// SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/buffer.c * * Copyright (C) 1991, 1992, 2002 Linus Torvalds */ /* * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 * * Removed a lot of unnecessary code and simplified things now that * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 * * Speed up hash, lru, and free list operations. Use gfp() for allocating * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM * * Added 32k buffer block sizes - these are required older ARM systems. - RMK * * async buffer flushing, 1999 Andrea Arcangeli */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, enum rw_hint hint, struct writeback_control *wbc); #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) inline void touch_buffer(struct buffer_head *bh) { trace_block_touch_buffer(bh); folio_mark_accessed(bh->b_folio); } EXPORT_SYMBOL(touch_buffer); void __lock_buffer(struct buffer_head *bh) { wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); } EXPORT_SYMBOL(__lock_buffer); void unlock_buffer(struct buffer_head *bh) { clear_bit_unlock(BH_Lock, &bh->b_state); smp_mb__after_atomic(); wake_up_bit(&bh->b_state, BH_Lock); } EXPORT_SYMBOL(unlock_buffer); /* * Returns if the folio has dirty or writeback buffers. If all the buffers * are unlocked and clean then the folio_test_dirty information is stale. If * any of the buffers are locked, it is assumed they are locked for IO. */ void buffer_check_dirty_writeback(struct folio *folio, bool *dirty, bool *writeback) { struct buffer_head *head, *bh; *dirty = false; *writeback = false; BUG_ON(!folio_test_locked(folio)); head = folio_buffers(folio); if (!head) return; if (folio_test_writeback(folio)) *writeback = true; bh = head; do { if (buffer_locked(bh)) *writeback = true; if (buffer_dirty(bh)) *dirty = true; bh = bh->b_this_page; } while (bh != head); } /* * Block until a buffer comes unlocked. This doesn't stop it * from becoming locked again - you have to lock it yourself * if you want to preserve its state. */ void __wait_on_buffer(struct buffer_head * bh) { wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); } EXPORT_SYMBOL(__wait_on_buffer); static void buffer_io_error(struct buffer_head *bh, char *msg) { if (!test_bit(BH_Quiet, &bh->b_state)) printk_ratelimited(KERN_ERR "Buffer I/O error on dev %pg, logical block %llu%s\n", bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); } /* * End-of-IO handler helper function which does not touch the bh after * unlocking it. * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but * a race there is benign: unlock_buffer() only use the bh's address for * hashing after unlocking the buffer, so it doesn't actually touch the bh * itself. */ static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) { if (uptodate) { set_buffer_uptodate(bh); } else { /* This happens, due to failed read-ahead attempts. */ clear_buffer_uptodate(bh); } unlock_buffer(bh); } /* * Default synchronous end-of-IO handler.. Just mark it up-to-date and * unlock the buffer. */ void end_buffer_read_sync(struct buffer_head *bh, int uptodate) { __end_buffer_read_notouch(bh, uptodate); put_bh(bh); } EXPORT_SYMBOL(end_buffer_read_sync); void end_buffer_write_sync(struct buffer_head *bh, int uptodate) { if (uptodate) { set_buffer_uptodate(bh); } else { buffer_io_error(bh, ", lost sync page write"); mark_buffer_write_io_error(bh); clear_buffer_uptodate(bh); } unlock_buffer(bh); put_bh(bh); } EXPORT_SYMBOL(end_buffer_write_sync); /* * Various filesystems appear to want __find_get_block to be non-blocking. * But it's the page lock which protects the buffers. To get around this, * we get exclusion from try_to_free_buffers with the blockdev mapping's * i_private_lock. * * Hack idea: for the blockdev mapping, i_private_lock contention * may be quite high. This code could TryLock the page, and if that * succeeds, there is no need to take i_private_lock. */ static struct buffer_head * __find_get_block_slow(struct block_device *bdev, sector_t block) { struct address_space *bd_mapping = bdev->bd_mapping; const int blkbits = bd_mapping->host->i_blkbits; struct buffer_head *ret = NULL; pgoff_t index; struct buffer_head *bh; struct buffer_head *head; struct folio *folio; int all_mapped = 1; static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); index = ((loff_t)block << blkbits) / PAGE_SIZE; folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0); if (IS_ERR(folio)) goto out; spin_lock(&bd_mapping->i_private_lock); head = folio_buffers(folio); if (!head) goto out_unlock; bh = head; do { if (!buffer_mapped(bh)) all_mapped = 0; else if (bh->b_blocknr == block) { ret = bh; get_bh(bh); goto out_unlock; } bh = bh->b_this_page; } while (bh != head); /* we might be here because some of the buffers on this page are * not mapped. This is due to various races between * file io on the block device and getblk. It gets dealt with * elsewhere, don't buffer_error if we had some unmapped buffers */ ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); if (all_mapped && __ratelimit(&last_warned)) { printk("__find_get_block_slow() failed. block=%llu, " "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " "device %pg blocksize: %d\n", (unsigned long long)block, (unsigned long long)bh->b_blocknr, bh->b_state, bh->b_size, bdev, 1 << blkbits); } out_unlock: spin_unlock(&bd_mapping->i_private_lock); folio_put(folio); out: return ret; } static void end_buffer_async_read(struct buffer_head *bh, int uptodate) { unsigned long flags; struct buffer_head *first; struct buffer_head *tmp; struct folio *folio; int folio_uptodate = 1; BUG_ON(!buffer_async_read(bh)); folio = bh->b_folio; if (uptodate) { set_buffer_uptodate(bh); } else { clear_buffer_uptodate(bh); buffer_io_error(bh, ", async page read"); } /* * Be _very_ careful from here on. Bad things can happen if * two buffer heads end IO at almost the same time and both * decide that the page is now completely done. */ first = folio_buffers(folio); spin_lock_irqsave(&first->b_uptodate_lock, flags); clear_buffer_async_read(bh); unlock_buffer(bh); tmp = bh; do { if (!buffer_uptodate(tmp)) folio_uptodate = 0; if (buffer_async_read(tmp)) { BUG_ON(!buffer_locked(tmp)); goto still_busy; } tmp = tmp->b_this_page; } while (tmp != bh); spin_unlock_irqrestore(&first->b_uptodate_lock, flags); folio_end_read(folio, folio_uptodate); return; still_busy: spin_unlock_irqrestore(&first->b_uptodate_lock, flags); return; } struct postprocess_bh_ctx { struct work_struct work; struct buffer_head *bh; }; static void verify_bh(struct work_struct *work) { struct postprocess_bh_ctx *ctx = container_of(work, struct postprocess_bh_ctx, work); struct buffer_head *bh = ctx->bh; bool valid; valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh)); end_buffer_async_read(bh, valid); kfree(ctx); } static bool need_fsverity(struct buffer_head *bh) { struct folio *folio = bh->b_folio; struct inode *inode = folio->mapping->host; return fsverity_active(inode) && /* needed by ext4 */ folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); } static void decrypt_bh(struct work_struct *work) { struct postprocess_bh_ctx *ctx = container_of(work, struct postprocess_bh_ctx, work); struct buffer_head *bh = ctx->bh; int err; err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size, bh_offset(bh)); if (err == 0 && need_fsverity(bh)) { /* * We use different work queues for decryption and for verity * because verity may require reading metadata pages that need * decryption, and we shouldn't recurse to the same workqueue. */ INIT_WORK(&ctx->work, verify_bh); fsverity_enqueue_verify_work(&ctx->work); return; } end_buffer_async_read(bh, err == 0); kfree(ctx); } /* * I/O completion handler for block_read_full_folio() - pages * which come unlocked at the end of I/O. */ static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) { struct inode *inode = bh->b_folio->mapping->host; bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode); bool verify = need_fsverity(bh); /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */ if (uptodate && (decrypt || verify)) { struct postprocess_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); if (ctx) { ctx->bh = bh; if (decrypt) { INIT_WORK(&ctx->work, decrypt_bh); fscrypt_enqueue_decrypt_work(&ctx->work); } else { INIT_WORK(&ctx->work, verify_bh); fsverity_enqueue_verify_work(&ctx->work); } return; } uptodate = 0; } end_buffer_async_read(bh, uptodate); } /* * Completion handler for block_write_full_folio() - folios which are unlocked * during I/O, and which have the writeback flag cleared upon I/O completion. */ static void end_buffer_async_write(struct buffer_head *bh, int uptodate) { unsigned long flags; struct buffer_head *first; struct buffer_head *tmp; struct folio *folio; BUG_ON(!buffer_async_write(bh)); folio = bh->b_folio; if (uptodate) { set_buffer_uptodate(bh); } else { buffer_io_error(bh, ", lost async page write"); mark_buffer_write_io_error(bh); clear_buffer_uptodate(bh); } first = folio_buffers(folio); spin_lock_irqsave(&first->b_uptodate_lock, flags); clear_buffer_async_write(bh); unlock_buffer(bh); tmp = bh->b_this_page; while (tmp != bh) { if (buffer_async_write(tmp)) { BUG_ON(!buffer_locked(tmp)); goto still_busy; } tmp = tmp->b_this_page; } spin_unlock_irqrestore(&first->b_uptodate_lock, flags); folio_end_writeback(folio); return; still_busy: spin_unlock_irqrestore(&first->b_uptodate_lock, flags); return; } /* * If a page's buffers are under async readin (end_buffer_async_read * completion) then there is a possibility that another thread of * control could lock one of the buffers after it has completed * but while some of the other buffers have not completed. This * locked buffer would confuse end_buffer_async_read() into not unlocking * the page. So the absence of BH_Async_Read tells end_buffer_async_read() * that this buffer is not under async I/O. * * The page comes unlocked when it has no locked buffer_async buffers * left. * * PageLocked prevents anyone starting new async I/O reads any of * the buffers. * * PageWriteback is used to prevent simultaneous writeout of the same * page. * * PageLocked prevents anyone from starting writeback of a page which is * under read I/O (PageWriteback is only ever set against a locked page). */ static void mark_buffer_async_read(struct buffer_head *bh) { bh->b_end_io = end_buffer_async_read_io; set_buffer_async_read(bh); } static void mark_buffer_async_write_endio(struct buffer_head *bh, bh_end_io_t *handler) { bh->b_end_io = handler; set_buffer_async_write(bh); } void mark_buffer_async_write(struct buffer_head *bh) { mark_buffer_async_write_endio(bh, end_buffer_async_write); } EXPORT_SYMBOL(mark_buffer_async_write); /* * fs/buffer.c contains helper functions for buffer-backed address space's * fsync functions. A common requirement for buffer-based filesystems is * that certain data from the backing blockdev needs to be written out for * a successful fsync(). For example, ext2 indirect blocks need to be * written back and waited upon before fsync() returns. * * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(), * inode_has_buffers() and invalidate_inode_buffers() are provided for the * management of a list of dependent buffers at ->i_mapping->i_private_list. * * Locking is a little subtle: try_to_free_buffers() will remove buffers * from their controlling inode's queue when they are being freed. But * try_to_free_buffers() will be operating against the *blockdev* mapping * at the time, not against the S_ISREG file which depends on those buffers. * So the locking for i_private_list is via the i_private_lock in the address_space * which backs the buffers. Which is different from the address_space * against which the buffers are listed. So for a particular address_space, * mapping->i_private_lock does *not* protect mapping->i_private_list! In fact, * mapping->i_private_list will always be protected by the backing blockdev's * ->i_private_lock. * * Which introduces a requirement: all buffers on an address_space's * ->i_private_list must be from the same address_space: the blockdev's. * * address_spaces which do not place buffers at ->i_private_list via these * utility functions are free to use i_private_lock and i_private_list for * whatever they want. The only requirement is that list_empty(i_private_list) * be true at clear_inode() time. * * FIXME: clear_inode should not call invalidate_inode_buffers(). The * filesystems should do that. invalidate_inode_buffers() should just go * BUG_ON(!list_empty). * * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should * take an address_space, not an inode. And it should be called * mark_buffer_dirty_fsync() to clearly define why those buffers are being * queued up. * * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the * list if it is already on a list. Because if the buffer is on a list, * it *must* already be on the right one. If not, the filesystem is being * silly. This will save a ton of locking. But first we have to ensure * that buffers are taken *off* the old inode's list when they are freed * (presumably in truncate). That requires careful auditing of all * filesystems (do it inside bforget()). It could also be done by bringing * b_inode back. */ /* * The buffer's backing address_space's i_private_lock must be held */ static void __remove_assoc_queue(struct buffer_head *bh) { list_del_init(&bh->b_assoc_buffers); WARN_ON(!bh->b_assoc_map); bh->b_assoc_map = NULL; } int inode_has_buffers(struct inode *inode) { return !list_empty(&inode->i_data.i_private_list); } /* * osync is designed to support O_SYNC io. It waits synchronously for * all already-submitted IO to complete, but does not queue any new * writes to the disk. * * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer * as you dirty the buffers, and then use osync_inode_buffers to wait for * completion. Any other dirty buffers which are not yet queued for * write will not be flushed to disk by the osync. */ static int osync_buffers_list(spinlock_t *lock, struct list_head *list) { struct buffer_head *bh; struct list_head *p; int err = 0; spin_lock(lock); repeat: list_for_each_prev(p, list) { bh = BH_ENTRY(p); if (buffer_locked(bh)) { get_bh(bh); spin_unlock(lock); wait_on_buffer(bh); if (!buffer_uptodate(bh)) err = -EIO; brelse(bh); spin_lock(lock); goto repeat; } } spin_unlock(lock); return err; } /** * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers * @mapping: the mapping which wants those buffers written * * Starts I/O against the buffers at mapping->i_private_list, and waits upon * that I/O. * * Basically, this is a convenience function for fsync(). * @mapping is a file or directory which needs those buffers to be written for * a successful fsync(). */ int sync_mapping_buffers(struct address_space *mapping) { struct address_space *buffer_mapping = mapping->i_private_data; if (buffer_mapping == NULL || list_empty(&mapping->i_private_list)) return 0; return fsync_buffers_list(&buffer_mapping->i_private_lock, &mapping->i_private_list); } EXPORT_SYMBOL(sync_mapping_buffers); /** * generic_buffers_fsync_noflush - generic buffer fsync implementation * for simple filesystems with no inode lock * * @file: file to synchronize * @start: start offset in bytes * @end: end offset in bytes (inclusive) * @datasync: only synchronize essential metadata if true * * This is a generic implementation of the fsync method for simple * filesystems which track all non-inode metadata in the buffers list * hanging off the address_space structure. */ int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end, bool datasync) { struct inode *inode = file->f_mapping->host; int err; int ret; err = file_write_and_wait_range(file, start, end); if (err) return err; ret = sync_mapping_buffers(inode->i_mapping); if (!(inode->i_state & I_DIRTY_ALL)) goto out; if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) goto out; err = sync_inode_metadata(inode, 1); if (ret == 0) ret = err; out: /* check and advance again to catch errors after syncing out buffers */ err = file_check_and_advance_wb_err(file); if (ret == 0) ret = err; return ret; } EXPORT_SYMBOL(generic_buffers_fsync_noflush); /** * generic_buffers_fsync - generic buffer fsync implementation * for simple filesystems with no inode lock * * @file: file to synchronize * @start: start offset in bytes * @end: end offset in bytes (inclusive) * @datasync: only synchronize essential metadata if true * * This is a generic implementation of the fsync method for simple * filesystems which track all non-inode metadata in the buffers list * hanging off the address_space structure. This also makes sure that * a device cache flush operation is called at the end. */ int generic_buffers_fsync(struct file *file, loff_t start, loff_t end, bool datasync) { struct inode *inode = file->f_mapping->host; int ret; ret = generic_buffers_fsync_noflush(file, start, end, datasync); if (!ret) ret = blkdev_issue_flush(inode->i_sb->s_bdev); return ret; } EXPORT_SYMBOL(generic_buffers_fsync); /* * Called when we've recently written block `bblock', and it is known that * `bblock' was for a buffer_boundary() buffer. This means that the block at * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's * dirty, schedule it for IO. So that indirects merge nicely with their data. */ void write_boundary_block(struct block_device *bdev, sector_t bblock, unsigned blocksize) { struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); if (bh) { if (buffer_dirty(bh)) write_dirty_buffer(bh, 0); put_bh(bh); } } void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) { struct address_space *mapping = inode->i_mapping; struct address_space *buffer_mapping = bh->b_folio->mapping; mark_buffer_dirty(bh); if (!mapping->i_private_data) { mapping->i_private_data = buffer_mapping; } else { BUG_ON(mapping->i_private_data != buffer_mapping); } if (!bh->b_assoc_map) { spin_lock(&buffer_mapping->i_private_lock); list_move_tail(&bh->b_assoc_buffers, &mapping->i_private_list); bh->b_assoc_map = mapping; spin_unlock(&buffer_mapping->i_private_lock); } } EXPORT_SYMBOL(mark_buffer_dirty_inode); /** * block_dirty_folio - Mark a folio as dirty. * @mapping: The address space containing this folio. * @folio: The folio to mark dirty. * * Filesystems which use buffer_heads can use this function as their * ->dirty_folio implementation. Some filesystems need to do a little * work before calling this function. Filesystems which do not use * buffer_heads should call filemap_dirty_folio() instead. * * If the folio has buffers, the uptodate buffers are set dirty, to * preserve dirty-state coherency between the folio and the buffers. * Buffers added to a dirty folio are created dirty. * * The buffers are dirtied before the folio is dirtied. There's a small * race window in which writeback may see the folio cleanness but not the * buffer dirtiness. That's fine. If this code were to set the folio * dirty before the buffers, writeback could clear the folio dirty flag, * see a bunch of clean buffers and we'd end up with dirty buffers/clean * folio on the dirty folio list. * * We use i_private_lock to lock against try_to_free_buffers() while * using the folio's buffer list. This also prevents clean buffers * being added to the folio after it was set dirty. * * Context: May only be called from process context. Does not sleep. * Caller must ensure that @folio cannot be truncated during this call, * typically by holding the folio lock or having a page in the folio * mapped and holding the page table lock. * * Return: True if the folio was dirtied; false if it was already dirtied. */ bool block_dirty_folio(struct address_space *mapping, struct folio *folio) { struct buffer_head *head; bool newly_dirty; spin_lock(&mapping->i_private_lock); head = folio_buffers(folio); if (head) { struct buffer_head *bh = head; do { set_buffer_dirty(bh); bh = bh->b_this_page; } while (bh != head); } /* * Lock out page's memcg migration to keep PageDirty * synchronized with per-memcg dirty page counters. */ folio_memcg_lock(folio); newly_dirty = !folio_test_set_dirty(folio); spin_unlock(&mapping->i_private_lock); if (newly_dirty) __folio_mark_dirty(folio, mapping, 1); folio_memcg_unlock(folio); if (newly_dirty) __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); return newly_dirty; } EXPORT_SYMBOL(block_dirty_folio); /* * Write out and wait upon a list of buffers. * * We have conflicting pressures: we want to make sure that all * initially dirty buffers get waited on, but that any subsequently * dirtied buffers don't. After all, we don't want fsync to last * forever if somebody is actively writing to the file. * * Do this in two main stages: first we copy dirty buffers to a * temporary inode list, queueing the writes as we go. Then we clean * up, waiting for those writes to complete. * * During this second stage, any subsequent updates to the file may end * up refiling the buffer on the original inode's dirty list again, so * there is a chance we will end up with a buffer queued for write but * not yet completed on that list. So, as a final cleanup we go through * the osync code to catch these locked, dirty buffers without requeuing * any newly dirty buffers for write. */ static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) { struct buffer_head *bh; struct address_space *mapping; int err = 0, err2; struct blk_plug plug; LIST_HEAD(tmp); blk_start_plug(&plug); spin_lock(lock); while (!list_empty(list)) { bh = BH_ENTRY(list->next); mapping = bh->b_assoc_map; __remove_assoc_queue(bh); /* Avoid race with mark_buffer_dirty_inode() which does * a lockless check and we rely on seeing the dirty bit */ smp_mb(); if (buffer_dirty(bh) || buffer_locked(bh)) { list_add(&bh->b_assoc_buffers, &tmp); bh->b_assoc_map = mapping; if (buffer_dirty(bh)) { get_bh(bh); spin_unlock(lock); /* * Ensure any pending I/O completes so that * write_dirty_buffer() actually writes the * current contents - it is a noop if I/O is * still in flight on potentially older * contents. */ write_dirty_buffer(bh, REQ_SYNC); /* * Kick off IO for the previous mapping. Note * that we will not run the very last mapping, * wait_on_buffer() will do that for us * through sync_buffer(). */ brelse(bh); spin_lock(lock); } } } spin_unlock(lock); blk_finish_plug(&plug); spin_lock(lock); while (!list_empty(&tmp)) { bh = BH_ENTRY(tmp.prev); get_bh(bh); mapping = bh->b_assoc_map; __remove_assoc_queue(bh); /* Avoid race with mark_buffer_dirty_inode() which does * a lockless check and we rely on seeing the dirty bit */ smp_mb(); if (buffer_dirty(bh)) { list_add(&bh->b_assoc_buffers, &mapping->i_private_list); bh->b_assoc_map = mapping; } spin_unlock(lock); wait_on_buffer(bh); if (!buffer_uptodate(bh)) err = -EIO; brelse(bh); spin_lock(lock); } spin_unlock(lock); err2 = osync_buffers_list(lock, list); if (err) return err; else return err2; } /* * Invalidate any and all dirty buffers on a given inode. We are * probably unmounting the fs, but that doesn't mean we have already * done a sync(). Just drop the buffers from the inode list. * * NOTE: we take the inode's blockdev's mapping's i_private_lock. Which * assumes that all the buffers are against the blockdev. Not true * for reiserfs. */ void invalidate_inode_buffers(struct inode *inode) { if (inode_has_buffers(inode)) { struct address_space *mapping = &inode->i_data; struct list_head *list = &mapping->i_private_list; struct address_space *buffer_mapping = mapping->i_private_data; spin_lock(&buffer_mapping->i_private_lock); while (!list_empty(list)) __remove_assoc_queue(BH_ENTRY(list->next)); spin_unlock(&buffer_mapping->i_private_lock); } } EXPORT_SYMBOL(invalidate_inode_buffers); /* * Remove any clean buffers from the inode's buffer list. This is called * when we're trying to free the inode itself. Those buffers can pin it. * * Returns true if all buffers were removed. */ int remove_inode_buffers(struct inode *inode) { int ret = 1; if (inode_has_buffers(inode)) { struct address_space *mapping = &inode->i_data; struct list_head *list = &mapping->i_private_list; struct address_space *buffer_mapping = mapping->i_private_data; spin_lock(&buffer_mapping->i_private_lock); while (!list_empty(list)) { struct buffer_head *bh = BH_ENTRY(list->next); if (buffer_dirty(bh)) { ret = 0; break; } __remove_assoc_queue(bh); } spin_unlock(&buffer_mapping->i_private_lock); } return ret; } /* * Create the appropriate buffers when given a folio for data area and * the size of each buffer.. Use the bh->b_this_page linked list to * follow the buffers created. Return NULL if unable to create more * buffers. * * The retry flag is used to differentiate async IO (paging, swapping) * which may not fail from ordinary buffer allocations. */ struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size, gfp_t gfp) { struct buffer_head *bh, *head; long offset; struct mem_cgroup *memcg, *old_memcg; /* The folio lock pins the memcg */ memcg = folio_memcg(folio); old_memcg = set_active_memcg(memcg); head = NULL; offset = folio_size(folio); while ((offset -= size) >= 0) { bh = alloc_buffer_head(gfp); if (!bh) goto no_grow; bh->b_this_page = head; bh->b_blocknr = -1; head = bh; bh->b_size = size; /* Link the buffer to its folio */ folio_set_bh(bh, folio, offset); } out: set_active_memcg(old_memcg); return head; /* * In case anything failed, we just free everything we got. */ no_grow: if (head) { do { bh = head; head = head->b_this_page; free_buffer_head(bh); } while (head); } goto out; } EXPORT_SYMBOL_GPL(folio_alloc_buffers); struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size) { gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; return folio_alloc_buffers(page_folio(page), size, gfp); } EXPORT_SYMBOL_GPL(alloc_page_buffers); static inline void link_dev_buffers(struct folio *folio, struct buffer_head *head) { struct buffer_head *bh, *tail; bh = head; do { tail = bh; bh = bh->b_this_page; } while (bh); tail->b_this_page = head; folio_attach_private(folio, head); } static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) { sector_t retval = ~((sector_t)0); loff_t sz = bdev_nr_bytes(bdev); if (sz) { unsigned int sizebits = blksize_bits(size); retval = (sz >> sizebits); } return retval; } /* * Initialise the state of a blockdev folio's buffers. */ static sector_t folio_init_buffers(struct folio *folio, struct block_device *bdev, unsigned size) { struct buffer_head *head = folio_buffers(folio); struct buffer_head *bh = head; bool uptodate = folio_test_uptodate(folio); sector_t block = div_u64(folio_pos(folio), size); sector_t end_block = blkdev_max_block(bdev, size); do { if (!buffer_mapped(bh)) { bh->b_end_io = NULL; bh->b_private = NULL; bh->b_bdev = bdev; bh->b_blocknr = block; if (uptodate) set_buffer_uptodate(bh); if (block < end_block) set_buffer_mapped(bh); } block++; bh = bh->b_this_page; } while (bh != head); /* * Caller needs to validate requested block against end of device. */ return end_block; } /* * Create the page-cache folio that contains the requested block. * * This is used purely for blockdev mappings. * * Returns false if we have a failure which cannot be cured by retrying * without sleeping. Returns true if we succeeded, or the caller should retry. */ static bool grow_dev_folio(struct block_device *bdev, sector_t block, pgoff_t index, unsigned size, gfp_t gfp) { struct address_space *mapping = bdev->bd_mapping; struct folio *folio; struct buffer_head *bh; sector_t end_block = 0; folio = __filemap_get_folio(mapping, index, FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); if (IS_ERR(folio)) return false; bh = folio_buffers(folio); if (bh) { if (bh->b_size == size) { end_block = folio_init_buffers(folio, bdev, size); goto unlock; } /* * Retrying may succeed; for example the folio may finish * writeback, or buffers may be cleaned. This should not * happen very often; maybe we have old buffers attached to * this blockdev's page cache and we're trying to change * the block size? */ if (!try_to_free_buffers(folio)) { end_block = ~0ULL; goto unlock; } } bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT); if (!bh) goto unlock; /* * Link the folio to the buffers and initialise them. Take the * lock to be atomic wrt __find_get_block(), which does not * run under the folio lock. */ spin_lock(&mapping->i_private_lock); link_dev_buffers(folio, bh); end_block = folio_init_buffers(folio, bdev, size); spin_unlock(&mapping->i_private_lock); unlock: folio_unlock(folio); folio_put(folio); return block < end_block; } /* * Create buffers for the specified block device block's folio. If * that folio was dirty, the buffers are set dirty also. Returns false * if we've hit a permanent error. */ static bool grow_buffers(struct block_device *bdev, sector_t block, unsigned size, gfp_t gfp) { loff_t pos; /* * Check for a block which lies outside our maximum possible * pagecache index. */ if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) { printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n", __func__, (unsigned long long)block, bdev); return false; } /* Create a folio with the proper size buffers */ return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp); } static struct buffer_head * __getblk_slow(struct block_device *bdev, sector_t block, unsigned size, gfp_t gfp) { /* Size must be multiple of hard sectorsize */ if (unlikely(size & (bdev_logical_block_size(bdev)-1) || (size < 512 || size > PAGE_SIZE))) { printk(KERN_ERR "getblk(): invalid block size %d requested\n", size); printk(KERN_ERR "logical block size: %d\n", bdev_logical_block_size(bdev)); dump_stack(); return NULL; } for (;;) { struct buffer_head *bh; bh = __find_get_block(bdev, block, size); if (bh) return bh; if (!grow_buffers(bdev, block, size, gfp)) return NULL; } } /* * The relationship between dirty buffers and dirty pages: * * Whenever a page has any dirty buffers, the page's dirty bit is set, and * the page is tagged dirty in the page cache. * * At all times, the dirtiness of the buffers represents the dirtiness of * subsections of the page. If the page has buffers, the page dirty bit is * merely a hint about the true dirty state. * * When a page is set dirty in its entirety, all its buffers are marked dirty * (if the page has buffers). * * When a buffer is marked dirty, its page is dirtied, but the page's other * buffers are not. * * Also. When blockdev buffers are explicitly read with bread(), they * individually become uptodate. But their backing page remains not * uptodate - even if all of its buffers are uptodate. A subsequent * block_read_full_folio() against that folio will discover all the uptodate * buffers, will set the folio uptodate and will perform no I/O. */ /** * mark_buffer_dirty - mark a buffer_head as needing writeout * @bh: the buffer_head to mark dirty * * mark_buffer_dirty() will set the dirty bit against the buffer, then set * its backing page dirty, then tag the page as dirty in the page cache * and then attach the address_space's inode to its superblock's dirty * inode list. * * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->i_private_lock, * i_pages lock and mapping->host->i_lock. */ void mark_buffer_dirty(struct buffer_head *bh) { WARN_ON_ONCE(!buffer_uptodate(bh)); trace_block_dirty_buffer(bh); /* * Very *carefully* optimize the it-is-already-dirty case. * * Don't let the final "is it dirty" escape to before we * perhaps modified the buffer. */ if (buffer_dirty(bh)) { smp_mb(); if (buffer_dirty(bh)) return; } if (!test_set_buffer_dirty(bh)) { struct folio *folio = bh->b_folio; struct address_space *mapping = NULL; folio_memcg_lock(folio); if (!folio_test_set_dirty(folio)) { mapping = folio->mapping; if (mapping) __folio_mark_dirty(folio, mapping, 0); } folio_memcg_unlock(folio); if (mapping) __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); } } EXPORT_SYMBOL(mark_buffer_dirty); void mark_buffer_write_io_error(struct buffer_head *bh) { set_buffer_write_io_error(bh); /* FIXME: do we need to set this in both places? */ if (bh->b_folio && bh->b_folio->mapping) mapping_set_error(bh->b_folio->mapping, -EIO); if (bh->b_assoc_map) { mapping_set_error(bh->b_assoc_map, -EIO); errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO); } } EXPORT_SYMBOL(mark_buffer_write_io_error); /** * __brelse - Release a buffer. * @bh: The buffer to release. * * This variant of brelse() can be called if @bh is guaranteed to not be NULL. */ void __brelse(struct buffer_head *bh) { if (atomic_read(&bh->b_count)) { put_bh(bh); return; } WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); } EXPORT_SYMBOL(__brelse); /** * __bforget - Discard any dirty data in a buffer. * @bh: The buffer to forget. * * This variant of bforget() can be called if @bh is guaranteed to not * be NULL. */ void __bforget(struct buffer_head *bh) { clear_buffer_dirty(bh); if (bh->b_assoc_map) { struct address_space *buffer_mapping = bh->b_folio->mapping; spin_lock(&buffer_mapping->i_private_lock); list_del_init(&bh->b_assoc_buffers); bh->b_assoc_map = NULL; spin_unlock(&buffer_mapping->i_private_lock); } __brelse(bh); } EXPORT_SYMBOL(__bforget); static struct buffer_head *__bread_slow(struct buffer_head *bh) { lock_buffer(bh); if (buffer_uptodate(bh)) { unlock_buffer(bh); return bh; } else { get_bh(bh); bh->b_end_io = end_buffer_read_sync; submit_bh(REQ_OP_READ, bh); wait_on_buffer(bh); if (buffer_uptodate(bh)) return bh; } brelse(bh); return NULL; } /* * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their * refcount elevated by one when they're in an LRU. A buffer can only appear * once in a particular CPU's LRU. A single buffer can be present in multiple * CPU's LRUs at the same time. * * This is a transparent caching front-end to sb_bread(), sb_getblk() and * sb_find_get_block(). * * The LRUs themselves only need locking against invalidate_bh_lrus. We use * a local interrupt disable for that. */ #define BH_LRU_SIZE 16 struct bh_lru { struct buffer_head *bhs[BH_LRU_SIZE]; }; static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; #ifdef CONFIG_SMP #define bh_lru_lock() local_irq_disable() #define bh_lru_unlock() local_irq_enable() #else #define bh_lru_lock() preempt_disable() #define bh_lru_unlock() preempt_enable() #endif static inline void check_irqs_on(void) { #ifdef irqs_disabled BUG_ON(irqs_disabled()); #endif } /* * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is * inserted at the front, and the buffer_head at the back if any is evicted. * Or, if already in the LRU it is moved to the front. */ static void bh_lru_install(struct buffer_head *bh) { struct buffer_head *evictee = bh; struct bh_lru *b; int i; check_irqs_on(); bh_lru_lock(); /* * the refcount of buffer_head in bh_lru prevents dropping the * attached page(i.e., try_to_free_buffers) so it could cause * failing page migration. * Skip putting upcoming bh into bh_lru until migration is done. */ if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) { bh_lru_unlock(); return; } b = this_cpu_ptr(&bh_lrus); for (i = 0; i < BH_LRU_SIZE; i++) { swap(evictee, b->bhs[i]); if (evictee == bh) { bh_lru_unlock(); return; } } get_bh(bh); bh_lru_unlock(); brelse(evictee); } /* * Look up the bh in this cpu's LRU. If it's there, move it to the head. */ static struct buffer_head * lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) { struct buffer_head *ret = NULL; unsigned int i; check_irqs_on(); bh_lru_lock(); if (cpu_is_isolated(smp_processor_id())) { bh_lru_unlock(); return NULL; } for (i = 0; i < BH_LRU_SIZE; i++) { struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && bh->b_size == size) { if (i) { while (i) { __this_cpu_write(bh_lrus.bhs[i], __this_cpu_read(bh_lrus.bhs[i - 1])); i--; } __this_cpu_write(bh_lrus.bhs[0], bh); } get_bh(bh); ret = bh; break; } } bh_lru_unlock(); return ret; } /* * Perform a pagecache lookup for the matching buffer. If it's there, refresh * it in the LRU and mark it as accessed. If it is not present then return * NULL */ struct buffer_head * __find_get_block(struct block_device *bdev, sector_t block, unsigned size) { struct buffer_head *bh = lookup_bh_lru(bdev, block, size); if (bh == NULL) { /* __find_get_block_slow will mark the page accessed */ bh = __find_get_block_slow(bdev, block); if (bh) bh_lru_install(bh); } else touch_buffer(bh); return bh; } EXPORT_SYMBOL(__find_get_block); /** * bdev_getblk - Get a buffer_head in a block device's buffer cache. * @bdev: The block device. * @block: The block number. * @size: The size of buffer_heads for this @bdev. * @gfp: The memory allocation flags to use. * * The returned buffer head has its reference count incremented, but is * not locked. The caller should call brelse() when it has finished * with the buffer. The buffer may not be uptodate. If needed, the * caller can bring it uptodate either by reading it or overwriting it. * * Return: The buffer head, or NULL if memory could not be allocated. */ struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block, unsigned size, gfp_t gfp) { struct buffer_head *bh = __find_get_block(bdev, block, size); might_alloc(gfp); if (bh) return bh; return __getblk_slow(bdev, block, size, gfp); } EXPORT_SYMBOL(bdev_getblk); /* * Do async read-ahead on a buffer.. */ void __breadahead(struct block_device *bdev, sector_t block, unsigned size) { struct buffer_head *bh = bdev_getblk(bdev, block, size, GFP_NOWAIT | __GFP_MOVABLE); if (likely(bh)) { bh_readahead(bh, REQ_RAHEAD); brelse(bh); } } EXPORT_SYMBOL(__breadahead); /** * __bread_gfp() - Read a block. * @bdev: The block device to read from. * @block: Block number in units of block size. * @size: The block size of this device in bytes. * @gfp: Not page allocation flags; see below. * * You are not expected to call this function. You should use one of * sb_bread(), sb_bread_unmovable() or __bread(). * * Read a specified block, and return the buffer head that refers to it. * If @gfp is 0, the memory will be allocated using the block device's * default GFP flags. If @gfp is __GFP_MOVABLE, the memory may be * allocated from a movable area. Do not pass in a complete set of * GFP flags. * * The returned buffer head has its refcount increased. The caller should * call brelse() when it has finished with the buffer. * * Context: May sleep waiting for I/O. * Return: NULL if the block was unreadable. */ struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block, unsigned size, gfp_t gfp) { struct buffer_head *bh; gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS); /* * Prefer looping in the allocator rather than here, at least that * code knows what it's doing. */ gfp |= __GFP_NOFAIL; bh = bdev_getblk(bdev, block, size, gfp); if (likely(bh) && !buffer_uptodate(bh)) bh = __bread_slow(bh); return bh; } EXPORT_SYMBOL(__bread_gfp); static void __invalidate_bh_lrus(struct bh_lru *b) { int i; for (i = 0; i < BH_LRU_SIZE; i++) { brelse(b->bhs[i]); b->bhs[i] = NULL; } } /* * invalidate_bh_lrus() is called rarely - but not only at unmount. * This doesn't race because it runs in each cpu either in irq * or with preempt disabled. */ static void invalidate_bh_lru(void *arg) { struct bh_lru *b = &get_cpu_var(bh_lrus); __invalidate_bh_lrus(b); put_cpu_var(bh_lrus); } bool has_bh_in_lru(int cpu, void *dummy) { struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); int i; for (i = 0; i < BH_LRU_SIZE; i++) { if (b->bhs[i]) return true; } return false; } void invalidate_bh_lrus(void) { on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); } EXPORT_SYMBOL_GPL(invalidate_bh_lrus); /* * It's called from workqueue context so we need a bh_lru_lock to close * the race with preemption/irq. */ void invalidate_bh_lrus_cpu(void) { struct bh_lru *b; bh_lru_lock(); b = this_cpu_ptr(&bh_lrus); __invalidate_bh_lrus(b); bh_lru_unlock(); } void folio_set_bh(struct buffer_head *bh, struct folio *folio, unsigned long offset) { bh->b_folio = folio; BUG_ON(offset >= folio_size(folio)); if (folio_test_highmem(folio)) /* * This catches illegal uses and preserves the offset: */ bh->b_data = (char *)(0 + offset); else bh->b_data = folio_address(folio) + offset; } EXPORT_SYMBOL(folio_set_bh); /* * Called when truncating a buffer on a page completely. */ /* Bits that are cleared during an invalidate */ #define BUFFER_FLAGS_DISCARD \ (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1 << BH_Delay | 1 << BH_Unwritten) static void discard_buffer(struct buffer_head * bh) { unsigned long b_state; lock_buffer(bh); clear_buffer_dirty(bh); bh->b_bdev = NULL; b_state = READ_ONCE(bh->b_state); do { } while (!try_cmpxchg(&bh->b_state, &b_state, b_state & ~BUFFER_FLAGS_DISCARD)); unlock_buffer(bh); } /** * block_invalidate_folio - Invalidate part or all of a buffer-backed folio. * @folio: The folio which is affected. * @offset: start of the range to invalidate * @length: length of the range to invalidate * * block_invalidate_folio() is called when all or part of the folio has been * invalidated by a truncate operation. * * block_invalidate_folio() does not have to release all buffers, but it must * ensure that no dirty buffer is left outside @offset and that no I/O * is underway against any of the blocks which are outside the truncation * point. Because the caller is about to free (and possibly reuse) those * blocks on-disk. */ void block_invalidate_folio(struct folio *folio, size_t offset, size_t length) { struct buffer_head *head, *bh, *next; size_t curr_off = 0; size_t stop = length + offset; BUG_ON(!folio_test_locked(folio)); /* * Check for overflow */ BUG_ON(stop > folio_size(folio) || stop < length); head = folio_buffers(folio); if (!head) return; bh = head; do { size_t next_off = curr_off + bh->b_size; next = bh->b_this_page; /* * Are we still fully in range ? */ if (next_off > stop) goto out; /* * is this block fully invalidated? */ if (offset <= curr_off) discard_buffer(bh); curr_off = next_off; bh = next; } while (bh != head); /* * We release buffers only if the entire folio is being invalidated. * The get_block cached value has been unconditionally invalidated, * so real IO is not possible anymore. */ if (length == folio_size(folio)) filemap_release_folio(folio, 0); out: folio_clear_mappedtodisk(folio); return; } EXPORT_SYMBOL(block_invalidate_folio); /* * We attach and possibly dirty the buffers atomically wrt * block_dirty_folio() via i_private_lock. try_to_free_buffers * is already excluded via the folio lock. */ struct buffer_head *create_empty_buffers(struct folio *folio, unsigned long blocksize, unsigned long b_state) { struct buffer_head *bh, *head, *tail; gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL; head = folio_alloc_buffers(folio, blocksize, gfp); bh = head; do { bh->b_state |= b_state; tail = bh; bh = bh->b_this_page; } while (bh); tail->b_this_page = head; spin_lock(&folio->mapping->i_private_lock); if (folio_test_uptodate(folio) || folio_test_dirty(folio)) { bh = head; do { if (folio_test_dirty(folio)) set_buffer_dirty(bh); if (folio_test_uptodate(folio)) set_buffer_uptodate(bh); bh = bh->b_this_page; } while (bh != head); } folio_attach_private(folio, head); spin_unlock(&folio->mapping->i_private_lock); return head; } EXPORT_SYMBOL(create_empty_buffers); /** * clean_bdev_aliases: clean a range of buffers in block device * @bdev: Block device to clean buffers in * @block: Start of a range of blocks to clean * @len: Number of blocks to clean * * We are taking a range of blocks for data and we don't want writeback of any * buffer-cache aliases starting from return from this function and until the * moment when something will explicitly mark the buffer dirty (hopefully that * will not happen until we will free that block ;-) We don't even need to mark * it not-uptodate - nobody can expect anything from a newly allocated buffer * anyway. We used to use unmap_buffer() for such invalidation, but that was * wrong. We definitely don't want to mark the alias unmapped, for example - it * would confuse anyone who might pick it with bread() afterwards... * * Also.. Note that bforget() doesn't lock the buffer. So there can be * writeout I/O going on against recently-freed buffers. We don't wait on that * I/O in bforget() - it's more efficient to wait on the I/O only if we really * need to. That happens here. */ void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) { struct address_space *bd_mapping = bdev->bd_mapping; const int blkbits = bd_mapping->host->i_blkbits; struct folio_batch fbatch; pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE; pgoff_t end; int i, count; struct buffer_head *bh; struct buffer_head *head; end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE; folio_batch_init(&fbatch); while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) { count = folio_batch_count(&fbatch); for (i = 0; i < count; i++) { struct folio *folio = fbatch.folios[i]; if (!folio_buffers(folio)) continue; /* * We use folio lock instead of bd_mapping->i_private_lock * to pin buffers here since we can afford to sleep and * it scales better than a global spinlock lock. */ folio_lock(folio); /* Recheck when the folio is locked which pins bhs */ head = folio_buffers(folio); if (!head) goto unlock_page; bh = head; do { if (!buffer_mapped(bh) || (bh->b_blocknr < block)) goto next; if (bh->b_blocknr >= block + len) break; clear_buffer_dirty(bh); wait_on_buffer(bh); clear_buffer_req(bh); next: bh = bh->b_this_page; } while (bh != head); unlock_page: folio_unlock(folio); } folio_batch_release(&fbatch); cond_resched(); /* End of range already reached? */ if (index > end || !index) break; } } EXPORT_SYMBOL(clean_bdev_aliases); static struct buffer_head *folio_create_buffers(struct folio *folio, struct inode *inode, unsigned int b_state) { struct buffer_head *bh; BUG_ON(!folio_test_locked(folio)); bh = folio_buffers(folio); if (!bh) bh = create_empty_buffers(folio, 1 << READ_ONCE(inode->i_blkbits), b_state); return bh; } /* * NOTE! All mapped/uptodate combinations are valid: * * Mapped Uptodate Meaning * * No No "unknown" - must do get_block() * No Yes "hole" - zero-filled * Yes No "allocated" - allocated on disk, not read in * Yes Yes "valid" - allocated and up-to-date in memory. * * "Dirty" is valid only with the last case (mapped+uptodate). */ /* * While block_write_full_folio is writing back the dirty buffers under * the page lock, whoever dirtied the buffers may decide to clean them * again at any time. We handle that by only looking at the buffer * state inside lock_buffer(). * * If block_write_full_folio() is called for regular writeback * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a * locked buffer. This only can happen if someone has written the buffer * directly, with submit_bh(). At the address_space level PageWriteback * prevents this contention from occurring. * * If block_write_full_folio() is called with wbc->sync_mode == * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this * causes the writes to be flagged as synchronous writes. */ int __block_write_full_folio(struct inode *inode, struct folio *folio, get_block_t *get_block, struct writeback_control *wbc) { int err; sector_t block; sector_t last_block; struct buffer_head *bh, *head; size_t blocksize; int nr_underway = 0; blk_opf_t write_flags = wbc_to_write_flags(wbc); head = folio_create_buffers(folio, inode, (1 << BH_Dirty) | (1 << BH_Uptodate)); /* * Be very careful. We have no exclusion from block_dirty_folio * here, and the (potentially unmapped) buffers may become dirty at * any time. If a buffer becomes dirty here after we've inspected it * then we just miss that fact, and the folio stays dirty. * * Buffers outside i_size may be dirtied by block_dirty_folio; * handle that here by just cleaning them. */ bh = head; blocksize = bh->b_size; block = div_u64(folio_pos(folio), blocksize); last_block = div_u64(i_size_read(inode) - 1, blocksize); /* * Get all the dirty buffers mapped to disk addresses and * handle any aliases from the underlying blockdev's mapping. */ do { if (block > last_block) { /* * mapped buffers outside i_size will occur, because * this folio can be outside i_size when there is a * truncate in progress. */ /* * The buffer was zeroed by block_write_full_folio() */ clear_buffer_dirty(bh); set_buffer_uptodate(bh); } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh)) { WARN_ON(bh->b_size != blocksize); err = get_block(inode, block, bh, 1); if (err) goto recover; clear_buffer_delay(bh); if (buffer_new(bh)) { /* blockdev mappings never come here */ clear_buffer_new(bh); clean_bdev_bh_alias(bh); } } bh = bh->b_this_page; block++; } while (bh != head); do { if (!buffer_mapped(bh)) continue; /* * If it's a fully non-blocking write attempt and we cannot * lock the buffer then redirty the folio. Note that this can * potentially cause a busy-wait loop from writeback threads * and kswapd activity, but those code paths have their own * higher-level throttling. */ if (wbc->sync_mode != WB_SYNC_NONE) { lock_buffer(bh); } else if (!trylock_buffer(bh)) { folio_redirty_for_writepage(wbc, folio); continue; } if (test_clear_buffer_dirty(bh)) { mark_buffer_async_write_endio(bh, end_buffer_async_write); } else { unlock_buffer(bh); } } while ((bh = bh->b_this_page) != head); /* * The folio and its buffers are protected by the writeback flag, * so we can drop the bh refcounts early. */ BUG_ON(folio_test_writeback(folio)); folio_start_writeback(folio); do { struct buffer_head *next = bh->b_this_page; if (buffer_async_write(bh)) { submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, inode->i_write_hint, wbc); nr_underway++; } bh = next; } while (bh != head); folio_unlock(folio); err = 0; done: if (nr_underway == 0) { /* * The folio was marked dirty, but the buffers were * clean. Someone wrote them back by hand with * write_dirty_buffer/submit_bh. A rare case. */ folio_end_writeback(folio); /* * The folio and buffer_heads can be released at any time from * here on. */ } return err; recover: /* * ENOSPC, or some other error. We may already have added some * blocks to the file, so we need to write these out to avoid * exposing stale data. * The folio is currently locked and not marked for writeback */ bh = head; /* Recovery: lock and submit the mapped buffers */ do { if (buffer_mapped(bh) && buffer_dirty(bh) && !buffer_delay(bh)) { lock_buffer(bh); mark_buffer_async_write_endio(bh, end_buffer_async_write); } else { /* * The buffer may have been set dirty during * attachment to a dirty folio. */ clear_buffer_dirty(bh); } } while ((bh = bh->b_this_page) != head); BUG_ON(folio_test_writeback(folio)); mapping_set_error(folio->mapping, err); folio_start_writeback(folio); do { struct buffer_head *next = bh->b_this_page; if (buffer_async_write(bh)) { clear_buffer_dirty(bh); submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, inode->i_write_hint, wbc); nr_underway++; } bh = next; } while (bh != head); folio_unlock(folio); goto done; } EXPORT_SYMBOL(__block_write_full_folio); /* * If a folio has any new buffers, zero them out here, and mark them uptodate * and dirty so they'll be written out (in order to prevent uninitialised * block data from leaking). And clear the new bit. */ void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to) { size_t block_start, block_end; struct buffer_head *head, *bh; BUG_ON(!folio_test_locked(folio)); head = folio_buffers(folio); if (!head) return; bh = head; block_start = 0; do { block_end = block_start + bh->b_size; if (buffer_new(bh)) { if (block_end > from && block_start < to) { if (!folio_test_uptodate(folio)) { size_t start, xend; start = max(from, block_start); xend = min(to, block_end); folio_zero_segment(folio, start, xend); set_buffer_uptodate(bh); } clear_buffer_new(bh); mark_buffer_dirty(bh); } } block_start = block_end; bh = bh->b_this_page; } while (bh != head); } EXPORT_SYMBOL(folio_zero_new_buffers); static int iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, const struct iomap *iomap) { loff_t offset = (loff_t)block << inode->i_blkbits; bh->b_bdev = iomap->bdev; /* * Block points to offset in file we need to map, iomap contains * the offset at which the map starts. If the map ends before the * current block, then do not map the buffer and let the caller * handle it. */ if (offset >= iomap->offset + iomap->length) return -EIO; switch (iomap->type) { case IOMAP_HOLE: /* * If the buffer is not up to date or beyond the current EOF, * we need to mark it as new to ensure sub-block zeroing is * executed if necessary. */ if (!buffer_uptodate(bh) || (offset >= i_size_read(inode))) set_buffer_new(bh); return 0; case IOMAP_DELALLOC: if (!buffer_uptodate(bh) || (offset >= i_size_read(inode))) set_buffer_new(bh); set_buffer_uptodate(bh); set_buffer_mapped(bh); set_buffer_delay(bh); return 0; case IOMAP_UNWRITTEN: /* * For unwritten regions, we always need to ensure that regions * in the block we are not writing to are zeroed. Mark the * buffer as new to ensure this. */ set_buffer_new(bh); set_buffer_unwritten(bh); fallthrough; case IOMAP_MAPPED: if ((iomap->flags & IOMAP_F_NEW) || offset >= i_size_read(inode)) { /* * This can happen if truncating the block device races * with the check in the caller as i_size updates on * block devices aren't synchronized by i_rwsem for * block devices. */ if (S_ISBLK(inode->i_mode)) return -EIO; set_buffer_new(bh); } bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> inode->i_blkbits; set_buffer_mapped(bh); return 0; default: WARN_ON_ONCE(1); return -EIO; } } int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, get_block_t *get_block, const struct iomap *iomap) { size_t from = offset_in_folio(folio, pos); size_t to = from + len; struct inode *inode = folio->mapping->host; size_t block_start, block_end; sector_t block; int err = 0; size_t blocksize; struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; BUG_ON(!folio_test_locked(folio)); BUG_ON(to > folio_size(folio)); BUG_ON(from > to); head = folio_create_buffers(folio, inode, 0); blocksize = head->b_size; block = div_u64(folio_pos(folio), blocksize); for (bh = head, block_start = 0; bh != head || !block_start; block++, block_start=block_end, bh = bh->b_this_page) { block_end = block_start + blocksize; if (block_end <= from || block_start >= to) { if (folio_test_uptodate(folio)) { if (!buffer_uptodate(bh)) set_buffer_uptodate(bh); } continue; } if (buffer_new(bh)) clear_buffer_new(bh); if (!buffer_mapped(bh)) { WARN_ON(bh->b_size != blocksize); if (get_block) err = get_block(inode, block, bh, 1); else err = iomap_to_bh(inode, block, bh, iomap); if (err) break; if (buffer_new(bh)) { clean_bdev_bh_alias(bh); if (folio_test_uptodate(folio)) { clear_buffer_new(bh); set_buffer_uptodate(bh); mark_buffer_dirty(bh); continue; } if (block_end > to || block_start < from) folio_zero_segments(folio, to, block_end, block_start, from); continue; } } if (folio_test_uptodate(folio)) { if (!buffer_uptodate(bh)) set_buffer_uptodate(bh); continue; } if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh) && (block_start < from || block_end > to)) { bh_read_nowait(bh, 0); *wait_bh++=bh; } } /* * If we issued read requests - let them complete. */ while(wait_bh > wait) { wait_on_buffer(*--wait_bh); if (!buffer_uptodate(*wait_bh)) err = -EIO; } if (unlikely(err)) folio_zero_new_buffers(folio, from, to); return err; } int __block_write_begin(struct folio *folio, loff_t pos, unsigned len, get_block_t *get_block) { return __block_write_begin_int(folio, pos, len, get_block, NULL); } EXPORT_SYMBOL(__block_write_begin); static void __block_commit_write(struct folio *folio, size_t from, size_t to) { size_t block_start, block_end; bool partial = false; unsigned blocksize; struct buffer_head *bh, *head; bh = head = folio_buffers(folio); if (!bh) return; blocksize = bh->b_size; block_start = 0; do { block_end = block_start + blocksize; if (block_end <= from || block_start >= to) { if (!buffer_uptodate(bh)) partial = true; } else { set_buffer_uptodate(bh); mark_buffer_dirty(bh); } if (buffer_new(bh)) clear_buffer_new(bh); block_start = block_end; bh = bh->b_this_page; } while (bh != head); /* * If this is a partial write which happened to make all buffers * uptodate then we can optimize away a bogus read_folio() for * the next read(). Here we 'discover' whether the folio went * uptodate as a result of this (potentially partial) write. */ if (!partial) folio_mark_uptodate(folio); } /* * block_write_begin takes care of the basic task of block allocation and * bringing partial write blocks uptodate first. * * The filesystem needs to handle block truncation upon failure. */ int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, struct folio **foliop, get_block_t *get_block) { pgoff_t index = pos >> PAGE_SHIFT; struct folio *folio; int status; folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, mapping_gfp_mask(mapping)); if (IS_ERR(folio)) return PTR_ERR(folio); status = __block_write_begin_int(folio, pos, len, get_block, NULL); if (unlikely(status)) { folio_unlock(folio); folio_put(folio); folio = NULL; } *foliop = folio; return status; } EXPORT_SYMBOL(block_write_begin); int block_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct folio *folio, void *fsdata) { size_t start = pos - folio_pos(folio); if (unlikely(copied < len)) { /* * The buffers that were written will now be uptodate, so * we don't have to worry about a read_folio reading them * and overwriting a partial write. However if we have * encountered a short write and only partially written * into a buffer, it will not be marked uptodate, so a * read_folio might come in and destroy our partial write. * * Do the simplest thing, and just treat any short write to a * non uptodate folio as a zero-length write, and force the * caller to redo the whole thing. */ if (!folio_test_uptodate(folio)) copied = 0; folio_zero_new_buffers(folio, start+copied, start+len); } flush_dcache_folio(folio); /* This could be a short (even 0-length) commit */ __block_commit_write(folio, start, start + copied); return copied; } EXPORT_SYMBOL(block_write_end); int generic_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct folio *folio, void *fsdata) { struct inode *inode = mapping->host; loff_t old_size = inode->i_size; bool i_size_changed = false; copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata); /* * No need to use i_size_read() here, the i_size cannot change under us * because we hold i_rwsem. * * But it's important to update i_size while still holding folio lock: * page writeout could otherwise come in and zero beyond i_size. */ if (pos + copied > inode->i_size) { i_size_write(inode, pos + copied); i_size_changed = true; } folio_unlock(folio); folio_put(folio); if (old_size < pos) pagecache_isize_extended(inode, old_size, pos); /* * Don't mark the inode dirty under page lock. First, it unnecessarily * makes the holding time of page lock longer. Second, it forces lock * ordering of page lock and transaction start for journaling * filesystems. */ if (i_size_changed) mark_inode_dirty(inode); return copied; } EXPORT_SYMBOL(generic_write_end); /* * block_is_partially_uptodate checks whether buffers within a folio are * uptodate or not. * * Returns true if all buffers which correspond to the specified part * of the folio are uptodate. */ bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count) { unsigned block_start, block_end, blocksize; unsigned to; struct buffer_head *bh, *head; bool ret = true; head = folio_buffers(folio); if (!head) return false; blocksize = head->b_size; to = min_t(unsigned, folio_size(folio) - from, count); to = from + to; if (from < blocksize && to > folio_size(folio) - blocksize) return false; bh = head; block_start = 0; do { block_end = block_start + blocksize; if (block_end > from && block_start < to) { if (!buffer_uptodate(bh)) { ret = false; break; } if (block_end >= to) break; } block_start = block_end; bh = bh->b_this_page; } while (bh != head); return ret; } EXPORT_SYMBOL(block_is_partially_uptodate); /* * Generic "read_folio" function for block devices that have the normal * get_block functionality. This is most of the block device filesystems. * Reads the folio asynchronously --- the unlock_buffer() and * set/clear_buffer_uptodate() functions propagate buffer state into the * folio once IO has completed. */ int block_read_full_folio(struct folio *folio, get_block_t *get_block) { struct inode *inode = folio->mapping->host; sector_t iblock, lblock; struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; size_t blocksize; int nr, i; int fully_mapped = 1; bool page_error = false; loff_t limit = i_size_read(inode); /* This is needed for ext4. */ if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) limit = inode->i_sb->s_maxbytes; VM_BUG_ON_FOLIO(folio_test_large(folio), folio); head = folio_create_buffers(folio, inode, 0); blocksize = head->b_size; iblock = div_u64(folio_pos(folio), blocksize); lblock = div_u64(limit + blocksize - 1, blocksize); bh = head; nr = 0; i = 0; do { if (buffer_uptodate(bh)) continue; if (!buffer_mapped(bh)) { int err = 0; fully_mapped = 0; if (iblock < lblock) { WARN_ON(bh->b_size != blocksize); err = get_block(inode, iblock, bh, 0); if (err) page_error = true; } if (!buffer_mapped(bh)) { folio_zero_range(folio, i * blocksize, blocksize); if (!err) set_buffer_uptodate(bh); continue; } /* * get_block() might have updated the buffer * synchronously */ if (buffer_uptodate(bh)) continue; } arr[nr++] = bh; } while (i++, iblock++, (bh = bh->b_this_page) != head); if (fully_mapped) folio_set_mappedtodisk(folio); if (!nr) { /* * All buffers are uptodate or get_block() returned an * error when trying to map them - we can finish the read. */ folio_end_read(folio, !page_error); return 0; } /* Stage two: lock the buffers */ for (i = 0; i < nr; i++) { bh = arr[i]; lock_buffer(bh); mark_buffer_async_read(bh); } /* * Stage 3: start the IO. Check for uptodateness * inside the buffer lock in case another process reading * the underlying blockdev brought it uptodate (the sct fix). */ for (i = 0; i < nr; i++) { bh = arr[i]; if (buffer_uptodate(bh)) end_buffer_async_read(bh, 1); else submit_bh(REQ_OP_READ, bh); } return 0; } EXPORT_SYMBOL(block_read_full_folio); /* utility function for filesystems that need to do work on expanding * truncates. Uses filesystem pagecache writes to allow the filesystem to * deal with the hole. */ int generic_cont_expand_simple(struct inode *inode, loff_t size) { struct address_space *mapping = inode->i_mapping; const struct address_space_operations *aops = mapping->a_ops; struct folio *folio; void *fsdata = NULL; int err; err = inode_newsize_ok(inode, size); if (err) goto out; err = aops->write_begin(NULL, mapping, size, 0, &folio, &fsdata); if (err) goto out; err = aops->write_end(NULL, mapping, size, 0, 0, folio, fsdata); BUG_ON(err > 0); out: return err; } EXPORT_SYMBOL(generic_cont_expand_simple); static int cont_expand_zero(struct file *file, struct address_space *mapping, loff_t pos, loff_t *bytes) { struct inode *inode = mapping->host; const struct address_space_operations *aops = mapping->a_ops; unsigned int blocksize = i_blocksize(inode); struct folio *folio; void *fsdata = NULL; pgoff_t index, curidx; loff_t curpos; unsigned zerofrom, offset, len; int err = 0; index = pos >> PAGE_SHIFT; offset = pos & ~PAGE_MASK; while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { zerofrom = curpos & ~PAGE_MASK; if (zerofrom & (blocksize-1)) { *bytes |= (blocksize-1); (*bytes)++; } len = PAGE_SIZE - zerofrom; err = aops->write_begin(file, mapping, curpos, len, &folio, &fsdata); if (err) goto out; folio_zero_range(folio, offset_in_folio(folio, curpos), len); err = aops->write_end(file, mapping, curpos, len, len, folio, fsdata); if (err < 0) goto out; BUG_ON(err != len); err = 0; balance_dirty_pages_ratelimited(mapping); if (fatal_signal_pending(current)) { err = -EINTR; goto out; } } /* page covers the boundary, find the boundary offset */ if (index == curidx) { zerofrom = curpos & ~PAGE_MASK; /* if we will expand the thing last block will be filled */ if (offset <= zerofrom) { goto out; } if (zerofrom & (blocksize-1)) { *bytes |= (blocksize-1); (*bytes)++; } len = offset - zerofrom; err = aops->write_begin(file, mapping, curpos, len, &folio, &fsdata); if (err) goto out; folio_zero_range(folio, offset_in_folio(folio, curpos), len); err = aops->write_end(file, mapping, curpos, len, len, folio, fsdata); if (err < 0) goto out; BUG_ON(err != len); err = 0; } out: return err; } /* * For moronic filesystems that do not allow holes in file. * We may have to extend the file. */ int cont_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, struct folio **foliop, void **fsdata, get_block_t *get_block, loff_t *bytes) { struct inode *inode = mapping->host; unsigned int blocksize = i_blocksize(inode); unsigned int zerofrom; int err; err = cont_expand_zero(file, mapping, pos, bytes); if (err) return err; zerofrom = *bytes & ~PAGE_MASK; if (pos+len > *bytes && zerofrom & (blocksize-1)) { *bytes |= (blocksize-1); (*bytes)++; } return block_write_begin(mapping, pos, len, foliop, get_block); } EXPORT_SYMBOL(cont_write_begin); void block_commit_write(struct page *page, unsigned from, unsigned to) { struct folio *folio = page_folio(page); __block_commit_write(folio, from, to); } EXPORT_SYMBOL(block_commit_write); /* * block_page_mkwrite() is not allowed to change the file size as it gets * called from a page fault handler when a page is first dirtied. Hence we must * be careful to check for EOF conditions here. We set the page up correctly * for a written page which means we get ENOSPC checking when writing into * holes and correct delalloc and unwritten extent mapping on filesystems that * support these features. * * We are not allowed to take the i_mutex here so we have to play games to * protect against truncate races as the page could now be beyond EOF. Because * truncate writes the inode size before removing pages, once we have the * page lock we can determine safely if the page is beyond EOF. If it is not * beyond EOF, then the page is guaranteed safe against truncation until we * unlock the page. * * Direct callers of this function should protect against filesystem freezing * using sb_start_pagefault() - sb_end_pagefault() functions. */ int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, get_block_t get_block) { struct folio *folio = page_folio(vmf->page); struct inode *inode = file_inode(vma->vm_file); unsigned long end; loff_t size; int ret; folio_lock(folio); size = i_size_read(inode); if ((folio->mapping != inode->i_mapping) || (folio_pos(folio) >= size)) { /* We overload EFAULT to mean page got truncated */ ret = -EFAULT; goto out_unlock; } end = folio_size(folio); /* folio is wholly or partially inside EOF */ if (folio_pos(folio) + end > size) end = size - folio_pos(folio); ret = __block_write_begin_int(folio, 0, end, get_block, NULL); if (unlikely(ret)) goto out_unlock; __block_commit_write(folio, 0, end); folio_mark_dirty(folio); folio_wait_stable(folio); return 0; out_unlock: folio_unlock(folio); return ret; } EXPORT_SYMBOL(block_page_mkwrite); int block_truncate_page(struct address_space *mapping, loff_t from, get_block_t *get_block) { pgoff_t index = from >> PAGE_SHIFT; unsigned blocksize; sector_t iblock; size_t offset, length, pos; struct inode *inode = mapping->host; struct folio *folio; struct buffer_head *bh; int err = 0; blocksize = i_blocksize(inode); length = from & (blocksize - 1); /* Block boundary? Nothing to do */ if (!length) return 0; length = blocksize - length; iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits; folio = filemap_grab_folio(mapping, index); if (IS_ERR(folio)) return PTR_ERR(folio); bh = folio_buffers(folio); if (!bh) bh = create_empty_buffers(folio, blocksize, 0); /* Find the buffer that contains "offset" */ offset = offset_in_folio(folio, from); pos = blocksize; while (offset >= pos) { bh = bh->b_this_page; iblock++; pos += blocksize; } if (!buffer_mapped(bh)) { WARN_ON(bh->b_size != blocksize); err = get_block(inode, iblock, bh, 0); if (err) goto unlock; /* unmapped? It's a hole - nothing to do */ if (!buffer_mapped(bh)) goto unlock; } /* Ok, it's mapped. Make sure it's up-to-date */ if (folio_test_uptodate(folio)) set_buffer_uptodate(bh); if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { err = bh_read(bh, 0); /* Uhhuh. Read error. Complain and punt. */ if (err < 0) goto unlock; } folio_zero_range(folio, offset, length); mark_buffer_dirty(bh); unlock: folio_unlock(folio); folio_put(folio); return err; } EXPORT_SYMBOL(block_truncate_page); /* * The generic ->writepage function for buffer-backed address_spaces */ int block_write_full_folio(struct folio *folio, struct writeback_control *wbc, void *get_block) { struct inode * const inode = folio->mapping->host; loff_t i_size = i_size_read(inode); /* Is the folio fully inside i_size? */ if (folio_pos(folio) + folio_size(folio) <= i_size) return __block_write_full_folio(inode, folio, get_block, wbc); /* Is the folio fully outside i_size? (truncate in progress) */ if (folio_pos(folio) >= i_size) { folio_unlock(folio); return 0; /* don't care */ } /* * The folio straddles i_size. It must be zeroed out on each and every * writepage invocation because it may be mmapped. "A file is mapped * in multiples of the page size. For a file that is not a multiple of * the page size, the remaining memory is zeroed when mapped, and * writes to that region are not written out to the file." */ folio_zero_segment(folio, offset_in_folio(folio, i_size), folio_size(folio)); return __block_write_full_folio(inode, folio, get_block, wbc); } sector_t generic_block_bmap(struct address_space *mapping, sector_t block, get_block_t *get_block) { struct inode *inode = mapping->host; struct buffer_head tmp = { .b_size = i_blocksize(inode), }; get_block(inode, block, &tmp, 0); return tmp.b_blocknr; } EXPORT_SYMBOL(generic_block_bmap); static void end_bio_bh_io_sync(struct bio *bio) { struct buffer_head *bh = bio->bi_private; if (unlikely(bio_flagged(bio, BIO_QUIET))) set_bit(BH_Quiet, &bh->b_state); bh->b_end_io(bh, !bio->bi_status); bio_put(bio); } static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, enum rw_hint write_hint, struct writeback_control *wbc) { const enum req_op op = opf & REQ_OP_MASK; struct bio *bio; BUG_ON(!buffer_locked(bh)); BUG_ON(!buffer_mapped(bh)); BUG_ON(!bh->b_end_io); BUG_ON(buffer_delay(bh)); BUG_ON(buffer_unwritten(bh)); /* * Only clear out a write error when rewriting */ if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) clear_buffer_write_io_error(bh); if (buffer_meta(bh)) opf |= REQ_META; if (buffer_prio(bh)) opf |= REQ_PRIO; bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO); fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); bio->bi_write_hint = write_hint; bio_add_folio_nofail(bio, bh->b_folio, bh->b_size, bh_offset(bh)); bio->bi_end_io = end_bio_bh_io_sync; bio->bi_private = bh; /* Take care of bh's that straddle the end of the device */ guard_bio_eod(bio); if (wbc) { wbc_init_bio(wbc, bio); wbc_account_cgroup_owner(wbc, bh->b_folio, bh->b_size); } submit_bio(bio); } void submit_bh(blk_opf_t opf, struct buffer_head *bh) { submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL); } EXPORT_SYMBOL(submit_bh); void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) { lock_buffer(bh); if (!test_clear_buffer_dirty(bh)) { unlock_buffer(bh); return; } bh->b_end_io = end_buffer_write_sync; get_bh(bh); submit_bh(REQ_OP_WRITE | op_flags, bh); } EXPORT_SYMBOL(write_dirty_buffer); /* * For a data-integrity writeout, we need to wait upon any in-progress I/O * and then start new I/O and then wait upon it. The caller must have a ref on * the buffer_head. */ int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) { WARN_ON(atomic_read(&bh->b_count) < 1); lock_buffer(bh); if (test_clear_buffer_dirty(bh)) { /* * The bh should be mapped, but it might not be if the * device was hot-removed. Not much we can do but fail the I/O. */ if (!buffer_mapped(bh)) { unlock_buffer(bh); return -EIO; } get_bh(bh); bh->b_end_io = end_buffer_write_sync; submit_bh(REQ_OP_WRITE | op_flags, bh); wait_on_buffer(bh); if (!buffer_uptodate(bh)) return -EIO; } else { unlock_buffer(bh); } return 0; } EXPORT_SYMBOL(__sync_dirty_buffer); int sync_dirty_buffer(struct buffer_head *bh) { return __sync_dirty_buffer(bh, REQ_SYNC); } EXPORT_SYMBOL(sync_dirty_buffer); static inline int buffer_busy(struct buffer_head *bh) { return atomic_read(&bh->b_count) | (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); } static bool drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free) { struct buffer_head *head = folio_buffers(folio); struct buffer_head *bh; bh = head; do { if (buffer_busy(bh)) goto failed; bh = bh->b_this_page; } while (bh != head); do { struct buffer_head *next = bh->b_this_page; if (bh->b_assoc_map) __remove_assoc_queue(bh); bh = next; } while (bh != head); *buffers_to_free = head; folio_detach_private(folio); return true; failed: return false; } /** * try_to_free_buffers - Release buffers attached to this folio. * @folio: The folio. * * If any buffers are in use (dirty, under writeback, elevated refcount), * no buffers will be freed. * * If the folio is dirty but all the buffers are clean then we need to * be sure to mark the folio clean as well. This is because the folio * may be against a block device, and a later reattachment of buffers * to a dirty folio will set *all* buffers dirty. Which would corrupt * filesystem data on the same device. * * The same applies to regular filesystem folios: if all the buffers are * clean then we set the folio clean and proceed. To do that, we require * total exclusion from block_dirty_folio(). That is obtained with * i_private_lock. * * Exclusion against try_to_free_buffers may be obtained by either * locking the folio or by holding its mapping's i_private_lock. * * Context: Process context. @folio must be locked. Will not sleep. * Return: true if all buffers attached to this folio were freed. */ bool try_to_free_buffers(struct folio *folio) { struct address_space * const mapping = folio->mapping; struct buffer_head *buffers_to_free = NULL; bool ret = 0; BUG_ON(!folio_test_locked(folio)); if (folio_test_writeback(folio)) return false; if (mapping == NULL) { /* can this still happen? */ ret = drop_buffers(folio, &buffers_to_free); goto out; } spin_lock(&mapping->i_private_lock); ret = drop_buffers(folio, &buffers_to_free); /* * If the filesystem writes its buffers by hand (eg ext3) * then we can have clean buffers against a dirty folio. We * clean the folio here; otherwise the VM will never notice * that the filesystem did any IO at all. * * Also, during truncate, discard_buffer will have marked all * the folio's buffers clean. We discover that here and clean * the folio also. * * i_private_lock must be held over this entire operation in order * to synchronise against block_dirty_folio and prevent the * dirty bit from being lost. */ if (ret) folio_cancel_dirty(folio); spin_unlock(&mapping->i_private_lock); out: if (buffers_to_free) { struct buffer_head *bh = buffers_to_free; do { struct buffer_head *next = bh->b_this_page; free_buffer_head(bh); bh = next; } while (bh != buffers_to_free); } return ret; } EXPORT_SYMBOL(try_to_free_buffers); /* * Buffer-head allocation */ static struct kmem_cache *bh_cachep __ro_after_init; /* * Once the number of bh's in the machine exceeds this level, we start * stripping them in writeback. */ static unsigned long max_buffer_heads __ro_after_init; int buffer_heads_over_limit; struct bh_accounting { int nr; /* Number of live bh's */ int ratelimit; /* Limit cacheline bouncing */ }; static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; static void recalc_bh_state(void) { int i; int tot = 0; if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) return; __this_cpu_write(bh_accounting.ratelimit, 0); for_each_online_cpu(i) tot += per_cpu(bh_accounting, i).nr; buffer_heads_over_limit = (tot > max_buffer_heads); } struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) { struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); if (ret) { INIT_LIST_HEAD(&ret->b_assoc_buffers); spin_lock_init(&ret->b_uptodate_lock); preempt_disable(); __this_cpu_inc(bh_accounting.nr); recalc_bh_state(); preempt_enable(); } return ret; } EXPORT_SYMBOL(alloc_buffer_head); void free_buffer_head(struct buffer_head *bh) { BUG_ON(!list_empty(&bh->b_assoc_buffers)); kmem_cache_free(bh_cachep, bh); preempt_disable(); __this_cpu_dec(bh_accounting.nr); recalc_bh_state(); preempt_enable(); } EXPORT_SYMBOL(free_buffer_head); static int buffer_exit_cpu_dead(unsigned int cpu) { int i; struct bh_lru *b = &per_cpu(bh_lrus, cpu); for (i = 0; i < BH_LRU_SIZE; i++) { brelse(b->bhs[i]); b->bhs[i] = NULL; } this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); per_cpu(bh_accounting, cpu).nr = 0; return 0; } /** * bh_uptodate_or_lock - Test whether the buffer is uptodate * @bh: struct buffer_head * * Return true if the buffer is up-to-date and false, * with the buffer locked, if not. */ int bh_uptodate_or_lock(struct buffer_head *bh) { if (!buffer_uptodate(bh)) { lock_buffer(bh); if (!buffer_uptodate(bh)) return 0; unlock_buffer(bh); } return 1; } EXPORT_SYMBOL(bh_uptodate_or_lock); /** * __bh_read - Submit read for a locked buffer * @bh: struct buffer_head * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ * @wait: wait until reading finish * * Returns zero on success or don't wait, and -EIO on error. */ int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait) { int ret = 0; BUG_ON(!buffer_locked(bh)); get_bh(bh); bh->b_end_io = end_buffer_read_sync; submit_bh(REQ_OP_READ | op_flags, bh); if (wait) { wait_on_buffer(bh); if (!buffer_uptodate(bh)) ret = -EIO; } return ret; } EXPORT_SYMBOL(__bh_read); /** * __bh_read_batch - Submit read for a batch of unlocked buffers * @nr: entry number of the buffer batch * @bhs: a batch of struct buffer_head * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ * @force_lock: force to get a lock on the buffer if set, otherwise drops any * buffer that cannot lock. * * Returns zero on success or don't wait, and -EIO on error. */ void __bh_read_batch(int nr, struct buffer_head *bhs[], blk_opf_t op_flags, bool force_lock) { int i; for (i = 0; i < nr; i++) { struct buffer_head *bh = bhs[i]; if (buffer_uptodate(bh)) continue; if (force_lock) lock_buffer(bh); else if (!trylock_buffer(bh)) continue; if (buffer_uptodate(bh)) { unlock_buffer(bh); continue; } bh->b_end_io = end_buffer_read_sync; get_bh(bh); submit_bh(REQ_OP_READ | op_flags, bh); } } EXPORT_SYMBOL(__bh_read_batch); void __init buffer_init(void) { unsigned long nrpages; int ret; bh_cachep = KMEM_CACHE(buffer_head, SLAB_RECLAIM_ACCOUNT|SLAB_PANIC); /* * Limit the bh occupancy to 10% of ZONE_NORMAL */ nrpages = (nr_free_buffer_pages() * 10) / 100; max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", NULL, buffer_exit_cpu_dead); WARN_ON(ret < 0); }