcount; struct list_head bc_list; }; static struct xfs_buf_cancel * xlog_find_buffer_cancelled( struct xlog *log, xfs_daddr_t blkno, uint len) { struct list_head *bucket; struct xfs_buf_cancel *bcp; if (!log->l_buf_cancel_table) return NULL; bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); list_for_each_entry(bcp, bucket, bc_list) { if (bcp->bc_blkno == blkno && bcp->bc_len == len) return bcp; } return NULL; } static bool xlog_add_buffer_cancelled( struct xlog *log, xfs_daddr_t blkno, uint len) { struct xfs_buf_cancel *bcp; /* * If we find an existing cancel record, this indicates that the buffer * was cancelled multiple times. To ensure that during pass 2 we keep * the record in the table until we reach its last occurrence in the * log, a reference count is kept to tell how many times we expect to * see this record during the second pass. */ bcp = xlog_find_buffer_cancelled(log, blkno, len); if (bcp) { bcp->bc_refcount++; return false; } bcp = kmalloc(sizeof(struct xfs_buf_cancel), GFP_KERNEL | __GFP_NOFAIL); bcp->bc_blkno = blkno; bcp->bc_len = len; bcp->bc_refcount = 1; list_add_tail(&bcp->bc_list, XLOG_BUF_CANCEL_BUCKET(log, blkno)); return true; } /* * Check if there is and entry for blkno, len in the buffer cancel record table. */ bool xlog_is_buffer_cancelled( struct xlog *log, xfs_daddr_t blkno, uint len) { return xlog_find_buffer_cancelled(log, blkno, len) != NULL; } /* * Check if there is and entry for blkno, len in the buffer cancel record table, * and decremented the reference count on it if there is one. * * Remove the cancel record once the refcount hits zero, so that if the same * buffer is re-used again after its last cancellation we actually replay the * changes made at that point. */ static bool xlog_put_buffer_cancelled( struct xlog *log, xfs_daddr_t blkno, uint len) { struct xfs_buf_cancel *bcp; bcp = xlog_find_buffer_cancelled(log, blkno, len); if (!bcp) { ASSERT(0); return false; } if (--bcp->bc_refcount == 0) { list_del(&bcp->bc_list); kfree(bcp); } return true; } /* log buffer item recovery */ /* * Sort buffer items for log recovery. Most buffer items should end up on the * buffer list and are recovered first, with the following exceptions: * * 1. XFS_BLF_CANCEL buffers must be processed last because some log items * might depend on the incor ecancellation record, and replaying a cancelled * buffer item can remove the incore record. * * 2. XFS_BLF_INODE_BUF buffers are handled after most regular items so that * we replay di_next_unlinked only after flushing the inode 'free' state * to the inode buffer. * * See xlog_recover_reorder_trans for more details. */ STATIC enum xlog_recover_reorder xlog_recover_buf_reorder( struct xlog_recover_item *item) { struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; if (buf_f->blf_flags & XFS_BLF_CANCEL) return XLOG_REORDER_CANCEL_LIST; if (buf_f->blf_flags & XFS_BLF_INODE_BUF) return XLOG_REORDER_INODE_BUFFER_LIST; return XLOG_REORDER_BUFFER_LIST; } STATIC void xlog_recover_buf_ra_pass2( struct xlog *log, struct xlog_recover_item *item) { struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; xlog_buf_readahead(log, buf_f->blf_blkno, buf_f->blf_len, NULL); } /* * Build up the table of buf cancel records so that we don't replay cancelled * data in the second pass. */ static int xlog_recover_buf_commit_pass1( struct xlog *log, struct xlog_recover_item *item) { struct xfs_buf_log_format *bf = item->ri_buf[0].i_addr; if (!xfs_buf_log_check_iovec(&item->ri_buf[0])) { xfs_err(log->l_mp, "bad buffer log item size (%d)", item->ri_buf[0].i_len); return -EFSCORRUPTED; } if (!(bf->blf_flags & XFS_BLF_CANCEL)) trace_xfs_log_recover_buf_not_cancel(log, bf); else if (xlog_add_buffer_cancelled(log, bf->blf_blkno, bf->blf_len)) trace_xfs_log_recover_buf_cancel_add(log, bf); else trace_xfs_log_recover_buf_cancel_ref_inc(log, bf); return 0; } /* * Validate the recovered buffer is of the correct type and attach the * appropriate buffer operations to them for writeback. Magic numbers are in a * few places: * the first 16 bits of the buffer (inode buffer, dquot buffer), * the first 32 bits of the buffer (most blocks), * inside a struct xfs_da_blkinfo at the start of the buffer. */ static void xlog_recover_validate_buf_type( struct xfs_mount *mp, struct xfs_buf *bp, struct xfs_buf_log_format *buf_f, xfs_lsn_t current_lsn) { struct xfs_da_blkinfo *info = bp->b_addr; uint32_t magic32; uint16_t magic16; uint16_t magicda; char *warnmsg = NULL; /* * We can only do post recovery validation on items on CRC enabled * fielsystems as we need to know when the buffer was written to be able * to determine if we should have replayed the item. If we replay old * metadata over a newer buffer, then it will enter a temporarily * inconsistent state resulting in verification failures. Hence for now * just avoid the verification stage for non-crc filesystems */ if (!xfs_has_crc(mp)) return; magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); magic16 = be16_to_cpu(*(__be16*)bp->b_addr); magicda = be16_to_cpu(info->magic); switch (xfs_blft_from_flags(buf_f)) { case XFS_BLFT_BTREE_BUF: switch (magic32) { case XFS_ABTB_CRC_MAGIC: case XFS_ABTB_MAGIC: bp->b_ops = &xfs_bnobt_buf_ops; break; case XFS_ABTC_CRC_MAGIC: case XFS_ABTC_MAGIC: bp->b_ops = &xfs_cntbt_buf_ops; break; case XFS_IBT_CRC_MAGIC: case XFS_IBT_MAGIC: bp->b_ops = &xfs_inobt_buf_ops; break; case XFS_FIBT_CRC_MAGIC: case XFS_FIBT_MAGIC: bp->b_ops = &xfs_finobt_buf_ops; break; case XFS_BMAP_CRC_MAGIC: case XFS_BMAP_MAGIC: bp->b_ops = &xfs_bmbt_buf_ops; break; case XFS_RMAP_CRC_MAGIC: bp->b_ops = &xfs_rmapbt_buf_ops; break; case XFS_REFC_CRC_MAGIC: bp->b_ops = &xfs_refcountbt_buf_ops; break; default: warnmsg = "Bad btree block magic!"; break; } break; case XFS_BLFT_AGF_BUF: if (magic32 != XFS_AGF_MAGIC) { warnmsg = "Bad AGF block magic!"; break; } bp->b_ops = &xfs_agf_buf_ops; break; case XFS_BLFT_AGFL_BUF: if (magic32 != XFS_AGFL_MAGIC) { warnmsg = "Bad AGFL block magic!"; break; } bp->b_ops = &xfs_agfl_buf_ops; break; case XFS_BLFT_AGI_BUF: if (magic32 != XFS_AGI_MAGIC) { warnmsg = "Bad AGI block magic!"; break; } bp->b_ops = &xfs_agi_buf_ops; break; case XFS_BLFT_UDQUOT_BUF: case XFS_BLFT_PDQUOT_BUF: case XFS_BLFT_GDQUOT_BUF: #ifdef CONFIG_XFS_QUOTA if (magic16 != XFS_DQUOT_MAGIC) { warnmsg = "Bad DQUOT block magic!"; break; } bp->b_ops = &xfs_dquot_buf_ops; #else xfs_alert(mp, "Trying to recover dquots without QUOTA support built in!"); ASSERT(0); #endif break; case XFS_BLFT_DINO_BUF: if (magic16 != XFS_DINODE_MAGIC) { warnmsg = "Bad INODE block magic!"; break; } bp->b_ops = &xfs_inode_buf_ops; break; case XFS_BLFT_SYMLINK_BUF: if (magic32 != XFS_SYMLINK_MAGIC) { warnmsg = "Bad symlink block magic!"; break; } bp->b_ops = &xfs_symlink_buf_ops; break; case XFS_BLFT_DIR_BLOCK_BUF: if (magic32 != XFS_DIR2_BLOCK_MAGIC && magic32 != XFS_DIR3_BLOCK_MAGIC) { warnmsg = "Bad dir block magic!"; break; } bp->b_ops = &xfs_dir3_block_buf_ops; break; case XFS_BLFT_DIR_DATA_BUF: if (magic32 != XFS_DIR2_DATA_MAGIC && magic32 != XFS_DIR3_DATA_MAGIC) { warnmsg = "Bad dir data magic!"; break; } bp->b_ops = &xfs_dir3_data_buf_ops; break; case XFS_BLFT_DIR_FREE_BUF: if (magic32 != XFS_DIR2_FREE_MAGIC && magic32 != XFS_DIR3_FREE_MAGIC) { warnmsg = "Bad dir3 free magic!"; break; } bp->b_ops = &xfs_dir3_free_buf_ops; break; case XFS_BLFT_DIR_LEAF1_BUF: if (magicda != XFS_DIR2_LEAF1_MAGIC && magicda != XFS_DIR3_LEAF1_MAGIC) { warnmsg = "Bad dir leaf1 magic!"; break; } bp->b_ops = &xfs_dir3_leaf1_buf_ops; break; case XFS_BLFT_DIR_LEAFN_BUF: if (magicda != XFS_DIR2_LEAFN_MAGIC && magicda != XFS_DIR3_LEAFN_MAGIC) { warnmsg = "Bad dir leafn magic!"; break; } bp->b_ops = &xfs_dir3_leafn_buf_ops; break; case XFS_BLFT_DA_NODE_BUF: if (magicda != XFS_DA_NODE_MAGIC && magicda != XFS_DA3_NODE_MAGIC) { warnmsg = "Bad da node magic!"; break; } bp->b_ops = &xfs_da3_node_buf_ops; break; case XFS_BLFT_ATTR_LEAF_BUF: if (magicda != XFS_ATTR_LEAF_MAGIC && magicda != XFS_ATTR3_LEAF_MAGIC) { warnmsg = "Bad attr leaf magic!"; break; } bp->b_ops = &xfs_attr3_leaf_buf_ops; break; case XFS_BLFT_ATTR_RMT_BUF: if (magic32 != XFS_ATTR3_RMT_MAGIC) { warnmsg = "Bad attr remote magic!"; break; } bp->b_ops = &xfs_attr3_rmt_buf_ops; break; case XFS_BLFT_SB_BUF: if (magic32 != XFS_SB_MAGIC) { warnmsg = "Bad SB block magic!"; break; } bp->b_ops = &xfs_sb_buf_ops; break; #ifdef CONFIG_XFS_RT case XFS_BLFT_RTBITMAP_BUF: if (xfs_has_rtgroups(mp) && magic32 != XFS_RTBITMAP_MAGIC) { warnmsg = "Bad rtbitmap magic!"; break; } bp->b_ops = xfs_rtblock_ops(mp, XFS_RTGI_BITMAP); break; case XFS_BLFT_RTSUMMARY_BUF: if (xfs_has_rtgroups(mp) && magic32 != XFS_RTSUMMARY_MAGIC) { warnmsg = "Bad rtsummary magic!"; break; } bp->b_ops = xfs_rtblock_ops(mp, XFS_RTGI_SUMMARY); break; #endif /* CONFIG_XFS_RT */ default: xfs_warn(mp, "Unknown buffer type %d!", xfs_blft_from_flags(buf_f)); break; } /* * Nothing else to do in the case of a NULL current LSN as this means * the buffer is more recent than the change in the log and will be * skipped. */ if (current_lsn == NULLCOMMITLSN) return; if (warnmsg) { xfs_warn(mp, warnmsg); ASSERT(0); } /* * We must update the metadata LSN of the buffer as it is written out to * ensure that older transactions never replay over this one and corrupt * the buffer. This can occur if log recovery is interrupted at some * point after the current transaction completes, at which point a * subsequent mount starts recovery from the beginning. * * Write verifiers update the metadata LSN from log items attached to * the buffer. Therefore, initialize a bli purely to carry the LSN to * the verifier. */ if (bp->b_ops) { struct xfs_buf_log_item *bip; bp->b_flags |= _XBF_LOGRECOVERY; xfs_buf_item_init(bp, mp); bip = bp->b_log_item; bip->bli_item.li_lsn = current_lsn; } } /* * Perform a 'normal' buffer recovery. Each logged region of the * buffer should be copied over the corresponding region in the * given buffer. The bitmap in the buf log format structure indicates * where to place the logged data. */ STATIC void xlog_recover_do_reg_buffer( struct xfs_mount *mp, struct xlog_recover_item *item, struct xfs_buf *bp, struct xfs_buf_log_format *buf_f, xfs_lsn_t current_lsn) { int i; int bit; int nbits; xfs_failaddr_t fa; const size_t size_disk_dquot = sizeof(struct xfs_disk_dquot); trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); bit = 0; i = 1; /* 0 is the buf format structure */ while (1) { bit = xfs_next_bit(buf_f->blf_data_map, buf_f->blf_map_size, bit); if (bit == -1) break; nbits = xfs_contig_bits(buf_f->blf_data_map, buf_f->blf_map_size, bit); ASSERT(nbits > 0); ASSERT(item->ri_buf[i].i_addr != NULL); ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); ASSERT(BBTOB(bp->b_length) >= ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); /* * The dirty regions logged in the buffer, even though * contiguous, may span multiple chunks. This is because the * dirty region may span a physical page boundary in a buffer * and hence be split into two separate vectors for writing into * the log. Hence we need to trim nbits back to the length of * the current region being copied out of the log. */ if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; /* * Do a sanity check if this is a dquot buffer. Just checking * the first dquot in the buffer should do. XXXThis is * probably a good thing to do for other buf types also. */ fa = NULL; if (buf_f->blf_flags & (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { if (item->ri_buf[i].i_addr == NULL) { xfs_alert(mp, "XFS: NULL dquot in %s.", __func__); goto next; } if (item->ri_buf[i].i_len < size_disk_dquot) { xfs_alert(mp, "XFS: dquot too small (%d) in %s.", item->ri_buf[i].i_len, __func__); goto next; } fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, -1); if (fa) { xfs_alert(mp, "dquot corrupt at %pS trying to replay into block 0x%llx", fa, xfs_buf_daddr(bp)); goto next; } } memcpy(xfs_buf_offset(bp, (uint)bit << XFS_BLF_SHIFT), /* dest */ item->ri_buf[i].i_addr, /* source */ nbits<ri_total); xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn); } /* * Perform a dquot buffer recovery. * Simple algorithm: if we have found a QUOTAOFF log item of the same type * (ie. USR or GRP), then just toss this buffer away; don't recover it. * Else, treat it as a regular buffer and do recovery. * * Return false if the buffer was tossed and true if we recovered the buffer to * indicate to the caller if the buffer needs writing. */ STATIC bool xlog_recover_do_dquot_buffer( struct xfs_mount *mp, struct xlog *log, struct xlog_recover_item *item, struct xfs_buf *bp, struct xfs_buf_log_format *buf_f) { uint type; trace_xfs_log_recover_buf_dquot_buf(log, buf_f); /* * Filesystems are required to send in quota flags at mount time. */ if (!mp->m_qflags) return false; type = 0; if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) type |= XFS_DQTYPE_USER; if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) type |= XFS_DQTYPE_PROJ; if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) type |= XFS_DQTYPE_GROUP; /* * This type of quotas was turned off, so ignore this buffer */ if (log->l_quotaoffs_flag & type) return false; xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN); return true; } /* * Perform recovery for a buffer full of inodes. In these buffers, the only * data which should be recovered is that which corresponds to the * di_next_unlinked pointers in the on disk inode structures. The rest of the * data for the inodes is always logged through the inodes themselves rather * than the inode buffer and is recovered in xlog_recover_inode_pass2(). * * The only time when buffers full of inodes are fully recovered is when the * buffer is full of newly allocated inodes. In this case the buffer will * not be marked as an inode buffer and so will be sent to * xlog_recover_do_reg_buffer() below during recovery. */ STATIC int xlog_recover_do_inode_buffer( struct xfs_mount *mp, struct xlog_recover_item *item, struct xfs_buf *bp, struct xfs_buf_log_format *buf_f) { int i; int item_index = 0; int bit = 0; int nbits = 0; int reg_buf_offset = 0; int reg_buf_bytes = 0; int next_unlinked_offset; int inodes_per_buf; xfs_agino_t *logged_nextp; xfs_agino_t *buffer_nextp; trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); /* * Post recovery validation only works properly on CRC enabled * filesystems. */ if (xfs_has_crc(mp)) bp->b_ops = &xfs_inode_buf_ops; inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog; for (i = 0; i < inodes_per_buf; i++) { next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + offsetof(struct xfs_dinode, di_next_unlinked); while (next_unlinked_offset >= (reg_buf_offset + reg_buf_bytes)) { /* * The next di_next_unlinked field is beyond * the current logged region. Find the next * logged region that contains or is beyond * the current di_next_unlinked field. */ bit += nbits; bit = xfs_next_bit(buf_f->blf_data_map, buf_f->blf_map_size, bit); /* * If there are no more logged regions in the * buffer, then we're done. */ if (bit == -1) return 0; nbits = xfs_contig_bits(buf_f->blf_data_map, buf_f->blf_map_size, bit); ASSERT(nbits > 0); reg_buf_offset = bit << XFS_BLF_SHIFT; reg_buf_bytes = nbits << XFS_BLF_SHIFT; item_index++; } /* * If the current logged region starts after the current * di_next_unlinked field, then move on to the next * di_next_unlinked field. */ if (next_unlinked_offset < reg_buf_offset) continue; ASSERT(item->ri_buf[item_index].i_addr != NULL); ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length)); /* * The current logged region contains a copy of the * current di_next_unlinked field. Extract its value * and copy it to the buffer copy. */ logged_nextp = item->ri_buf[item_index].i_addr + next_unlinked_offset - reg_buf_offset; if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) { xfs_alert(mp, "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). " "Trying to replay bad (0) inode di_next_unlinked field.", item, bp); return -EFSCORRUPTED; } buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset); *buffer_nextp = *logged_nextp; /* * If necessary, recalculate the CRC in the on-disk inode. We * have to leave the inode in a consistent state for whoever * reads it next.... */ xfs_dinode_calc_crc(mp, xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); } return 0; } /* * Update the in-memory superblock and perag structures from the primary SB * buffer. * * This is required because transactions running after growfs may require the * updated values to be set in a previous fully commit transaction. */ static int xlog_recover_do_primary_sb_buffer( struct xfs_mount *mp, struct xlog_recover_item *item, struct xfs_buf *bp, struct xfs_buf_log_format *buf_f, xfs_lsn_t current_lsn) { struct xfs_dsb *dsb = bp->b_addr; xfs_agnumber_t orig_agcount = mp->m_sb.sb_agcount; xfs_rgnumber_t orig_rgcount = mp->m_sb.sb_rgcount; int error; xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn); if (orig_agcount == 0) { xfs_alert(mp, "Trying to grow file system without AGs"); return -EFSCORRUPTED; } /* * Update the in-core super block from the freshly recovered on-disk one. */ xfs_sb_from_disk(&mp->m_sb, dsb); if (mp->m_sb.sb_agcount < orig_agcount) { xfs_alert(mp, "Shrinking AG count in log recovery not supported"); return -EFSCORRUPTED; } if (mp->m_sb.sb_rgcount < orig_rgcount) { xfs_warn(mp, "Shrinking rtgroup count in log recovery not supported"); return -EFSCORRUPTED; } /* * If the last AG was grown or shrunk, we also need to update the * length in the in-core perag structure and values depending on it. */ error = xfs_update_last_ag_size(mp, orig_agcount); if (error) return error; /* * If the last rtgroup was grown or shrunk, we also need to update the * length in the in-core rtgroup structure and values depending on it. * Ignore this on any filesystem with zero rtgroups. */ if (orig_rgcount > 0) { error = xfs_update_last_rtgroup_size(mp, orig_rgcount); if (error) return error; } /* * Initialize the new perags, and also update various block and inode * allocator setting based off the number of AGs or total blocks. * Because of the latter this also needs to happen if the agcount did * not change. */ error = xfs_initialize_perag(mp, orig_agcount, mp->m_sb.sb_agcount, mp->m_sb.sb_dblocks, &mp->m_maxagi); if (error) { xfs_warn(mp, "Failed recovery per-ag init: %d", error); return error; } mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); error = xfs_initialize_rtgroups(mp, orig_rgcount, mp->m_sb.sb_rgcount, mp->m_sb.sb_rextents); if (error) { xfs_warn(mp, "Failed recovery rtgroup init: %d", error); return error; } return 0; } /* * V5 filesystems know the age of the buffer on disk being recovered. We can * have newer objects on disk than we are replaying, and so for these cases we * don't want to replay the current change as that will make the buffer contents * temporarily invalid on disk. * * The magic number might not match the buffer type we are going to recover * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence * extract the LSN of the existing object in the buffer based on it's current * magic number. If we don't recognise the magic number in the buffer, then * return a LSN of -1 so that the caller knows it was an unrecognised block and * so can recover the buffer. * * Note: we cannot rely solely on magic number matches to determine that the * buffer has a valid LSN - we also need to verify that it belongs to this * filesystem, so we need to extract the object's LSN and compare it to that * which we read from the superblock. If the UUIDs don't match, then we've got a * stale metadata block from an old filesystem instance that we need to recover * over the top of. */ static xfs_lsn_t xlog_recover_get_buf_lsn( struct xfs_mount *mp, struct xfs_buf *bp, struct xfs_buf_log_format *buf_f) { uint32_t magic32; uint16_t magic16; uint16_t magicda; void *blk = bp->b_addr; uuid_t *uuid; xfs_lsn_t lsn = -1; uint16_t blft; /* v4 filesystems always recover immediately */ if (!xfs_has_crc(mp)) goto recover_immediately; /* * realtime bitmap and summary file blocks do not have magic numbers or * UUIDs, so we must recover them immediately. */ blft = xfs_blft_from_flags(buf_f); if (!xfs_has_rtgroups(mp) && (blft == XFS_BLFT_RTBITMAP_BUF || blft == XFS_BLFT_RTSUMMARY_BUF)) goto recover_immediately; magic32 = be32_to_cpu(*(__be32 *)blk); switch (magic32) { case XFS_RTSUMMARY_MAGIC: case XFS_RTBITMAP_MAGIC: { struct xfs_rtbuf_blkinfo *hdr = blk; lsn = be64_to_cpu(hdr->rt_lsn); uuid = &hdr->rt_uuid; break; } case XFS_ABTB_CRC_MAGIC: case XFS_ABTC_CRC_MAGIC: case XFS_ABTB_MAGIC: case XFS_ABTC_MAGIC: case XFS_RMAP_CRC_MAGIC: case XFS_REFC_CRC_MAGIC: case XFS_FIBT_CRC_MAGIC: case XFS_FIBT_MAGIC: case XFS_IBT_CRC_MAGIC: case XFS_IBT_MAGIC: { struct xfs_btree_block *btb = blk; lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); uuid = &btb->bb_u.s.bb_uuid; break; } case XFS_BMAP_CRC_MAGIC: case XFS_BMAP_MAGIC: { struct xfs_btree_block *btb = blk; lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); uuid = &btb->bb_u.l.bb_uuid; break; } case XFS_AGF_MAGIC: lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); uuid = &((struct xfs_agf *)blk)->agf_uuid; break; case XFS_AGFL_MAGIC: lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); uuid = &((struct xfs_agfl *)blk)->agfl_uuid; break; case XFS_AGI_MAGIC: lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); uuid = &((struct xfs_agi *)blk)->agi_uuid; break; case XFS_SYMLINK_MAGIC: lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; break; case XFS_DIR3_BLOCK_MAGIC: case XFS_DIR3_DATA_MAGIC: case XFS_DIR3_FREE_MAGIC: lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; break; case XFS_ATTR3_RMT_MAGIC: /* * Remote attr blocks are written synchronously, rather than * being logged. That means they do not contain a valid LSN * (i.e. transactionally ordered) in them, and hence any time we * see a buffer to replay over the top of a remote attribute * block we should simply do so. */ goto recover_immediately; case XFS_SB_MAGIC: /* * superblock uuids are magic. We may or may not have a * sb_meta_uuid on disk, but it will be set in the in-core * superblock. We set the uuid pointer for verification * according to the superblock feature mask to ensure we check * the relevant UUID in the superblock. */ lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); if (xfs_has_metauuid(mp)) uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid; else uuid = &((struct xfs_dsb *)blk)->sb_uuid; break; default: break; } if (lsn != (xfs_lsn_t)-1) { if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid)) goto recover_immediately; return lsn; } magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); switch (magicda) { case XFS_DIR3_LEAF1_MAGIC: case XFS_DIR3_LEAFN_MAGIC: case XFS_ATTR3_LEAF_MAGIC: case XFS_DA3_NODE_MAGIC: lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; break; default: break; } if (lsn != (xfs_lsn_t)-1) { if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid)) goto recover_immediately; return lsn; } /* * We do individual object checks on dquot and inode buffers as they * have their own individual LSN records. Also, we could have a stale * buffer here, so we have to at least recognise these buffer types. * * A notd complexity here is inode unlinked list processing - it logs * the inode directly in the buffer, but we don't know which inodes have * been modified, and there is no global buffer LSN. Hence we need to * recover all inode buffer types immediately. This problem will be * fixed by logical logging of the unlinked list modifications. */ magic16 = be16_to_cpu(*(__be16 *)blk); switch (magic16) { case XFS_DQUOT_MAGIC: case XFS_DINODE_MAGIC: goto recover_immediately; default: break; } /* unknown buffer contents, recover immediately */ recover_immediately: return (xfs_lsn_t)-1; } /* * This routine replays a modification made to a buffer at runtime. * There are actually two types of buffer, regular and inode, which * are handled differently. Inode buffers are handled differently * in that we only recover a specific set of data from them, namely * the inode di_next_unlinked fields. This is because all other inode * data is actually logged via inode records and any data we replay * here which overlaps that may be stale. * * When meta-data buffers are freed at run time we log a buffer item * with the XFS_BLF_CANCEL bit set to indicate that previous copies * of the buffer in the log should not be replayed at recovery time. * This is so that if the blocks covered by the buffer are reused for * file data before we crash we don't end up replaying old, freed * meta-data into a user's file. * * To handle the cancellation of buffer log items, we make two passes * over the log during recovery. During the first we build a table of * those buffers which have been cancelled, and during the second we * only replay those buffers which do not have corresponding cancel * records in the table. See xlog_recover_buf_pass[1,2] above * for more details on the implementation of the table of cancel records. */ STATIC int xlog_recover_buf_commit_pass2( struct xlog *log, struct list_head *buffer_list, struct xlog_recover_item *item, xfs_lsn_t current_lsn) { struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; struct xfs_mount *mp = log->l_mp; struct xfs_buf *bp; int error; uint buf_flags; xfs_lsn_t lsn; /* * In this pass we only want to recover all the buffers which have * not been cancelled and are not cancellation buffers themselves. */ if (buf_f->blf_flags & XFS_BLF_CANCEL) { if (xlog_put_buffer_cancelled(log, buf_f->blf_blkno, buf_f->blf_len)) goto cancelled; } else { if (xlog_is_buffer_cancelled(log, buf_f->blf_blkno, buf_f->blf_len)) goto cancelled; } trace_xfs_log_recover_buf_recover(log, buf_f); buf_flags = 0; if (buf_f->blf_flags & XFS_BLF_INODE_BUF) buf_flags |= XBF_UNMAPPED; error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, buf_flags, &bp, NULL); if (error) return error; /* * Recover the buffer only if we get an LSN from it and it's less than * the lsn of the transaction we are replaying. * * Note that we have to be extremely careful of readahead here. * Readahead does not attach verfiers to the buffers so if we don't * actually do any replay after readahead because of the LSN we found * in the buffer if more recent than that current transaction then we * need to attach the verifier directly. Failure to do so can lead to * future recovery actions (e.g. EFI and unlinked list recovery) can * operate on the buffers and they won't get the verifier attached. This * can lead to blocks on disk having the correct content but a stale * CRC. * * It is safe to assume these clean buffers are currently up to date. * If the buffer is dirtied by a later transaction being replayed, then * the verifier will be reset to match whatever recover turns that * buffer into. */ lsn = xlog_recover_get_buf_lsn(mp, bp, buf_f); if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { trace_xfs_log_recover_buf_skip(log, buf_f); xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN); /* * We're skipping replay of this buffer log item due to the log * item LSN being behind the ondisk buffer. Verify the buffer * contents since we aren't going to run the write verifier. */ if (bp->b_ops) { bp->b_ops->verify_read(bp); error = bp->b_error; } goto out_release; } if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); if (error) goto out_release; } else if (buf_f->blf_flags & (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { bool dirty; dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); if (!dirty) goto out_release; } else if ((xfs_blft_from_flags(buf_f) & XFS_BLFT_SB_BUF) && xfs_buf_daddr(bp) == 0) { error = xlog_recover_do_primary_sb_buffer(mp, item, bp, buf_f, current_lsn); if (error) goto out_release; /* Update the rt superblock if we have one. */ if (xfs_has_rtsb(mp) && mp->m_rtsb_bp) { struct xfs_buf *rtsb_bp = mp->m_rtsb_bp; xfs_buf_lock(rtsb_bp); xfs_buf_hold(rtsb_bp); xfs_update_rtsb(rtsb_bp, bp); rtsb_bp->b_flags |= _XBF_LOGRECOVERY; xfs_buf_delwri_queue(rtsb_bp, buffer_list); xfs_buf_relse(rtsb_bp); } } else { xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn); } /* * Perform delayed write on the buffer. Asynchronous writes will be * slower when taking into account all the buffers to be flushed. * * Also make sure that only inode buffers with good sizes stay in * the buffer cache. The kernel moves inodes in buffers of 1 block * or inode_cluster_size bytes, whichever is bigger. The inode * buffers in the log can be a different size if the log was generated * by an older kernel using unclustered inode buffers or a newer kernel * running with a different inode cluster size. Regardless, if * the inode buffer size isn't max(blocksize, inode_cluster_size) * for *our* value of inode_cluster_size, then we need to keep * the buffer out of the buffer cache so that the buffer won't * overlap with future reads of those inodes. */ if (XFS_DINODE_MAGIC == be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) { xfs_buf_stale(bp); error = xfs_bwrite(bp); } else { ASSERT(bp->b_mount == mp); bp->b_flags |= _XBF_LOGRECOVERY; xfs_buf_delwri_queue(bp, buffer_list); } out_release: xfs_buf_relse(bp); return error; cancelled: trace_xfs_log_recover_buf_cancel(log, buf_f); return 0; } const struct xlog_recover_item_ops xlog_buf_item_ops = { .item_type = XFS_LI_BUF, .reorder = xlog_recover_buf_reorder, .ra_pass2 = xlog_recover_buf_ra_pass2, .commit_pass1 = xlog_recover_buf_commit_pass1, .commit_pass2 = xlog_recover_buf_commit_pass2, }; #ifdef DEBUG void xlog_check_buf_cancel_table( struct xlog *log) { int i; for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) ASSERT(list_empty(&log->l_buf_cancel_table[i])); } #endif int xlog_alloc_buf_cancel_table( struct xlog *log) { void *p; int i; ASSERT(log->l_buf_cancel_table == NULL); p = kmalloc_array(XLOG_BC_TABLE_SIZE, sizeof(struct list_head), GFP_KERNEL); if (!p) return -ENOMEM; log->l_buf_cancel_table = p; for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); return 0; } void xlog_free_buf_cancel_table( struct xlog *log) { int i; if (!log->l_buf_cancel_table) return; for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) { struct xfs_buf_cancel *bc; while ((bc = list_first_entry_or_null( &log->l_buf_cancel_table[i], struct xfs_buf_cancel, bc_list))) { list_del(&bc->bc_list); kfree(bc); } } kfree(log->l_buf_cancel_table); log->l_buf_cancel_table = NULL; }